1
|
Li H, Mei L, Nie X, Wu L, Lv L, Ren X, Yang J, Cao H, Wu J, Zhang Y, Hu Y, Wang W, Turck CW, Shi B, Li J, Xu L, Hu X. The Tree Shrew Model of Parkinson Disease: A Cost-Effective Alternative to Nonhuman Primate Models. J Transl Med 2024; 104:102145. [PMID: 39343009 DOI: 10.1016/j.labinv.2024.102145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024] Open
Abstract
The surge in demand for experimental monkeys has led to a rapid increase in their costs. Consequently, there is a growing need for a cost-effective model of Parkinson disease (PD) that exhibits all core clinical and pathologic phenotypes. Evolutionarily, tree shrews (Tupaia belangeri) are closer to primates in comparison with rodents and could be an ideal species for modeling PD. To develop a tree shrew PD model, we used the 1-methyl-4-phenylpyridinium (MPP+), a metabolite derived from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, to induce lesions in dopaminergic neurons of the unilateral substantia nigra. The induced tree shrew model consistently exhibited and maintained all classic clinical manifestations of PD for a 5-month period. The symptoms included bradykinesia, rest tremor, and postural instability, and ∼50% individuals showed apomorphine-induced rotations, a classic phenotype of unilateral PD models. All these are closely resembled the ones observed in PD monkeys. Meanwhile, this model was also sensitive to L-dopa treatment in a dose-dependent manner, which suggested that the motor deficits are dopamine dependent. Immunostaining showed a significant loss of dopaminergic neurons (∼95%) in the lesioned substantia nigra, which is a crucial PD pathological marker. Moreover, a control group of nigral saline injection did not show any motor deficits and pathological changes. Cytomorphologic analysis revealed that the size of nigral dopaminergic neurons in tree shrews is much bigger than that of rodents and is close to that of macaques. The morphologic similarity may be an important structural basis for the manifestation of the highly similar phenotypes between monkey and tree shrew PD models. Collectively, in this study, we have successfully developed a PD model in a small animal species that faithfully recapitulated the classic clinical symptoms and key pathological indicators of PD monkeys, providing a novel and low-cost avenue for evaluation of PD treatments and underlying mechanisms.
Collapse
Affiliation(s)
- Hao Li
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, and National Resource Center for Nonhuman Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Leyi Mei
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, and National Resource Center for Nonhuman Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Xiupeng Nie
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Liping Wu
- Department of Endocrinology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Longbao Lv
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, and National Resource Center for Nonhuman Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, China
| | - Xiaofeng Ren
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, and National Resource Center for Nonhuman Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, China
| | - Jitong Yang
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, and National Resource Center for Nonhuman Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, China
| | - Haonan Cao
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, and National Resource Center for Nonhuman Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Jing Wu
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, and National Resource Center for Nonhuman Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yuhua Zhang
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, and National Resource Center for Nonhuman Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yingzhou Hu
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, and National Resource Center for Nonhuman Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wenchao Wang
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, and National Resource Center for Nonhuman Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Christoph W Turck
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, and National Resource Center for Nonhuman Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Max Planck Institute of Psychiatry, Munich, Germany.
| | - Bingyin Shi
- Department of Endocrinology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Jiali Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Department of Neurology, Hackensack Meridian School of Medicine, Nutley, New Jersey.
| | - Lin Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
| | - Xintian Hu
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, and National Resource Center for Nonhuman Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
2
|
García-Beltrán O, Urrutia PJ, Núñez MT. On the Chemical and Biological Characteristics of Multifunctional Compounds for the Treatment of Parkinson's Disease. Antioxidants (Basel) 2023; 12:214. [PMID: 36829773 PMCID: PMC9952574 DOI: 10.3390/antiox12020214] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Protein aggregation, mitochondrial dysfunction, iron dyshomeostasis, increased oxidative damage and inflammation are pathognomonic features of Parkinson's disease (PD) and other neurodegenerative disorders characterized by abnormal iron accumulation. Moreover, the existence of positive feed-back loops between these pathological components, which accelerate, and sometimes make irreversible, the neurodegenerative process, is apparent. At present, the available treatments for PD aim to relieve the symptoms, thus improving quality of life, but no treatments to stop the progression of the disease are available. Recently, the use of multifunctional compounds with the capacity to attack several of the key components of neurodegenerative processes has been proposed as a strategy to slow down the progression of neurodegenerative processes. For the treatment of PD specifically, the necessary properties of new-generation drugs should include mitochondrial destination, the center of iron-reactive oxygen species interaction, iron chelation capacity to decrease iron-mediated oxidative damage, the capacity to quench free radicals to decrease the risk of ferroptotic neuronal death, the capacity to disrupt α-synuclein aggregates and the capacity to decrease inflammatory conditions. Desirable additional characteristics are dopaminergic neurons to lessen unwanted secondary effects during long-term treatment, and the inhibition of the MAO-B and COMPT activities to increase intraneuronal dopamine content. On the basis of the published evidence, in this work, we review the molecular basis underlying the pathological events associated with PD and the clinical trials that have used single-target drugs to stop the progress of the disease. We also review the current information on multifunctional compounds that may be used for the treatment of PD and discuss the chemical characteristics that underlie their functionality. As a projection, some of these compounds or modifications could be used to treat diseases that share common pathology features with PD, such as Friedreich's ataxia, Multiple sclerosis, Huntington disease and Alzheimer's disease.
Collapse
Affiliation(s)
- Olimpo García-Beltrán
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22 Calle 67, Ibagué 730002, Colombia
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, General Gana 1702, Santiago 8370854, Chile
| | - Pamela J. Urrutia
- Faculty of Medicine and Science, Universidad San Sebastián, Lota 2465, Santiago 7510157, Chile
| | - Marco T. Núñez
- Faculty of Sciences, Universidad de Chile, Las Palmeras 3425, Santiago 7800024, Chile
| |
Collapse
|
3
|
Sarkar S, Murphy MA, Dammer EB, Olsen AL, Rangaraju S, Fraenkel E, Feany MB. Comparative proteomic analysis highlights metabolic dysfunction in α-synucleinopathy. NPJ PARKINSONS DISEASE 2020; 6:40. [PMID: 33311497 PMCID: PMC7732845 DOI: 10.1038/s41531-020-00143-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/12/2020] [Indexed: 12/15/2022]
Abstract
The synaptic protein α-synuclein is linked through genetics and neuropathology to the pathogenesis of Parkinson’s disease and related disorders. However, the mechanisms by which α-synuclein influences disease onset and progression are incompletely understood. To identify pathogenic pathways and therapeutic targets we performed proteomic analysis in a highly penetrant new Drosophila model of α-synucleinopathy. We identified 476 significantly upregulated and 563 significantly downregulated proteins in heads from α-synucleinopathy model flies compared to controls. We then used multiple complementary analyses to identify and prioritize genes and pathways within the large set of differentially expressed proteins for functional studies. We performed Gene Ontology enrichment analysis, integrated our proteomic changes with human Parkinson’s disease genetic studies, and compared the α-synucleinopathy proteome with that of tauopathy model flies, which are relevant to Alzheimer’s disease and related disorders. These approaches identified GTP cyclohydrolase (GCH1) and folate metabolism as candidate mediators of α-synuclein neurotoxicity. In functional validation studies, we found that the knockdown of Drosophila Gch1 enhanced locomotor deficits in α-synuclein transgenic flies, while folate supplementation protected from α-synuclein toxicity. Our integrative analysis suggested that mitochondrial dysfunction was a common downstream mediator of neurodegeneration. Accordingly, Gch1 knockdown enhanced metabolic dysfunction in α-synuclein transgenic fly brains while folate supplementation partially normalized brain bioenergetics. Here we outline and implement an integrative approach to identify and validate potential therapeutic pathways using comparative proteomics and genetics and capitalizing on the facile genetic and pharmacological tools available in Drosophila.
Collapse
Affiliation(s)
- Souvarish Sarkar
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael A Murphy
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Eric B Dammer
- Department of Neurology, Emory University, Atlanta, GA, USA
| | - Abby L Olsen
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Ernest Fraenkel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mel B Feany
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Annus Á, Vécsei L. Spotlight on opicapone as an adjunct to levodopa in Parkinson's disease: design, development and potential place in therapy. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:143-151. [PMID: 28123288 PMCID: PMC5234693 DOI: 10.2147/dddt.s104227] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Parkinson's disease (PD) is a progressive, chronic, neurodegenerative disease characterized by rigidity, tremor, bradykinesia and postural instability secondary to dopaminergic deficit in the nigrostriatal system. Currently, disease-modifying therapies are not available, and levodopa (LD) treatment remains the gold standard for controlling motor and nonmotor symptoms of the disease. LD is extensively and rapidly metabolized by peripheral enzymes, namely, aromatic amino acid decarboxylase and catechol-O-methyltransferase (COMT). To increase the bioavailability of LD, COMT inhibitors are frequently used in clinical settings. Opicapone is a novel COMT inhibitor that has been recently approved by the European Medicines Agency as an adjunctive therapy to combinations of LD and aromatic amino acid decarboxylase inhibitor in adult PD patients with end-of-dose motor fluctuations. We aimed to review the biochemical properties of opicapone, summarize its preclinical and clinical trials and discuss its future potential role in the treatment of PD.
Collapse
Affiliation(s)
- Ádám Annus
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged; MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| |
Collapse
|
5
|
Moraes LS, Rohor BZ, Areal LB, Pereira EV, Santos AMC, Facundo VA, Santos ARS, Pires RGW, Martins-Silva C. Medicinal plant Combretum leprosum mart ameliorates motor, biochemical and molecular alterations in a Parkinson's disease model induced by MPTP. JOURNAL OF ETHNOPHARMACOLOGY 2016; 185:68-76. [PMID: 26994817 DOI: 10.1016/j.jep.2016.03.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 03/01/2016] [Accepted: 03/15/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Combretum leprosum is a popular medicinal plant distributed in north and northeastern regions of Brazil. Many different parts of this plant are used in traditional medicine to treat several inflammatory diseases. Parkinson's disease (PD) is a disorder associated with inflammatory toxic factors and the treatments available provide merely a delay of the neurodegeneration. AIM OF THE STUDY We investigated the potential neuroprotective properties of the C. leprosum ethanolic extract (C.l.EE) in a murine model of PD using the toxin 1-methyl-4 phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP). MATERIALS AND METHODS The mice were split into four groups: V/S (vehicle/saline), E/S (extract/saline), V/M (vehicle/MPTP) and E/M (extract/ MPTP). Mice received MPTP (30mg/kg, i.p.) or vehicle (10ml/kg, i.p.) once a day for 5 consecutive days and vehicle (10ml/kg) or C.l.EE (100mg/kg) orally by intra-gastric gavage (i.g.) during a 14-d period, starting 3 days before the first MPTP injection. All groups were assessed for behavioural impairments (amphetamine-induced locomotor activity and muscle strength), dopamine content in striatum using high performance liquid chromatography (HPLC), tyrosine hydroxylase (TH) and dopamine transporter (DAT) gene expressions using qPCR. RESULTS Animals were injected with d-amphetamine (2mg/kg) and the activity was recorded. Amphetamine-induced hyperlocomotion was observed in all groups; however animals treated with MPTP showed exacerbated hyperlocomotion (approximately 3 fold increase compared to control groups). By contrast, mice treated with MPTP that received C.l.EE exhibited attenuation of the hyperlocomotion and did not differ from control groups. Muscle strength test pointed that C.l.EE strongly avoided muscular deficits caused by MPTP (approximately 2 fold increase compared to V/M group). Dopamine and its metabolites were measured in the striatum. The V/M group presented a dopamine reduction of 80%. On the other hand, the E/M group exhibited an increase in dopamine and its metabolites levels (approximately 3 fold increase compared to V/M group). Tyrosine hydroxylase (TH) and dopamine transporter (DAT) gene expressions were significantly reduced in the V/M group (60%). Conversely, C.l.EE treatment was able to increase the mRNA levels of those genes in the E/M group (approximately 2 fold for TH and DAT). CONCLUSIONS These data show, for the first time, that C. leprosum ethanolic extract prevented motor and molecular changes induced by MPTP, and partially reverted dopamine deficit. Thus, our results demonstrate that C.l.EE has potential for the treatment and prevention of PD.
Collapse
Affiliation(s)
- Livia S Moraes
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espirito Santo, Av. Marechal Campos 1468 - Maruípe, 29.043-910 Vitoria, ES, Brazil; Laboratory of Molecular and Behavioral Neurobiology, Health Sciences Center, Federal University of Espirito Santo, Av. Marechal Campos 1468 - Maruípe, 29.043-910 Vitoria, ES, Brazil
| | - Bruna Z Rohor
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espirito Santo, Av. Marechal Campos 1468 - Maruípe, 29.043-910 Vitoria, ES, Brazil; Laboratory of Molecular and Behavioral Neurobiology, Health Sciences Center, Federal University of Espirito Santo, Av. Marechal Campos 1468 - Maruípe, 29.043-910 Vitoria, ES, Brazil
| | - Lorena B Areal
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espirito Santo, Av. Marechal Campos 1468 - Maruípe, 29.043-910 Vitoria, ES, Brazil; Laboratory of Molecular and Behavioral Neurobiology, Health Sciences Center, Federal University of Espirito Santo, Av. Marechal Campos 1468 - Maruípe, 29.043-910 Vitoria, ES, Brazil
| | - Evaldo V Pereira
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espirito Santo, Av. Marechal Campos 1468 - Maruípe, 29.043-910 Vitoria, ES, Brazil; Laboratory of Biochemistry and Molecular Biophysics of Proteins, Health Sciences Center, Federal University of Espirito Santo, Av. Marechal Campos 1468 - Maruípe, 29.043-910 Vitoria, ES, Brazil
| | - Alexandre M C Santos
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espirito Santo, Av. Marechal Campos 1468 - Maruípe, 29.043-910 Vitoria, ES, Brazil; Laboratory of Biochemistry and Molecular Biophysics of Proteins, Health Sciences Center, Federal University of Espirito Santo, Av. Marechal Campos 1468 - Maruípe, 29.043-910 Vitoria, ES, Brazil
| | - Valdir A Facundo
- Department of Medicine, Federal University of Rondônia-UNIR, Porto Velho, RO, Brazil
| | - Adair R S Santos
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Trindade, Florianopolis 88040-900, SC, Brazil
| | - Rita G W Pires
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espirito Santo, Av. Marechal Campos 1468 - Maruípe, 29.043-910 Vitoria, ES, Brazil; Laboratory of Molecular and Behavioral Neurobiology, Health Sciences Center, Federal University of Espirito Santo, Av. Marechal Campos 1468 - Maruípe, 29.043-910 Vitoria, ES, Brazil
| | - Cristina Martins-Silva
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espirito Santo, Av. Marechal Campos 1468 - Maruípe, 29.043-910 Vitoria, ES, Brazil; Laboratory of Molecular and Behavioral Neurobiology, Health Sciences Center, Federal University of Espirito Santo, Av. Marechal Campos 1468 - Maruípe, 29.043-910 Vitoria, ES, Brazil.
| |
Collapse
|
6
|
Majláth Z, Török N, Toldi J, Vécsei L. Promising therapeutic agents for the treatment of Parkinson’s disease. Expert Opin Biol Ther 2016; 16:787-99. [DOI: 10.1517/14712598.2016.1164687] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Van der Schyf CJ. Rational drug discovery design approaches for treating Parkinson’s disease. Expert Opin Drug Discov 2015; 10:713-41. [DOI: 10.1517/17460441.2015.1041495] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
8
|
de Bartolomeis A, Tomasetti C, Iasevoli F. Update on the Mechanism of Action of Aripiprazole: Translational Insights into Antipsychotic Strategies Beyond Dopamine Receptor Antagonism. CNS Drugs 2015; 29:773-99. [PMID: 26346901 PMCID: PMC4602118 DOI: 10.1007/s40263-015-0278-3] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Dopamine partial agonism and functional selectivity have been innovative strategies in the pharmacological treatment of schizophrenia and mood disorders and have shifted the concept of dopamine modulation beyond the established approach of dopamine D2 receptor (D2R) antagonism. Despite the fact that aripiprazole was introduced in therapy more than 12 years ago, many questions are still unresolved regarding the complexity of the effects of this agent on signal transduction and intracellular pathways, in part linked to its pleiotropic receptor profile. The complexity of the mechanism of action has progressively shifted the conceptualization of this agent from partial agonism to functional selectivity. From the induction of early genes to modulation of scaffolding proteins and activation of transcription factors, aripiprazole has been shown to affect multiple cellular pathways and several cortical and subcortical neurotransmitter circuitries. Growing evidence shows that, beyond the consequences of D2R occupancy, aripiprazole has a unique neurobiology among available antipsychotics. The effect of chronic administration of aripiprazole on D2R affinity state and number has been especially highlighted, with relevant translational implications for long-term treatment of psychosis. The hypothesized effects of aripiprazole on cell-protective mechanisms and neurite growth, as well as the differential effects on intracellular pathways [i.e. extracellular signal-regulated kinase (ERK)] compared with full D2R antagonists, suggest further exploration of these targets by novel and future biased ligand compounds. This review aims to recapitulate the main neurobiological effects of aripiprazole and discuss the potential implications for upcoming improvements in schizophrenia therapy based on dopamine modulation beyond D2R antagonism.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Unit of Treatment Resistant Psychosis, Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine of Napoli "Federico II", Via Pansini, 5, Edificio n.18, 3rd floor, 80131, Naples, Italy.
| | - Carmine Tomasetti
- Unit of Treatment Resistant Psychosis, Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine of Napoli "Federico II", Via Pansini, 5, Edificio n.18, 3rd floor, 80131, Naples, Italy
| | - Felice Iasevoli
- Unit of Treatment Resistant Psychosis, Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine of Napoli "Federico II", Via Pansini, 5, Edificio n.18, 3rd floor, 80131, Naples, Italy
| |
Collapse
|
9
|
Didonet JJ, Cavalcante JC, Souza LDS, Costa MSMO, André E, Soares-Rachetti VDP, Guerrini R, Calo' G, Gavioli EC. Neuropeptide S counteracts 6-OHDA-induced motor deficits in mice. Behav Brain Res 2014; 266:29-36. [PMID: 24613977 DOI: 10.1016/j.bbr.2014.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 02/28/2014] [Accepted: 03/03/2014] [Indexed: 10/25/2022]
Abstract
Neuropeptide S (NPS) is a 20-aminoacid peptide that selectively activates a G-protein coupled receptor named NPSR. Preclinical studies have shown that NPSR activation promotes anxiolysis, hyperlocomotion, arousal and weakfullness. Previous findings suggest that dopamine neurotransmission plays a role in the actions of NPS. Based on the close relationship between dopamine and Parkinson disease (PD) and on the evidence that NPSR are expressed on brain dopaminergic nuclei, the present study investigated the effects of NPS in motor deficits induced by intracerebroventricular (icv) administration of the dopaminergic neurotoxin 6-OHDA in the mouse rotarod test. 6-OHDA injection evoked motor deficits and significantly reduced tyrosine hidroxylase (TH)-positive cells in the substantia nigra (SN) and ventral tegmental area. However, a positive correlation was found only between the motor performance of 6-OHDA-injected mice and the number of TH-positive cells in SN. The systemic administration of l-DOPA+benserazide (25+6.25 mg/kg) counteracted 6-OHDA-induced motor deficits in mice. Similar to L-DOPA, the icv injection of NPS (0.1 and 1 nmol) reversed motor deficits evoked by 6-OHDA. In conclusion, NPS attenuated 6-OHDA-induced motor impairments in mice assessed in the rota-rod test. We discussed the beneficial actions of NPS based on a putative facilitation of dopaminergic neurotransmission in the brain. Finally, these findings candidate NPSR agonists as a potential innovative treatment for PD.
Collapse
Affiliation(s)
- Julia J Didonet
- Behavioral Pharmacology Laboratory, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Judney C Cavalcante
- Laboratory of Neuroanatomy, Department of Morphology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Lisiane de S Souza
- Behavioral Pharmacology Laboratory, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Miriam S M O Costa
- Laboratory of Neuroanatomy, Department of Morphology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Eunice André
- Department of Pharmacology, Federal University of Parana, Curitiba, PR, Brazil
| | - Vanessa de P Soares-Rachetti
- Behavioral Pharmacology Laboratory, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Remo Guerrini
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Girolamo Calo'
- Department of Medical Sciences, Section of Pharmacology, and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Elaine C Gavioli
- Behavioral Pharmacology Laboratory, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
10
|
Tábi T, Szökő É, Vécsei L, Magyar K. The pharmacokinetic evaluation of selegiline ODT for the treatment of Parkinson's disease. Expert Opin Drug Metab Toxicol 2013; 9:629-36. [DOI: 10.1517/17425255.2013.781152] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Tan L, Yu JT, Tan L. The kynurenine pathway in neurodegenerative diseases: mechanistic and therapeutic considerations. J Neurol Sci 2012; 323:1-8. [PMID: 22939820 DOI: 10.1016/j.jns.2012.08.005] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 07/10/2012] [Accepted: 08/08/2012] [Indexed: 12/11/2022]
Abstract
The kynurenine pathway (KP), the primary route of tryptophan degradation in mammalian cells, consists of many metabolites including kynurenic acid (KYNA), quinolinic acid (QUIN), 3-hydroxykynurenine (3-HK) and picolinic acid (PIC). The former two are neuroactive, while the latter two are molecules with pro-oxidants and antioxidants properties. These agents are considered to be involved in aging and numerous neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS). Several studies have demonstrated that altered kynurenine metabolism plays an important role in the pathogenesis of this group of diseases. The important metabolites and key enzymes show significant importance in those disorders. Both analogs of the neuroprotective metabolites and small molecule enzyme inhibitors preventing the formation of neurotoxic compounds may have potential therapeutic significance. In this review we discuss the mechanistic and therapeutic considerations of KP in aging and the main neurodegenerative diseases and review the updated knowledge in this therapeutic field.
Collapse
Affiliation(s)
- Lin Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, China.
| | | | | |
Collapse
|
12
|
Areias F, Costa M, Castro M, Brea J, Gregori-Puigjané E, Proença MF, Mestres J, Loza MI. New chromene scaffolds for adenosine A(2A) receptors: synthesis, pharmacology and structure-activity relationships. Eur J Med Chem 2012; 54:303-10. [PMID: 22677030 DOI: 10.1016/j.ejmech.2012.05.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 05/02/2012] [Accepted: 05/07/2012] [Indexed: 10/28/2022]
Abstract
In silico screening of a collection of 1584 academic compounds identified a small molecule hit for the human adenosine A(2A) receptor (pK(i) = 6.2) containing a novel chromene scaffold (3a). To explore the structure-activity relationships of this new chemical series for adenosine receptors, a focused library of 43 2H-chromene-3-carboxamide derivatives was synthesized and tested in radioligand binding assays at human adenosine A(1), A(2A), A(2B) and A(3) receptors. The series was found to be enriched with bioactive compounds for adenosine receptors, with 14 molecules showing submicromolar affinity (pK(i) ≥ 6.0) for at least one adenosine receptor subtype. These results provide evidence that the chromene scaffold, a core structure present in natural products from a wide variety of plants, vegetables, and fruits, constitutes a valuable source for novel therapeutic agents.
Collapse
Affiliation(s)
- Filipe Areias
- Center of Chemistry, Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Banerjee A, Yadav PS, Bajpai M, Sangana RR, Gullapalli S, Gudi GS, Gharat LA. Isothiazole and isoxazole fused pyrimidones as PDE7 inhibitors: SAR and pharmacokinetic evaluation. Bioorg Med Chem Lett 2012; 22:3223-8. [DOI: 10.1016/j.bmcl.2012.03.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 02/28/2012] [Accepted: 03/07/2012] [Indexed: 01/01/2023]
|
14
|
Zádori D, Klivényi P, Plangár I, Toldi J, Vécsei L. Endogenous neuroprotection in chronic neurodegenerative disorders: with particular regard to the kynurenines. J Cell Mol Med 2011; 15:701-17. [PMID: 21155972 PMCID: PMC3922661 DOI: 10.1111/j.1582-4934.2010.01237.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Parkinson's disease (PD) and Huntington's disease (HD) are progressive chronic neurodegenerative disorders that are accompanied by a considerable impairment of the motor functions. PD may develop for familial or sporadic reasons, whereas HD is based on a definite genetic mutation. Nevertheless, the pathological processes involve oxidative stress and glutamate excitotoxicity in both cases. A number of metabolic routes are affected in these disorders. The decrease in antioxidant capacity and alterations in the kynurenine pathway, the main pathway of the tryptophan metabolism, are features that deserve particular interest, because the changes in levels of neuroactive kynurenine pathway compounds appear to be strongly related to the oxidative stress and glutamate excitotoxicity involved in the disease pathogenesis. Increase of the antioxidant capacity and pharmacological manipulation of the kynurenine pathway are therefore promising therapeutic targets in these devastating disorders.
Collapse
Affiliation(s)
- Dénes Zádori
- Department of Neurology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | | | | | | | | |
Collapse
|
15
|
Mi H, Thomas PD, Ring HZ, Jiang R, Sangkuhl K, Klein TE, Altman RB. PharmGKB summary: dopamine receptor D2. Pharmacogenet Genomics 2011; 21:350-6. [PMID: 20736885 PMCID: PMC3091980 DOI: 10.1097/fpc.0b013e32833ee605] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Huaiyu Mi
- Evolutionary Systems Biology, Artificial Intelligence Center, SRI International, Menlo Park, Stanford, California, USA
| | - Paul D. Thomas
- Evolutionary Systems Biology, Artificial Intelligence Center, SRI International, Menlo Park, Stanford, California, USA
| | - Huijun Z. Ring
- Evolutionary Systems Biology, Artificial Intelligence Center, SRI International, Menlo Park, Stanford, California, USA
| | - Ruhong Jiang
- Evolutionary Systems Biology, Artificial Intelligence Center, SRI International, Menlo Park, Stanford, California, USA
| | - Katrin Sangkuhl
- Department of Genetics, Stanford University, Stanford, California, USA
| | - Teri E. Klein
- Department of Genetics, Stanford University, Stanford, California, USA
| | - Russ B. Altman
- Department of Genetics, Stanford University, Stanford, California, USA
- Department of Bioengineering, Stanford University, Stanford, California, USA
| |
Collapse
|
16
|
Mayanil CS, Ichi S, Farnell BM, Boshnjaku V, Tomita T, McLone DG. Maternal intake of folic acid and neural crest stem cells. VITAMINS AND HORMONES 2011; 87:143-73. [PMID: 22127242 DOI: 10.1016/b978-0-12-386015-6.00028-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Maternal folic acid (FA) intake has beneficial effects in preventing neural tube defects and may also play a role in the prevention of adult onset diseases such as Alzheimer's disease, dementia, neuropsychiatric disorders, cardiovascular diseases, and cerebral ischemia. This review will focus on the effects of maternal FA intake on neural crest stem cell proliferation and differentiation. Although FA is generally considered beneficial, it has the potential of promoting cell proliferation at the expense of differentiation. In some situations, this may lead to miscarriage or postnatal developmental abnormalities. Therefore, a blind approach such as "FA for everyone" is not necessarily the best course of action. Ultimately, the best approach for FA supplementation, and potentially other nutritional supplements, will include customized patient genomic profiles for determining dose and duration.
Collapse
Affiliation(s)
- Chandra S Mayanil
- Developmental Biology Program, Children's Memorial Research Center, Department of Pediatric Neurosurgery, Children's Memorial Medical Center and Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | | | | | | | | |
Collapse
|
17
|
Solla P, Cannas A, Marrosu F, Marrosu MG. Therapeutic interventions and adjustments in the management of Parkinson disease: role of combined carbidopa/levodopa/entacapone (Stalevo). Neuropsychiatr Dis Treat 2010; 6:483-90. [PMID: 20856911 PMCID: PMC2938297 DOI: 10.2147/ndt.s5190] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Parkinson disease (PD) is a neurodegenerative disorder characterized by 3 cardinal motor symptoms: resting tremor, rigidity, and bradykinesia. Since its introduction 40 years ago, levodopa has represented the gold standard for dopaminergic stimulation therapy in patients with PD. Levodopa is routinely combined with a dopa-decarboxylase inhibitor (DDCI) to prevent the conversion of levodopa into dopamine in peripheral circulation. However, up to 80% of patients treated with continuous levodopa manifest the onset of disabling motor complications capable of producing an adverse effect on quality of life as the disease progresses. In recent years, a new, safe, and efficacious armamentarium of treatment options has been provided by the marketing of the catechol-O-methyltransferase (COMT) inhibitor, entacapone, a peripheral blocker of dopa to 3-0-methyldopa metabolism, which increments levodopa brain availability. When administered with levodopa, entacapone conjugates the rapid onset of levodopa-induced effects with a protracted efficiency, thus providing additional benefits to classic levodopa treatment by increasing "on" time in fluctuating PD patients, and theoretically providing a more continuous and physiological-like stimulation of dopamine receptors implying a reduced risk of motor complications. In this context, the use of a single administration of combined carbidopa/ levodopa/entacapone (Stalevo(®)) in the treatment of PD affords clinical improvements similar to those obtained by 2 separate tablets (ie, levodopa/DDCI and entacapone), although the former produces a more positive effect on quality of life than the latter. Additionally, the STalevo Reduction In Dyskinesia Evaluation (STRIDE-PD) study was designed with the aim of demonstrating that the combination of levodopa, carbidopa, and entacapone, used as initial levodopa therapy, significantly delays the onset of dyskinesias compared with the conventional levodopa/carbidopa formulation. Unfortunately, STRIDEPD failed to prove the benefit of continuous dopaminergic stimulation with triple therapy in a clinical setting. Recently, the effect of combined COMT inhibitor with levodopa administration in reducing homocysteine synthesis has been described. To this regard, clear evidence has been presented indicating homocysteine as a risk factor for vascular diseases, cognitive impairment, and dementia. Several studies have discussed the potential of entacapone as adjunct to levodopa/ DDCI in reducing plasma homocysteine levels with contrasting results.
Collapse
Affiliation(s)
- Paolo Solla
- Movement Disorders Center, Institute of Neurology, University of Cagliari, Cagliari, Italy
| | - Antonino Cannas
- Movement Disorders Center, Institute of Neurology, University of Cagliari, Cagliari, Italy
| | - Francesco Marrosu
- Movement Disorders Center, Institute of Neurology, University of Cagliari, Cagliari, Italy
| | - Maria Giovanna Marrosu
- Movement Disorders Center, Institute of Neurology, University of Cagliari, Cagliari, Italy
| |
Collapse
|
18
|
Richel DJ, Colly LP, Lurvink E, Willemze R. Comparison of the antileukaemic activity of 5 aza-2-deoxycytidine and arabinofuranosyl-cytosine in rats with myelocytic leukaemia. Br J Cancer 1989; 23:729-42. [PMID: 2465015 DOI: 10.1517/13543784.2014.897694] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Using a Brown Norway rat leukaemia model (BNML), which is a realistic model of human myelocytic leukaemia, we compared the antileukaemic activity, influence on cell cycle kinetics and effect on normal haematopoiesis of 5 aza-2-deoxycytidine (aza-dC) and arabinofuranosyl-cytosine (ara-C). The antileukaemic activity was evaluated by means of a survival study. For aza-dC a dose-response relationship was demonstrated for doses up to 50 mg kg-1 (3 times q 12 h); a higher dose resulted in only a slight increase in median survival time (MST). For ara-C a weak dose-response relationship was observed. At the maximum dose of aza-dC and ara-C tested, aza-dC induced a 10-day longer survival time than ara-C, which means 2 logs more of leukaemic cell kill for aza-dC. By means of flow cytometric analysis and a 3HTdR uptake study it was shown that aza-dC does not influence the cell cycle kinetics in the first 24 h after exposure, in contrast to ara-C which caused the characteristic G1/S blockage and synchronization. The influence of aza-dC and ara-C on normal haematopoiesis was evaluated with the CFU-S assay. The dose-response curve for CFU-S did not show a significant difference in stem cell cytotoxicity between aza-dC and ara-C. In the BNML model aza-dC is a much more effective antileukaemic agent than ara-C, while the toxic effect on normal haematopoiesis is comparable to that of ara-C.
Collapse
Affiliation(s)
- D J Richel
- Division of Hematology, University Hospital Leiden, The Netherlands
| | | | | | | |
Collapse
|