1
|
Gao Y, Li J, Wang W, Tian Y. Molecular and physiological responses of black rockfish (Sebastes schlegelii) to short- and medium-term ocean acidification. ENVIRONMENTAL RESEARCH 2025; 275:121431. [PMID: 40118312 DOI: 10.1016/j.envres.2025.121431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/24/2025] [Accepted: 03/17/2025] [Indexed: 03/23/2025]
Abstract
Ocean acidification (OA) is one of the greatest threats to marine species, with widespread impacts on their physiological functions. However, the adaptive capacities of many marine species to OA and the underlying mechanisms remain unclear. In this study, we investigated the effects of short-term (4 days) and medium-term (30 days) CO2 exposure (pH 8.0, 7.6, and 7.3) on black rockfish (Sebastes schlegelii), focusing on histopathological changes in gill tissues, ion transport biomarkers, oxidative stress indicators, and transcriptomic responses. The results showed that both short-term and medium-term OA induced significant morphological changes in gill tissues, including epithelial lifting, hyperplasia, hypertrophy, and lamellar clubbing, which are likely adaptive mechanisms for maintaining homeostasis. Both Na+/K+-ATPase and carbonic anhydrase (CA) activities increased significantly in both short- and medium-term exposure, while Ca2+-ATPase activity was elevated only in the short-term, suggesting differential enzyme regulation over time to sustain ionic balance. Additionally, oxidative stress indicators (superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), reduced glutathione (GSH) and glutathione peroxidase (GPx)) were significantly elevated after both exposure durations, indicating that the antioxidant defense system was activated. Moreover, the integrated biomarker response (IBR) index further indicated that the stress response was more pronounced during short-term exposure. Transcriptomic analysis reveals significant alterations in pathways related to calcium signaling, cytoskeletal structure, energy metabolism, and oxidative stress following short-term exposure. In contrast, medium-term exposure leads to significant enrichment of pathways associated with cell-environment interactions, highlighting the molecular adaptations of S. schlegelii to OA-induced stress. These findings provide valuable insights into the mechanisms of OA tolerance in S. schlegelii and contribute to understanding the adaptability of marine species in future ocean environments.
Collapse
Affiliation(s)
- Yunhong Gao
- Deep Sea and Polar Fisheries Research Center and Key Laboratory of Mariculture, Ministry of Education, Ocean Univerisity of China, Qingdao, China; Frontiers Science Center for Deep Ocean Multispheres and Earth System (FDOMES), Ocean University of China, Qingdao, China
| | - Jianchao Li
- Deep Sea and Polar Fisheries Research Center and Key Laboratory of Mariculture, Ministry of Education, Ocean Univerisity of China, Qingdao, China; Frontiers Science Center for Deep Ocean Multispheres and Earth System (FDOMES), Ocean University of China, Qingdao, China
| | - Wenwen Wang
- Deep Sea and Polar Fisheries Research Center and Key Laboratory of Mariculture, Ministry of Education, Ocean Univerisity of China, Qingdao, China; Frontiers Science Center for Deep Ocean Multispheres and Earth System (FDOMES), Ocean University of China, Qingdao, China
| | - Yongjun Tian
- Deep Sea and Polar Fisheries Research Center and Key Laboratory of Mariculture, Ministry of Education, Ocean Univerisity of China, Qingdao, China; Frontiers Science Center for Deep Ocean Multispheres and Earth System (FDOMES), Ocean University of China, Qingdao, China.
| |
Collapse
|
2
|
Fernández I, Larrán AM, de Paz P, Riesco MF. The Direct Effects of Climate Change on Tench ( Tinca tinca) Sperm Quality under a Real Heatwave Event Scenario. Animals (Basel) 2024; 14:778. [PMID: 38473163 DOI: 10.3390/ani14050778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Global aquaculture growth will most probably face specific conditions derived from climate change. In fact, the most severe impacts of these changes will be suffered by aquatic populations in restrictive circumstances, such as current aquaculture locations, which represent a perfect model to study global warming effects. Although the impact of temperature on fish reproduction has been characterized in many aspects, this study was focused on recreating more realistic models of global warming, particularly considering heatwave phenomena, in order to decipher its effects on male gametes (spermatozoa). For this purpose, thermal stress via a heatwave simulation (mimicking a natural occurring heatwave, from 24 to 30 °C) was induced in adult tench (Tinca tinca) males and compared with a control group (55.02 ± 16.44 g of average body wet weight). The impact of the thermal stress induced by this climate change event was assessed using cellular and molecular approaches. After the heatwave recreation, a multiparametric analysis of sperm quality, including some traditional parameters (such as sperm motility) and new ones (focus on redox balance and sperm quality biomarkers), was performed. Although sperm concentration and the volume produced were not affected, the results showed a significant deleterious effect on motility parameters (e.g., reduced progressive motility and total motility during the first minute post-activation). Furthermore, the sperm produced under the thermal stress induced by this heatwave simulation exhibited an increased ROS content in spermatic cells, confirming the negative effect that this thermal stress model (heatwave recreation) might have had on sperm quality. More importantly, the expression of some known sperm quality and fertilization markers was decreased in males exposed to thermal stress. This present study not only unveils the potential effects of climate change in contemporary and future fish farming populations (and their underlying mechanisms) but also provides insights on how to mitigate and/or avoid thermal stress due to heatwave events.
Collapse
Affiliation(s)
- Ignacio Fernández
- Spanish Institute of Oceanography (IEO-CSIC), Centro Oceanográfico de Vigo, Subida a Radio Faro nº 52, 36390 Vigo, Spain
| | - Ana M Larrán
- Aquaculture Research Center, Agro-Technological Institute of Castilla y León (ITACyL), Ctra. Arévalo, Zamarramala, 40196 Segovia, Spain
| | - Paulino de Paz
- Cell Biology Area, Department of Molecular Biology, Universidad de León, Campus de Vegazana, sn, 24071 León, Spain
| | - Marta F Riesco
- Cell Biology Area, Department of Molecular Biology, Universidad de León, Campus de Vegazana, sn, 24071 León, Spain
| |
Collapse
|
3
|
Servili A, Lévêque E, Mouchel O, Devergne J, Lebigre C, Roussel S, Mazurais D, Zambonino-Infante JL. Ocean acidification alters the acute stress response of a marine fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159804. [PMID: 36349621 DOI: 10.1016/j.scitotenv.2022.159804] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/29/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
The absorption of anthropogenic carbon dioxide from the atmosphere by oceans generates rapid changes in seawater carbonate system and pH, a process termed ocean acidification. Exposure to acidified water can impact the allostatic load of marine organism as the acclimation to suboptimal environments requires physiological adaptive responses that are energetically costly. As a consequence, fish facing ocean acidification may experience alterations of their stress response and a compromised ability to cope with additional stress, which may impact individuals' life traits and ultimately their fitness. In this context, we carried out an integrative study investigating the impact of ocean acidification on the physiological and behavioral stress responses to an acute stress in juvenile European sea bass. Fish were long term (11 months) exposed to present day pH/CO2 condition or acidified water as predicted by IPCC "business as usual" (RCP8.5) scenario for 2100 and subjected to netting stress (fish transfer and confinement test). Fish acclimated to acidified condition showed slower post stress return to plasma basal concentrations of cortisol and glucose. We found no clear indication of regulation in the central and interrenal tissues of the expression levels of gluco- and mineralocorticoid receptors and corticoid releasing factor. At 120 min post stress, sea bass acclimated to acidified water had divergent neurotransmitters concentrations pattern in the hypothalamus (higher serotonin levels and lower GABA and dopamine levels) and a reduction in motor activity. Our experimental data indicate that ocean acidification alters the physiological response to acute stress in European sea bass via the neuroendocrine regulation of the corticotropic axis, a response associated to an alteration of the motor behavioral profile. Overall, this study suggests that behavioral and physiological adaptive response to climate changes related constraints may impact fish resilience to further stressful events.
Collapse
Affiliation(s)
- Arianna Servili
- Ifremer, Université de Brest, CNRS, IRD, LEMAR, Plouzané, France.
| | - Etienne Lévêque
- Ifremer, Université de Brest, CNRS, IRD, LEMAR, Plouzané, France
| | - Olivier Mouchel
- Ifremer, Université de Brest, CNRS, IRD, LEMAR, Plouzané, France
| | - Jimmy Devergne
- Ifremer, Université de Brest, CNRS, IRD, LEMAR, Plouzané, France
| | - Christophe Lebigre
- UMR DECOD (Ecosystem Dynamics and Sustainability), Institut Agro, IFREMER, INRAE, F-29280 Plouzané, France
| | - Sabine Roussel
- Ifremer, Université de Brest, CNRS, IRD, LEMAR, Plouzané, France
| | - David Mazurais
- Ifremer, Université de Brest, CNRS, IRD, LEMAR, Plouzané, France
| | | |
Collapse
|
4
|
Cohen-Rengifo M, Danion M, Gonzalez AA, Bégout ML, Cormier A, Noël C, Cabon J, Vitré T, Mark FC, Mazurais D. The extensive transgenerational transcriptomic effects of ocean acidification on the olfactory epithelium of a marine fish are associated with a better viral resistance. BMC Genomics 2022; 23:448. [PMID: 35710351 PMCID: PMC9204966 DOI: 10.1186/s12864-022-08647-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/05/2022] [Indexed: 11/19/2022] Open
Abstract
Background Progressive CO2-induced ocean acidification (OA) impacts marine life in ways that are difficult to predict but are likely to become exacerbated over generations. Although marine fishes can balance acid–base homeostasis efficiently, indirect ionic regulation that alter neurosensory systems can result in behavioural abnormalities. In marine invertebrates, OA can also affect immune system function, but whether this is the case in marine fishes is not fully understood. Farmed fish are highly susceptible to disease outbreak, yet strategies for overcoming such threats in the wake of OA are wanting. Here, we exposed two generations of the European sea bass (Dicentrarchus labrax) to end-of-century predicted pH levels (IPCC RCP8.5), with parents (F1) being exposed for four years and their offspring (F2) for 18 months. Our design included a transcriptomic analysis of the olfactory rosette (collected from the F2) and a viral challenge (exposing F2 to betanodavirus) where we assessed survival rates. Results We discovered transcriptomic trade-offs in both sensory and immune systems after long-term transgenerational exposure to OA. Specifically, RNA-Seq analysis of the olfactory rosette, the peripheral olfactory organ, from 18-months-old F2 revealed extensive regulation in genes involved in ion transport and neuronal signalling, including GABAergic signalling. We also detected OA-induced up-regulation of genes associated with odour transduction, synaptic plasticity, neuron excitability and wiring and down-regulation of genes involved in energy metabolism. Furthermore, OA-exposure induced up-regulation of genes involved in innate antiviral immunity (pathogen recognition receptors and interferon-stimulated genes) in combination with down-regulation of the protein biosynthetic machinery. Consistently, OA-exposed F2 challenged with betanodavirus, which causes damage to the nervous system of marine fish, had acquired improved resistance. Conclusion F2 exposed to long-term transgenerational OA acclimation showed superior viral resistance, though as their metabolic and odour transduction programs were altered, odour-mediated behaviours might be consequently impacted. Although it is difficult to unveil how long-term OA impacts propagated between generations, our results reveal that, across generations, trade-offs in plastic responses is a core feature of the olfactory epithelium transcriptome in OA-exposed F2 offspring, and will have important consequences for how cultured and wild fish interacts with its environment. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08647-w.
Collapse
Affiliation(s)
| | - Morgane Danion
- Ploufragan-Plouzané Laboratory, Fish Viral Pathology Unit, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Technopôle Brest-Iroise, 29280, Plouzané, France
| | - Anne-Alicia Gonzalez
- MGX, CNRS, INSERM, University of Montpellier, Biocampus Montpellier, Montpellier, France
| | - Marie-Laure Bégout
- MARBEC, University of Montpellier, CNRS, IFREMER, 34250, Palavas-les-Flots, IRD, France
| | | | - Cyril Noël
- IFREMER, SEBIMER, 29280, Plouzané, France
| | - Joëlle Cabon
- Ploufragan-Plouzané Laboratory, Fish Viral Pathology Unit, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Technopôle Brest-Iroise, 29280, Plouzané, France
| | | | - Felix C Mark
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI), Department of Integrative Ecophysiology, 27570, Bremerhaven, Germany
| | | |
Collapse
|
5
|
Howald S, Moyano M, Crespel A, Kuchenmüller LL, Cominassi L, Claireaux G, Peck MA, Mark FC. Effects of Ocean Acidification over successive generations decrease larval resilience to Ocean Acidification & Warming but juvenile European sea bass could benefit from higher temperatures in the NE Atlantic. J Exp Biol 2022; 225:275035. [PMID: 35417012 DOI: 10.1242/jeb.243802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/01/2022] [Indexed: 11/20/2022]
Abstract
European sea bass (Dicentrarchus labrax) is a large, economically important fish species with a long generation time whose long-term resilience to ocean acidification (OA) and warming (OW) is not clear. We incubated sea bass from Brittany (France) for two generations (>5 years in total) under ambient and predicted OA conditions (PCO2: 650 and 1700 µatm) crossed with ambient and predicted ocean OW conditions in F1 (temperature: 15-18°C and 20-23°C) to investigate the effects of climate change on larval and juvenile growth and metabolic rate. We found that in F1, OA as single stressor at ambient temperature did not affect larval or juvenile growth and OW increased developmental time and growth rates, but OAW decreased larval size at metamorphosis. Larval routine and juvenile standard metabolic rates were significantly lower in cold compared to warm conditioned fish and also lower in F0 compared to F1 fish. We did not find any effect of OA as a single stressor on metabolic rates. Juvenile PO2crit was not affected by OA or OAW in both generations. We discuss the potential underlying mechanisms resulting in the resilience of F0 and F1 larvae and juveniles to OA and in the beneficial effects of OW on F1 larval growth and metabolic rate, but on the other hand in the vulnerability of F1, but not F0 larvae to OAW. With regard to the ecological perspective, we conclude that recruitment of larvae and early juveniles to nursery areas might decrease under OAW conditions but individuals reaching juvenile phase might benefit from increased performance at higher temperatures.
Collapse
Affiliation(s)
- Sarah Howald
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Integrative Ecophysiology, Bremerhaven, Germany.,Institute of Marine Ecosystem and Fisheries Science, Center for Earth System Research and Sustainability (CEN), University of Hamburg, Germany
| | - Marta Moyano
- Institute of Marine Ecosystem and Fisheries Science, Center for Earth System Research and Sustainability (CEN), University of Hamburg, Germany.,Center for Coastal Research, University of Agder, Postbox 422, 4604 Kristiansand, Norway
| | - Amélie Crespel
- Ifremer, LEMAR (UMR 6539), Laboratory of Adaptation, and Nutrition of Fish, Centre Ifremer de Bretagne, Plouzané, France
| | - Luis L Kuchenmüller
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Integrative Ecophysiology, Bremerhaven, Germany
| | - Louise Cominassi
- Institute of Marine Ecosystem and Fisheries Science, Center for Earth System Research and Sustainability (CEN), University of Hamburg, Germany.,Institute of Arctic Biology, University of Alaska, Fairbanks, PO Box 757000, Fairbanks, AK 99775, USA
| | - Guy Claireaux
- Université de Bretagne Occidentale, LEMAR (UMR 6539), Brest, France.,Ifremer, LEMAR (UMR 6539), Laboratory of Adaptation, and Nutrition of Fish, Centre Ifremer de Bretagne, Plouzané, France
| | - Myron A Peck
- Institute of Marine Ecosystem and Fisheries Science, Center for Earth System Research and Sustainability (CEN), University of Hamburg, Germany.,Coastal Systems (COS), Royal Netherlands Institute for Sea Research (NIOZ), Netherlands
| | - Felix C Mark
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Integrative Ecophysiology, Bremerhaven, Germany
| |
Collapse
|
6
|
Larval Development in Tropical Gar (Atractosteus tropicus) Is Dependent on the Embryonic Thermal Regime: Ecological Implications under a Climate Change Context. FISHES 2022. [DOI: 10.3390/fishes7010016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In ectotherm species, environmental temperature plays a key role in development, growth, and survival. Thus, determining how temperature affects fish populations is of utmost importance to accurately predict the risk of climate change over fisheries and aquaculture, critical to warrant nutrition and food security in the coming years. Here, the potential effects of abnormal thermal regimes (24, 28 and 32 °C; TR24, TR28, and TR32, respectively) exclusively applied during embryogenesis in tropical gar (Atractosteus tropicus) has been explored to decipher the potential consequences on hatching and growth from fertilization to 16 days post-fertilization (dpf), while effects on skeletal development and body morphology were explored at fertilization and 16 dpf. Egg incubation at higher temperatures induced an early hatching and mouth opening. A higher hatching rate was obtained in eggs incubated at 28 °C when compared to those at 24 °C. No differences were found in fish survival at 16 dpf, with values ranging from 84.89 to 88.86%, but increased wet body weight and standard length were found in larvae from TR24 and TR32 groups. Thermal regime during embryogenesis also altered the rate at which the skeletal development occurs. Larvae from the TR32 group showed an advanced skeletal development, with a higher development of cartilaginous structures at hatching but reduced at 16 dpf when compared with the TR24 and TR28 groups. Furthermore, this advanced skeletal development seemed to determine the fish body morphology. Based on biometric measures, a principal component analysis showed how along development, larvae from each thermal regime were clustered together, but with each population remaining clearly separated from each other. The current study shows how changes in temperature may induce craniofacial and morphological alterations in fish during early stages and contribute to understanding the possible effects of global warming in early development of fish and its ecological implications.
Collapse
|
7
|
Alves A, Gregório SF, Ruiz-Jarabo I, Fuentes J. Intestinal response to ocean acidification in the European sea bass (Dicentrarchus labrax). Comp Biochem Physiol A Mol Integr Physiol 2020; 250:110789. [DOI: 10.1016/j.cbpa.2020.110789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 11/30/2022]
|
8
|
Mazurais D, Servili A, Noel C, Cormier A, Collet S, Leseur R, Le Roy M, Vitré T, Madec L, Zambonino-Infante JL. Transgenerational regulation of cbln11 gene expression in the olfactory rosette of the European sea bass (Dicentrarchus labrax) exposed to ocean acidification. MARINE ENVIRONMENTAL RESEARCH 2020; 159:105022. [PMID: 32662446 DOI: 10.1016/j.marenvres.2020.105022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/12/2020] [Accepted: 05/17/2020] [Indexed: 06/11/2023]
Abstract
Elevated amounts of atmospheric CO2 are causing ocean acidification (OA) that may affect marine organisms including fish species. While several studies carried out in fish revealed that OA induces short term dysfunction in sensory systems including regulation of neurons activity in olfactory epithelium, information on the effects of OA on other physiological processes and actors is scarcer. In the present study we focused our attention on a European sea bass (Dicentrarchus labrax) sghC1q gene, a member of the C1q-domain-containing (C1qDC) protein family. In vertebrates, C1qDC family includes actors involved in different physiological processes including immune response and synaptic organization. Our microsynteny analysis revealed that this sghC1q gene is the orthologous gene in European sea bass to zebrafish (Danio rerio) cbln11 gene. We cloned the full length cbln11 mRNA and identified the different domains (the signal peptide, the coiled coil region and the globular C1q domain) of the deduced protein sequence. Investigation of mRNA expression by qPCR and in situ hybridization revealed that cbln11gene is especially expressed in the non-sensory epithelium of the olfactory rosette at larval and adult stages. The expression of cbln11 mRNA was analysed by qPCR in the first generation (F0) of European sea bass broodstock exposed since larval stages to water pH of 8.0 (control) or 7.6 (predicted for year 2100) and in their offspring (F1) maintained in the environmental conditions of their parents. Our results showed that cbln11 mRNA expression level was lower in larvae exposed to OA then up-regulated at adult stage in the olfactory rosette of F0 and that this up-regulation is maintained under OA at larval and juvenile stages in F1. Overall, this work provides evidence of a transgenerational inheritance of OA-induced up-regulation of cbln11 gene expression in European sea bass. Further studies will investigate the potential immune function of cbln11 gene and the consequences of these regulations, as well as the possible implications in terms of fitness and adaptation to OA in European sea bass.
Collapse
Affiliation(s)
- David Mazurais
- IFREMER, Univ Brest, CNRS, IRD, LEMAR, F-29280, Plouzané, France.
| | - Arianna Servili
- IFREMER, Univ Brest, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | - Cyril Noel
- IFREMER, SEBIMER, F-29280, Plouzané, France
| | | | - Sophie Collet
- IFREMER, Univ Brest, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | - Romane Leseur
- IFREMER, Univ Brest, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | - Maelenn Le Roy
- IFREMER, Univ Brest, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | - Thomas Vitré
- IFREMER, Univ Brest, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | - Lauriane Madec
- IFREMER, Univ Brest, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | | |
Collapse
|
9
|
Strader ME, Wong JM, Hofmann GE. Ocean acidification promotes broad transcriptomic responses in marine metazoans: a literature survey. Front Zool 2020; 17:7. [PMID: 32095155 PMCID: PMC7027112 DOI: 10.1186/s12983-020-0350-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 01/06/2020] [Indexed: 01/16/2023] Open
Abstract
For nearly a decade, the metazoan-focused research community has explored the impacts of ocean acidification (OA) on marine animals, noting that changes in ocean chemistry can impact calcification, metabolism, acid-base regulation, stress response and behavior in organisms that hold high ecological and economic value. Because OA interacts with several key physiological processes in marine organisms, transcriptomics has become a widely-used method to characterize whole organism responses on a molecular level as well as inform mechanisms that explain changes in phenotypes observed in response to OA. In the past decade, there has been a notable rise in studies that examine transcriptomic responses to OA in marine metazoans, and here we attempt to summarize key findings across these studies. We find that organisms vary dramatically in their transcriptomic responses to pH although common patterns are often observed, including shifts in acid-base ion regulation, metabolic processes, calcification and stress response mechanisms. We also see a rise in transcriptomic studies examining organismal response to OA in a multi-stressor context, often reporting synergistic effects of OA and temperature. In addition, there is an increase in studies that use transcriptomics to examine the evolutionary potential of organisms to adapt to OA conditions in the future through population and transgenerational experiments. Overall, the literature reveals complex organismal responses to OA, in which some organisms will face more dramatic consequences than others. This will have wide-reaching impacts on ocean communities and ecosystems as a whole.
Collapse
Affiliation(s)
- Marie E Strader
- 1Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106 USA.,2Department of Biological Sciences, Auburn University, Auburn, AL 36849 USA
| | - Juliet M Wong
- 1Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106 USA.,3Present address: Department of Biological Sciences, Florida International University, North Miami, FL 33181 USA
| | - Gretchen E Hofmann
- 1Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106 USA
| |
Collapse
|
10
|
Mazurais D, Servili A, Le Bayon N, Gislard S, Madec L, Zambonino-Infante JL. Long-term exposure to near-future ocean acidification does not affect the expression of neurogenesis- and synaptic transmission-related genes in the olfactory bulb of European sea bass (Dicentrarchus labrax). J Comp Physiol B 2020; 190:161-167. [DOI: 10.1007/s00360-019-01256-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/13/2019] [Accepted: 12/23/2019] [Indexed: 01/04/2023]
|
11
|
Santi F, Petry AC, Plath M, Riesch R. Phenotypic differentiation in a heterogeneous environment: morphological and life‐history responses to ecological gradients in a livebearing fish. J Zool (1987) 2019. [DOI: 10.1111/jzo.12720] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- F. Santi
- School of Biological Sciences Royal Holloway University of London Egham UK
| | - A. C. Petry
- Instituto de Biodiversidade e Sustentatibilidade – NUPEM Universidade Federal do Rio de Janeiro – UFRJ Macaé Brazil
| | - M. Plath
- College of Animal Science and Technology Northwest A&F University Yangling China
| | - R. Riesch
- School of Biological Sciences Royal Holloway University of London Egham UK
| |
Collapse
|
12
|
Stiasny MH, Sswat M, Mittermayer FH, Falk-Petersen IB, Schnell NK, Puvanendran V, Mortensen A, Reusch TBH, Clemmesen C. Divergent responses of Atlantic cod to ocean acidification and food limitation. GLOBAL CHANGE BIOLOGY 2019; 25:839-849. [PMID: 30570815 DOI: 10.1111/gcb.14554] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 10/23/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
In order to understand the effect of global change on marine fishes, it is imperative to quantify the effects on fundamental parameters such as survival and growth. Larval survival and recruitment of the Atlantic cod (Gadus morhua) were found to be heavily impaired by end-of-century levels of ocean acidification. Here, we analysed larval growth among 35-36 days old surviving larvae, along with organ development and ossification of the skeleton. We combined CO2 treatments (ambient: 503 µatm, elevated: 1,179 µatm) with food availability in order to evaluate the effect of energy limitation in addition to the ocean acidification stressor. As expected, larval size (as a proxy for growth) and skeletogenesis were positively affected by high food availability. We found significant interactions between acidification and food availability. Larvae fed ad libitum showed little difference in growth and skeletogenesis due to the CO2 treatment. Larvae under energy limitation were significantly larger and had further developed skeletal structures in the elevated CO2 treatment compared to the ambient CO2 treatment. However, the elevated CO2 group revealed impairments in critically important organs, such as the liver, and had comparatively smaller functional gills indicating a mismatch between size and function. It is therefore likely that individual larvae that had survived acidification treatments will suffer from impairments later during ontogeny. Our study highlights important allocation trade-off between growth and organ development, which is critically important to interpret acidification effects on early life stages of fish.
Collapse
Affiliation(s)
- Martina H Stiasny
- GEOMAR Helmholtz Centre for Ocean Research, Evolutionary Ecology of Marine Fishes, Kiel, Germany
- Department of Economics, Sustainable Fisheries, University of Kiel, Kiel, Germany
| | - Michael Sswat
- GEOMAR Helmholtz Centre for Ocean Research, Biological Oceanography, Kiel, Germany
| | - Felix H Mittermayer
- GEOMAR Helmholtz Centre for Ocean Research, Evolutionary Ecology of Marine Fishes, Kiel, Germany
| | | | - Nalani K Schnell
- Institut de Systématique, Évolution, Biodiversité, ISYEB-UMR 7205-CNRS, MNHN, UPMC, EPHE, Muséum national d'Histoire naturelle, Sorbonne Universities, Paris, France
| | | | | | - Thorsten B H Reusch
- GEOMAR Helmholtz Centre for Ocean Research, Evolutionary Ecology of Marine Fishes, Kiel, Germany
| | - Catriona Clemmesen
- GEOMAR Helmholtz Centre for Ocean Research, Evolutionary Ecology of Marine Fishes, Kiel, Germany
| |
Collapse
|
13
|
Ecological effects of elevated CO2 on marine and freshwater fishes: From individual to community effects. FISH PHYSIOLOGY 2019. [DOI: 10.1016/bs.fp.2019.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
14
|
You Better Repeat It: Complex CO2 × Temperature Effects in Atlantic Silverside Offspring Revealed by Serial Experimentation. DIVERSITY 2018. [DOI: 10.3390/d10030069] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Concurrent ocean warming and acidification demand experimental approaches that assess biological sensitivities to combined effects of these potential stressors. Here, we summarize five CO2 × temperature experiments on wild Atlantic silverside, Menidia menidia, offspring that were reared under factorial combinations of CO2 (nominal: 400, 2200, 4000, and 6000 µatm) and temperature (17, 20, 24, and 28 °C) to quantify the temperature-dependence of CO2 effects in early life growth and survival. Across experiments and temperature treatments, we found few significant CO2 effects on response traits. Survival effects were limited to a single experiment, where elevated CO2 exposure reduced embryo survival at 17 and 24 °C. Hatch length displayed CO2 × temperature interactions due largely to reduced hatch size at 24 °C in one experiment but increased length at 28 °C in another. We found no overall influence of CO2 on larval growth or survival to 9, 10, 15 and 13–22 days post-hatch, at 28, 24, 20, and 17 °C, respectively. Importantly, exposure to cooler (17 °C) and warmer (28 °C) than optimal rearing temperatures (24 °C) in this species did not appear to increase CO2 sensitivity. Repeated experimentation documented substantial inter- and intra-experiment variability, highlighting the need for experimental replication to more robustly constrain inherently variable responses. Taken together, these results demonstrate that the early life stages of this ecologically important forage fish appear largely tolerate to even extreme levels of CO2 across a broad thermal regime.
Collapse
|
15
|
Fernández I, Gavaia PJ, Laizé V, Cancela ML. Fish as a model to assess chemical toxicity in bone. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 194:208-226. [PMID: 29202272 DOI: 10.1016/j.aquatox.2017.11.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/14/2017] [Accepted: 11/22/2017] [Indexed: 06/07/2023]
Abstract
Environmental toxicology has been expanding as growing concerns on the impact of produced and released chemical compounds over the environment and human health are being demonstrated. Among the toxic effects observed in organisms exposed to pollutants, those affecting skeletal tissues (osteotoxicity) have been somehow overlooked in comparison to hepato-, immune-, neuro- and/or reproductive toxicities. Nevertheless, sub-lethal effects of toxicants on skeletal development and/or bone maintenance may result in impaired growth, reduced survival rate, increased disease susceptibility and diminished welfare. Osteotoxicity may occur by acute or chronic exposure to different environmental insults. Because of biologically and technically advantagous features - easy to breed and inexpensive to maintain, external and rapid rate of development, translucent larvae and the availability of molecular and genetic tools - the zebrafish (Danio rerio) has emerged in the last decade as a vertebrate model system of choice to evaluate osteotoxicity. Different experimental approaches in fish species and analytical tools have been applied, from in vitro to in vivo systems, from specific to high throughput methodologies. Current knowledge on osteotoxicity and underlying mechanisms gained using fish, with a special emphasis on zebrafish systems, is reviewed here. Osteotoxicants have been classified into four categories according to the pathway involved in the transduction of the osteotoxic effects: activation/inhibition of membrane and/or nuclear receptors, alteration of redox condition, mimicking of bone constituents and unknown pathways. Knowledge on these pathways is also reported here as it may provide critical insights into the development, production and release of future chemical compounds with none or low osteotoxicity, thus promoting the green/environmental friendly chemistry.
Collapse
Affiliation(s)
- Ignacio Fernández
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal.
| | - Paulo J Gavaia
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal; Department of Biomedical Sciences and Medicine, University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Vincent Laizé
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal
| | - M Leonor Cancela
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal; Department of Biomedical Sciences and Medicine, University of Algarve, Campus de Gambelas, Faro, Portugal; Algarve Biomedical Center (ABC), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| |
Collapse
|