1
|
Yu Z, Liu J, Yu H, Zhou L, Zhu J, Liang G, Yang Y, Zheng Y, Han Y, Xu J, Han G, Yu L, Zhao Y. Population pharmacokinetics and individualized dosing of vancomycin for critically ill patients receiving continuous renal replacement therapy: the role of residual diuresis. Front Pharmacol 2023; 14:1298397. [PMID: 38223197 PMCID: PMC10785304 DOI: 10.3389/fphar.2023.1298397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/20/2023] [Indexed: 01/16/2024] Open
Abstract
Background: Vancomycin dosing is difficult in critically ill patients receiving continuous renal replacement therapy (CRRT). Previous population pharmacokinetic (PopPK) models seldom consider the effect of residual diuresis, a significant factor of elimination, and thus have poor external utility. This study aimed to build a PopPK model of vancomycin that incorporates daily urine volume to better describe the elimination of vancomycin in these patients. Methods: We performed a multicenter retrospective study that included critically ill patients who received intermittent intravenous vancomycin and CRRT. The PopPK model was developed using the NONMEM program. Goodness-of-fit plots and bootstrap analysis were employed to evaluate the final model. Monte Carlo simulation was performed to explore the optimal dosage regimen with a target area under the curve of ≥400 mg/L h and 400-600 mg/L h. Results: Overall, 113 observations available from 71 patients were included in the PopPK model. The pharmacokinetics could be well illustrated by a one-compartment model with first-order elimination, with the 24-h urine volume as a significant covariate of clearance. The final typical clearance was 1.05 L/h, and the mean volume of distribution was 69.0 L. For patients with anuria or oliguria, a maintenance dosage regimen of 750 mg q12h is recommended. Conclusion: Vancomycin pharmacokinetics in critically ill patients receiving CRRT were well described by the developed PopPK model, which incorporates 24-h urine volume as a covariate. This study will help to better understand vancomycin elimination and benefit precision dosing in these patients.
Collapse
Affiliation(s)
- Zhenwei Yu
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Research Center for Clinical Pharmacy, Zhejiang University, Hangzhou, China
| | - Jieqiong Liu
- The 903rd Hospital of PLA Joint Logistic Support Force, Hangzhou, China
| | - Haitao Yu
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ling Zhou
- Zhejiang Zhoushan Hospital, Zhoushan, China
| | - Jianping Zhu
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Gang Liang
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Yang
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Zheng
- The 903rd Hospital of PLA Joint Logistic Support Force, Hangzhou, China
| | - Yun Han
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Research Center for Clinical Pharmacy, Zhejiang University, Hangzhou, China
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, China
| | - Junjun Xu
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Gang Han
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Research Center for Clinical Pharmacy, Zhejiang University, Hangzhou, China
| | - Lingyan Yu
- Research Center for Clinical Pharmacy, Zhejiang University, Hangzhou, China
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuhua Zhao
- Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
2
|
Wang C, Chen J, Yang B, Li S, Zhang Y, Chen L, Wang T, Dong Y. Determination of vancomycin exposure target and individualized dosing recommendations for critically ill patients undergoing continuous renal replacement therapy. Pharmacotherapy 2023; 43:180-188. [PMID: 36714991 DOI: 10.1002/phar.2771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/18/2022] [Accepted: 12/25/2022] [Indexed: 01/31/2023]
Abstract
STUDY OBJECTIVE Few studies have been conducted to quantify the exposure target of vancomycin in intensive care unit (ICU) patients undergoing continuous renal replacement therapy (CRRT) and provide optimized dosage regimens. We aimed to determine vancomycin exposure target and dosing recommendations using data from an open database in critically ill patients undergoing CRRT. DESIGN A retrospective observational cohort study. DATA SOURCE A large public database. PATIENTS The adult patients who received intravenous vancomycin and CRRT treatment in the database between 2017 and 2019 were reviewed to determine eligibility. A total of 180 patients with 1186 observations were included in the population pharmacokinetic (PPK) model development. The clinical efficacy of vancomycin was analyzed in 159 eligible patients. METHODS A PPK model was developed to estimate individual pharmacokinetic (PK) parameters. The area under the concentration-time curve (AUC) was estimated by a Bayesian approach based on individual vancomycin concentrations. Multivariate logistic regression analyses were performed to identify the factors of clinical outcomes. Threshold of vancomycin exposure in predicting efficacy was identified via receiver operating characteristic (ROC) curve. Dosing recommendations were designed using Monte Carlo Simulations (MCS) based on the optimized exposure target. MEASUREMENTS AND MAIN RESULTS On covariate analysis, CRRT intensity significantly affected vancomycin PK. The AUC above 427 mg*h/L was the only significant predictor of clinical efficacy (adjusted odds ratio (aOR): 1.008, 95% confidence interval (CI): 1.004-1.011, p = 0.000). MCS indicated that vancomycin dosage regimens of 5 mg/kg q12h or 7.5 mg/kg q12h were recommended for patients with CRRT intensities of 20-25 mL/kg/h or 25.1-45 mL/kg/h, respectively. CONCLUSIONS An AUC threshold of 427 mg*h/L (assuming the minimal inhibitory concentration (MIC) = 1 mg/L) was a recommended efficacy exposure target of vancomycin for critically ill patients undergoing CRRT. Vancomycin 5-7.5 mg/kg q12h is recommended as the initial dosage regimens for ICU patients undergoing CRRT.
Collapse
Affiliation(s)
- Chuhui Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiaojiao Chen
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bo Yang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Sihan Li
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yiran Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Lei Chen
- Department of Hemodialysis, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Taotao Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yalin Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
3
|
Corona A, Cattaneo D, Latronico N. Antibiotic Therapy in the Critically Ill with Acute Renal Failure and Renal Replacement Therapy: A Narrative Review. Antibiotics (Basel) 2022; 11:1769. [PMID: 36551426 PMCID: PMC9774462 DOI: 10.3390/antibiotics11121769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
The outcome for critically ill patients is burdened by a double mortality rate and a longer hospital stay in the case of sepsis or septic shock. The adequate use of antibiotics may impact on the outcome since they may affect the pharmacokinetics (Pk) and pharmacodynamics (Pd) of antibiotics in such patients. Acute renal failure (ARF) occurs in about 50% of septic patients, and the consequent need for continuous renal replacement therapy (CRRT) makes the renal elimination rate of most antibiotics highly variable. Antibiotics doses should be reduced in patients experiencing ARF, in accordance with the glomerular filtration rate (GFR), whereas posology should be increased in the case of CRRT. Since different settings of CRRT may be used, identifying a standard dosage of antibiotics is very difficult, because there is a risk of both oversimplification and failing the therapeutic efficacy. Indeed, it has been seen that, in over 25% of cases, the antibiotic therapy does not reach the necessary concentration target mainly due to lack of the proper minimal inhibitory concentration (MIC) achievement. The aim of this narrative review is to clarify whether shared algorithms exist, allowing them to inform the daily practice in the proper antibiotics posology for critically ill patients undergoing CRRT.
Collapse
Affiliation(s)
- Alberto Corona
- Accident & Emergency and Anaesthesia and Intensive Care Medicine Department, Esine and Edolo Hospitals, ASST Valcamonica, 25040 Brescia, Italy
| | - Dario Cattaneo
- Unit of Clinical Pharmacology, ASST Fatebenefratelli Sacco University Hospital, 20157 Milan, Italy
| | - Nicola Latronico
- University Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25100 Brescia, Italy
| |
Collapse
|
4
|
Xu J, Duan L, Li J, Chen F, Xu X, Lu J, Zhuang Z, Cao Y, Yuan Y, Liu X, Sun J, Zhou Q, Shi L, Tang L. Continuous infusion versus intermittent infusion of vancomycin in critically ill patients undergoing continuous venovenous hemofiltration: a prospective interventional study. BMC Infect Dis 2022; 22:667. [PMID: 35918657 PMCID: PMC9344630 DOI: 10.1186/s12879-022-07618-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A prospective interventional study comparing outcomes in critically ill patients receiving intermittent infusion (II) or continuous infusion (CI) of vancomycin during continuous venovenous hemofiltration (CVVH) is lacking. The objective of this study was to compare the pharmacokinetic/pharmacodynamics (PK/PD) target attainment, therapeutic efficacy and safety among critically ill patients who received CI or II of vancomycin in a prospective interventional trial and to explore the correlations of effluent flow rate (EFR) with PK/PD indices. METHODS This prospective interventional study was conducted in two independent intensive care units (ICUs) from February 2021 to January 2022. Patients in one ICU were assigned to receive CI (intervention group) of vancomycin, whereas patients in the other ICU were assigned to receive II regimen (control group). The primary outcome was to compare the PK/PD target attainment, including target concentration and target area under the curve over 24 h to minimum inhibitory concentration (AUC24/MIC). RESULTS Overall target attainment of PK/PD indices was higher with CI compared with II, irrespective of target concentration (78.7% vs. 40.5%; P < 0.05) or AUC24/MIC (53.2% vs. 28.6%; P < 0.05). There were no significant differences in clinical success (72.2% vs. 50.0%; P = 0.183) and microbiological success (83.3% vs. 75.0%, P = 0.681) between the patients treated with CI or II of vancomycin. Adverse reactions occurred at similar rates (0.0% vs. 4.4%; P = 0.462), and mortality between the two modalities was also not significant different (21.7% vs. 17.9%; P = 0.728). Correlation analysis showed a weak to moderately inverse correlation of EFR with observed concentration (r = - 0.3921, P = 0.01) and AUC24/MIC (r = - 0.3811, P = 0.013) in the II group, whereas the correlation between EFR and observed concentration (r = - 0.5711, P < 0.001) or AUC24/MIC (r = - 0.5458, P < 0.001) in the CI group was stronger. CONCLUSION As compared to II, CI of vancomycin in critically ill patients undergoing CVVH was associated with improved attainment of PK/PD indices. Furthermore, the inverse correlation of PK/PD indices with EFR was stronger among patients treated with CI of vancomycin. Trial registration The trial was registered in the Chinese clinical trial registration center (21/01/2021-No. ChiCTR2100042393).
Collapse
Affiliation(s)
- Jinhui Xu
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Lufen Duan
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Jiahui Li
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Fang Chen
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Xiaowen Xu
- Emergent Intensive Care Unit, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Jian Lu
- Intensive Care Unit, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Zhiwei Zhuang
- Emergent Intensive Care Unit, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Yifei Cao
- Intensive Care Unit, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Yunlong Yuan
- Medical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Xin Liu
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Jiantong Sun
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Qin Zhou
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Lu Shi
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China.
| | - Lian Tang
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China.
| |
Collapse
|
5
|
Xu KY, Li D, Hu ZJ, Zhao CC, Bai J, Du WL. Vancomycin dosing in an obese patient with acute renal failure: A case report and review of literature. World J Clin Cases 2022; 10:6218-6226. [PMID: 35949852 PMCID: PMC9254177 DOI: 10.12998/wjcc.v10.i18.6218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/19/2022] [Accepted: 04/22/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Vancomycin is the most commonly used drug for methicillin-resistant Staphylococcus aureus. The empirical clinical doses of vancomycin based on non-obese patients may not be optimal for obese ones.
CASE SUMMARY This study reports a case of vancomycin dosing adjustment in an obese patient (body mass index 78.4 kg/m2) with necrotizing fasciitis of the scrotum and left lower extremity accompanied with acute renal failure. Dosing adjustment was performed based on literature review and factors that influence pharmacokinetic parameters are analyzed. The results of the blood drug concentration monitoring confirmed the successful application of our dosing adjustment strategy in this obese patient. Total body weight is an important consideration for vancomycin administration in obese patients, which affects the volume of distribution and clearance of vancomycin. The alterations of pharmacokinetic parameters dictate that vancomycin should be dose-adjusted when applied to obese patients. At the same time, the pathophysiological status of patients, such as renal function, which also affects the dose adjustment of the patient, should be considered.
CONCLUSION Monitoring vancomycin blood levels in obese patients is critical to help adjust the dosing regimen to ensure that vancomycin concentrations are within the effective therapeutic range and to reduce the incidence of renal injury.
Collapse
Affiliation(s)
- Kun-Yan Xu
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Dan Li
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Zhen-Jie Hu
- Department of Intensive Care Unit, Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Cong-Cong Zhao
- Department of Intensive Care Unit, Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Jing Bai
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Wen-Li Du
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| |
Collapse
|
6
|
Scharf C, Weinelt F, Schroeder I, Paal M, Weigand M, Zoller M, Irlbeck M, Kloft C, Briegel J, Liebchen U. Does the cytokine adsorber CytoSorb ® reduce vancomycin exposure in critically ill patients with sepsis or septic shock? a prospective observational study. Ann Intensive Care 2022; 12:44. [PMID: 35599248 PMCID: PMC9124739 DOI: 10.1186/s13613-022-01017-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 05/06/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hemadsorption of cytokines is used in critically ill patients with sepsis or septic shock. Concerns have been raised that the cytokine adsorber CytoSorb® unintentionally adsorbs vancomycin. This study aimed to quantify vancomycin elimination by CytoSorb®. METHODS Critically ill patients with sepsis or septic shock receiving continuous renal replacement therapy and CytoSorb® treatment during a prospective observational study were included in the analysis. Vancomycin pharmacokinetics was characterized using population pharmacokinetic modeling. Adsorption of vancomycin by the CytoSorb® was investigated as linear or saturable process. The final model was used to derive dosing recommendations based on stochastic simulations. RESULTS 20 CytoSorb® treatments in 7 patients (160 serum samples/24 during CytoSorb®-treatment, all continuous infusion) were included in the study. A classical one-compartment model, including effluent flow rate of the continuous hemodialysis as linear covariate on clearance, best described the measured concentrations (without CytoSorb®). Significant adsorption with a linear decrease during CytoSorb® treatment was identified (p < 0.0001) and revealed a maximum increase in vancomycin clearance of 291% (initially after CytoSorb® installation) and a maximum adsorption capacity of 572 mg. For a representative patient of our cohort a reduction of the area under the curve (AUC) by 93 mg/L*24 h during CytoSorb® treatment was observed. The additional administration of 500 mg vancomycin over 2 h during CytoSorb® attenuated the effect and revealed a negligible reduction of the AUC by 4 mg/L*24 h. CONCLUSION We recommend the infusion of 500 mg vancomycin over 2 h during CytoSorb® treatment to avoid subtherapeutic concentrations. Trial registration NCT03985605. Registered 14 June 2019, https://clinicaltrials.gov/ct2/show/NCT03985605.
Collapse
Affiliation(s)
- Christina Scharf
- Department of Anesthesiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Ferdinand Weinelt
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universität Berlin, Kelchstr. 31, 12169, Berlin, Germany.,Graduate Research Training Program PharMetrX, Freie Universität Berlin/Universität Potsdam, Berlin, Germany
| | - Ines Schroeder
- Department of Anesthesiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Michael Paal
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Michael Weigand
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Michael Zoller
- Department of Anesthesiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Michael Irlbeck
- Department of Anesthesiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Charlotte Kloft
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universität Berlin, Kelchstr. 31, 12169, Berlin, Germany
| | - Josef Briegel
- Department of Anesthesiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Uwe Liebchen
- Department of Anesthesiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany. .,Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universität Berlin, Kelchstr. 31, 12169, Berlin, Germany.
| |
Collapse
|
7
|
Chen J, Li S, Wang Q, Wang C, Qiu Y, Yang L, Han R, Du Q, Chen L, Dong Y, Wang T. Optimizing Antimicrobial Dosing for Critically Ill Patients with MRSA Infections: A New Paradigm for Improving Efficacy during Continuous Renal Replacement Therapy. Pharmaceutics 2022; 14:pharmaceutics14040842. [PMID: 35456676 PMCID: PMC9031498 DOI: 10.3390/pharmaceutics14040842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/23/2022] [Accepted: 04/07/2022] [Indexed: 01/08/2023] Open
Abstract
The dosage regimen of vancomycin, teicoplanin and daptomycin remains controversial for critically ill patients undergoing continuous renal replacement therapy (CRRT). Monte Carlo simulation was applied to identify the optimal regimens of antimicrobial agents in patients with methicillin-resistant Staphylococcus aureus (MRSA) infections based on the mechanisms of different CRRT modalities on drug clearance. The optimal vancomycin dosage for patients received a CRRT doses ≤ 30 mL/kg/h was 20 mg/kg loading dose followed by 500 mg every 8 h, while 1 g every 12 h was appropriate when 35 mL/kg/h was prescribed. The optimal teicoplanin dosage under a CRRT dose ≤ 25 mL/kg/h was four loading doses of 10 mg/kg every 12 h followed by 10 mg/kg every 48 h, 8 mg/kg every 24 h and 6 mg/kg every 24 h for continuous veno-venous hemofiltration, continuous veno-venous hemodialysis and continuous veno-venous hemodiafiltration, respectively. When the CRRT dose increased to 30–35 mL/kg/h, the teicoplanin dosage should be increased by 30%. The recommended regimen for daptomycin was 6–8 mg/kg every 24 h under a CRRT dose ≤ 25 mL/kg/h, while 8–10 mg/kg every 24 h was optimal under 30–35 mg/kg/h. The CRRT dose has an impact on probability of target attainment and CRRT modality only influences teicoplanin.
Collapse
Affiliation(s)
- Jiaojiao Chen
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (J.C.); (S.L.); (Q.W.); (C.W.); (Y.Q.); (L.Y.); (R.H.); (Q.D.)
| | - Sihan Li
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (J.C.); (S.L.); (Q.W.); (C.W.); (Y.Q.); (L.Y.); (R.H.); (Q.D.)
| | - Quanfang Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (J.C.); (S.L.); (Q.W.); (C.W.); (Y.Q.); (L.Y.); (R.H.); (Q.D.)
| | - Chuhui Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (J.C.); (S.L.); (Q.W.); (C.W.); (Y.Q.); (L.Y.); (R.H.); (Q.D.)
| | - Yulan Qiu
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (J.C.); (S.L.); (Q.W.); (C.W.); (Y.Q.); (L.Y.); (R.H.); (Q.D.)
| | - Luting Yang
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (J.C.); (S.L.); (Q.W.); (C.W.); (Y.Q.); (L.Y.); (R.H.); (Q.D.)
| | - Ruiying Han
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (J.C.); (S.L.); (Q.W.); (C.W.); (Y.Q.); (L.Y.); (R.H.); (Q.D.)
| | - Qian Du
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (J.C.); (S.L.); (Q.W.); (C.W.); (Y.Q.); (L.Y.); (R.H.); (Q.D.)
| | - Lei Chen
- Department of Hemodialysis, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China;
| | - Yalin Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (J.C.); (S.L.); (Q.W.); (C.W.); (Y.Q.); (L.Y.); (R.H.); (Q.D.)
- Correspondence: (Y.D.); (T.W.); Tel.: +86-29-85323241 (Y.D.); +86-29-85323243 (T.W.)
| | - Taotao Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (J.C.); (S.L.); (Q.W.); (C.W.); (Y.Q.); (L.Y.); (R.H.); (Q.D.)
- Correspondence: (Y.D.); (T.W.); Tel.: +86-29-85323241 (Y.D.); +86-29-85323243 (T.W.)
| |
Collapse
|
8
|
Quinn NJ, Sacha GL, Wanek MR, Yerke J, Srinivas P, Hohlfelder B. Determinants of Vancomycin Trough Concentration in Patients Receiving Continuous Veno-Venous Hemodialysis. Ann Pharmacother 2022; 56:1133-1138. [PMID: 35130750 DOI: 10.1177/10600280211073370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Vancomycin pharmacokinetics are altered in the critically ill and are further distorted by renal replacement therapy. Limited literature is available evaluating vancomycin dosing in continuous veno-venous hemodialysis (CVVHD). OBJECTIVE The goal of this analysis was to identify factors that affect vancomycin trough concentration in patients on CVVHD and to determine an appropriate dosing strategy. METHODS This was a single-center, retrospective cohort study of adult inpatients admitted to the Cleveland Clinic from May 2016-December 2017. Patients in the intensive care unit who received ≥ 2 doses of vancomycin during CVVHD were included. Patients with interruptions of CVVHD inappropriately timed troughs, a change in dialysate rate, and those who received different vancomycin dosages were excluded. Multivariable linear regression including age, sex, weight, Sequential Organ Failure Assessment score, albumin, 24-hour urine output (UOP), dialysate rate, filter type, and vancomycin dose was run to determine predictors of vancomycin concentration. RESULTS A total of 160 patients were included. The median vancomycin dose was 12.6 mg/kg with a trough of 24.6 mcg/mL. Weight, 24-hour UOP, vancomycin dose (mg/kg), and dialysate rate (mL/kg/h) were all determined to be independent predictors of vancomycin trough level. Patients who received <10 mg/kg doses of vancomycin (N=18) achieved a median trough of 21.5 mcg/mL, with 83% being therapuetic. In patients who received >10 mg/kg (N=142), the median trough was 25.5 mcg/mL, with 47% being therapeutic. CONCLUSION AND RELEVANCE Vancomycin dose, dialysate rate, UOP, and weight are independently associated with vancomycin trough concentration. In CVVHD patients, vancomycin dosed at 10 mg/kg every 24 hours may be an appropriate recommendation.
Collapse
|
9
|
Li J, Wu H, Zhang J. Efficacy of phentolamine combined with ambroxol aerosol inhalation in the treatment of pediatric severe pneumonia and its effect on serum IL-10 and CRP levels. Transl Pediatr 2022; 11:33-40. [PMID: 35242650 PMCID: PMC8825933 DOI: 10.21037/tp-21-516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/20/2021] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND The aim of the present study was to determine the therapeutic effect of phentolamine combined with Ambroxol aerosol inhalation on pediatric severe pneumonia and its effect on serum interleukin-10 (IL-10) and C-reactive protein (CRP) levels. METHODS Eighty-five children with severe pneumonia treated in our hospital from November 2019 to November 2020 were selected as the research participants, and were divided into the routine group (n=41) and treatment group (n=44) according to odd and even admission numbers, respectively. Children in the first group received routine treatment, namely symptomatic treatment such as cough relief (e.g., expectorant) and defervescence, while those in the second group received phentolamine combined with Ambroxol aerosol inhalation. Clinical indexes of both groups before and after treatment were analyzed to determine the therapeutic effect of different treatment methods and serum IL-10 and CRP level changes. RESULTS There was no significant difference in general clinical data between the 2 groups (P>0.05). The duration of cough, fever, abnormal lung sound and lung shadow, and hospitalization time in the treatment group was significantly shorter than those in the routine group (P<0.001). The total clinical effective rate in the treatment group was significantly higher than that in the routine group (P<0.05). Forced vital capacity and peak expiratory flow rate levels were higher in both groups after treatment (P<0.05), and these were higher in the treatment group compared with the routine group after treatment (P<0.05). Serum IL-10 and CRP levels at T1 (2 days after treatment), T2 (5 days after treatment), and T3 (7 days after treatment) in the treatment group were significantly lower than those in the routine group (P<0.001). The total incidence of adverse reactions in the treatment group was significantly lower than that in the routine group (P<0.05). CONCLUSIONS Phentolamine combined with Ambroxol aerosol inhalation can significantly improve the clinical symptoms of children with severe pneumonia, reduce the body's inflammatory response, and improve lung function safely.
Collapse
Affiliation(s)
- Junxia Li
- Department of Pediatrics, Yantai Mountain Hospital, Yantai, China
| | - Haixia Wu
- Department of Pediatrics, Yantai Mountain Hospital, Yantai, China
| | - Jingyao Zhang
- Department of ICU Medicine, The Fourth People's Hospital of Jinan, Jinan, China
| |
Collapse
|
10
|
Chen J, Huang X, Lin Z, Li C, Ding H, Du J, Li L. Case Report: Monitoring Vancomycin Concentrations and Pharmacokinetic Parameters in Continuous Veno-Venous Hemofiltration Patients to Guide Individualized Dosage Regimens: A Case Analysis. Front Pharmacol 2021; 12:763575. [PMID: 34955835 PMCID: PMC8695924 DOI: 10.3389/fphar.2021.763575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
There are limited pharmacokinetic (PK) studies on vancomycin in patients treated with continuous renal replacement therapy (CRRT), and the results have been inconsistent. Because of individual differences, proposing a definite recommendation for the clinical regimen is not possible. Rapidly reaching target vancomycin concentrations will facilitate effective treatment for critically ill patients treated with CRRT. In this study, to understand the dynamic change in drug clearance rates in vivo, analyze the effect of PK changes on drug concentrations, and recommend loading and maintenance dosage regimens, we monitored the blood concentrations of vancomycin and calculated the area under the curve in two critically ill patients treated with vancomycin and continuous veno-venous hemofiltration (CVVH). On the basis of real-time therapeutic drug monitoring results and PK parameters, an individualized vancomycin regimen was developed for patients with CVVH. Good clinical efficacy was achieved, which provided support and reference for empirical vancomycin therapy in these patients.
Collapse
Affiliation(s)
- Jihui Chen
- Department of Pharmacy, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaohui Huang
- Department of Pharmacy, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiyan Lin
- Department of Pharmacy, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chao Li
- Department of Pharmacy, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haoshu Ding
- Department of Anesthesiology and SICU, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Junming Du
- Department of Anesthesiology and SICU, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lixia Li
- Department of Pharmacy, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
11
|
Farrar JE, Mueller SW, Stevens V, Kiser TH, Taleb S, Reynolds PM. Correlation of antimicrobial fraction unbound and sieving coefficient in critically ill patients on continuous renal replacement therapy: a systematic review. J Antimicrob Chemother 2021; 77:310-319. [DOI: 10.1093/jac/dkab396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/06/2021] [Indexed: 12/20/2022] Open
Abstract
Abstract
Background
Fraction unbound has been used as a surrogate for antimicrobial sieving coefficient (SC) to predict extracorporeal clearance in critically ill patients on continuous renal replacement therapy (CRRT), but this is based largely on expert opinion.
Objectives
To examine relationships between package insert-derived fraction unbound (Fu-P), study-specific fraction unbound (Fu-S), and SC in critically ill patients receiving CRRT.
Methods
English-language studies containing patient-specific in vivo pharmacokinetic parameters for antimicrobials in critically ill patients requiring CRRT were included. The primary outcome included correlations between Fu-S, Fu-P, and SC. Secondary outcomes included correlations across protein binding quartiles, serum albumin, and predicted in-hospital mortality, and identification of predictors for SC through multivariable analysis.
Results
Eighty-nine studies including 32 antimicrobials were included for analysis. SC was moderately correlated to Fu-S (R2 = 0.55, P < 0.001) and Fu-P (R2 = 0.41, P < 0.001). SC was best correlated to Fu-S in first (<69%) and fourth (>92%) quartiles of fraction unbound and above median albumin concentrations of 24.5 g/L (R2 = 0.71, P = 0.07). Conversely, correlation was weaker in patients with mortality estimates greater than the median of 55% (R2 = 0.06, P = 0.84). SC and Fu-P were also best correlated in the first quartile of antimicrobial fraction unbound (R2 = 0.66, P < 0.001). Increasing Fu-P, flow rate, membrane surface area, and serum albumin, and decreasing physiologic charge significantly predicted increasing SC.
Conclusions
Fu-S and Fu-P were both reasonably correlated to SC. Caution should be taken when using Fu-S to calculate extracorporeal clearance in antimicrobials with 69%–92% fraction unbound or with >55% estimated in-hospital patient mortality. Fu-P may serve as a rudimentary surrogate for SC when Fu-S is unavailable.
Collapse
Affiliation(s)
- Julie E. Farrar
- Auburn University Harrison School of Pharmacy, 650 Clinic Dr, Mobile, AL 36688, USA
| | - Scott W. Mueller
- University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, 12850 E. Montview Blvd, Aurora, CO 80045, USA
| | - Victoria Stevens
- University of Colorado Hospital, 12505 E 16th Ave, Aurora, CO 80045, USA
| | - Tyree H. Kiser
- University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, 12850 E. Montview Blvd, Aurora, CO 80045, USA
| | - Sim Taleb
- University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, 12850 E. Montview Blvd, Aurora, CO 80045, USA
| | - Paul M. Reynolds
- University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, 12850 E. Montview Blvd, Aurora, CO 80045, USA
| |
Collapse
|
12
|
Dose Optimization of Vancomycin for Critically Ill Patients Undergoing CVVH: A Prospective Population PK/PD Analysis. Antibiotics (Basel) 2021; 10:antibiotics10111392. [PMID: 34827330 PMCID: PMC8614878 DOI: 10.3390/antibiotics10111392] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/02/2021] [Accepted: 11/09/2021] [Indexed: 12/27/2022] Open
Abstract
The optimal dose of vancomycin in critically ill patients receiving continuous venovenous hemofiltration (CVVH) remains unclear. The objective of this study was to identify factors that significantly affect pharmacokinetic profiles and to further investigate the optimal dosage regimens for critically ill patients undergoing CVVH based on population pharmacokinetics and pharmacodynamic analysis. A prospective population pharmacokinetic analysis was performed at the surgical intensive care unit in a level A tertiary hospital. We included 11 critically ill patients undergoing CVVH and receiving intravenous vancomycin. Serial blood samples were collected from each patient, with a total of 131 vancomycin concentrations analyzed. Nonlinear mixed effects models were developed using NONMEM software. Monte Carlo Simulation was used to optimize vancomycin dosage regimens. A two-compartment model with first-order elimination was sufficient to characterize vancomycin pharmacokinetics for CVVH patients. The population typical vancomycin clearance (CL) was 1.15 L/h and the central volume of distribution was 16.9 L. CL was significantly correlated with ultrafiltration rate (UFR) and albumin level. For patients with normal albumin and UFR between 20 and 35 mL/kg/h, the recommended dosage regimen was 10 mg/kg qd. When UFR was between 35 and 40 mL/kg/h, the recommended dosage regimen was 5 mg/kg q8h. For patients with hypoalbuminemia and UFR between 20 and 25 mL/kg/h, the recommended dosage regimen was 5 mg/kg q8h. When UFR was between 25 and 40 mL/kg/h, the recommended dosage regimen was 10 mg/kg q12h. We recommend clinicians choosing the optimal initial vancomycin dosage regimens for critically ill patients undergoing CVVH based on these two covariates.
Collapse
|
13
|
Wahby KA, Cunmuljaj L, Mouabbi K, Almadrahi Z, Wilpula L. Evaluation of dosing strategies and trough concentrations of vancomycin in patients undergoing continuous venovenous hemofiltration. Pharmacotherapy 2021; 41:554-561. [PMID: 33963536 DOI: 10.1002/phar.2535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 11/07/2022]
Abstract
STUDY OBJECTIVE Recommendations regarding vancomycin dosing in critically ill patients on continuous venovenous hemofiltration (CVVH) are limited. The purpose of this study was to evaluate current dosing practices of pharmacists for patients treated with CVVH, develop guidelines for optimal dosing and monitoring of vancomycin to improve target trough attainment, and reduce pharmacist workload. DESIGN A retrospective cohort study. was performed of critically ill adult patients from January 2015 to December 2018. Patients were included if they received vancomycin during CVVH for at least 48 h. Patients with significant residual kidney function, defined as daily urine output >400 ml or significant fluctuations (≥1000 ml/h in a 24-h period) in their hemofiltration rates, were excluded. Interruptions in CVVH up to 6 h/day were permitted. Dosing strategies with two dosing categories were defined: (1) dosing based on random serum levels (dosing by level, DBL) or (2) scheduled vancomycin dosing (SD). SETTING Academic medical center in Detroit, Michigan. PATIENTS Critically ill adult patients. MEASUREMENTS AND MAIN RESULTS During the study period, 942 patients were evaluated and 200 met inclusion criteria, for a total of 586 serum vancomycin levels. There were 141 patients with 443 random vancomycin serum levels in the DBL group and 59 patients with143 vancomycin trough levels in the SD group. Mean vancomycin trough levels were similar between groups (17.1 ± 6 vs. 16.5 ± 4 mcg/ml) for the DBL and SD groups, respectively. For the primary end point of overall target trough achievement of 15-20 mcg/ml, significantly more trough levels in the SD group were in the 15-20 mcg/ml range compared with the DBL group, 50% vs. 38%; p < 0.001, respectively. When target trough range was extended to 10-20 mcg/ml, success rates were similar between groups (74% DBL vs. 82% SD, p = 0.021). The number of interventions required by the pharmacist, including notes per day and orders per day, were reduced by approximately 50% when the SD strategy was utilized. Scheduled vancomycin dosing regimens of 15-22 mg/kg every 12-24 h were required to yield trough levels in the 15-20 mcg/ml range. CONCLUSIONS Target vancomycin trough achievement of 15-20 mcg/ml occurred more frequently when vancomycin was scheduled at a dose of 15-22 mg/kg every 12-24 h based on ultrafiltration rate and may alleviate the time and cost associated with frequent vancomycin serum monitoring.
Collapse
Affiliation(s)
| | | | | | | | - Liz Wilpula
- Harper University Hospital, Detroit, Michigan, USA
| |
Collapse
|
14
|
Jang SM, Awdishu L. Drug dosing considerations in continuous renal replacement therapy. Semin Dial 2021; 34:480-488. [PMID: 33939855 DOI: 10.1111/sdi.12972] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/23/2021] [Accepted: 03/19/2021] [Indexed: 12/24/2022]
Abstract
Acute kidney injury (AKI) is a common complication in critically ill patients, which is associated with increased in-hospital mortality. Delivering effective antibiotics to treat patients with sepsis receiving continuous renal replacement therapy (RRT) is complicated by variability in pharmacokinetics, dialysis delivery, lack of primary literature, and therapeutic drug monitoring. Pharmacokinetic alterations include changes in absorption, distribution, protein binding (PB), metabolism, and renal elimination. Drug absorption may be significantly changed due to alterations in gastric pH, perfusion, gastrointestinal motility, and intestinal atrophy. Volume of distribution for hydrophilic drugs may be increased due to volume overload. Estimation of renal clearance is challenged by the effective delivery of RRT. Drug characteristics such as PB, volume of distribution, and molecular weight impact removal of the drug by RRT. The totality of these alterations leads to reduced exposure. Despite our best knowledge, therapeutic drug monitoring of patients receiving continuous RRT demonstrates wide variability in antimicrobial concentrations, highlighting the need for expanded monitoring of all drugs. This review article will focus on changes in drug pharmacokinetics in AKI and dosing considerations to attain antibiotic pharmacodynamic targets in critically ill patients receiving continuous RRT.
Collapse
Affiliation(s)
- Soo Min Jang
- Department of Pharmacy Practice, Loma Linda University School of Pharmacy, Loma Linda, CA, USA
| | - Linda Awdishu
- Clinical Pharmacy, UC San Diego Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA, USA
| |
Collapse
|
15
|
Körtge A, Majcher-Peszynska J, Heskamp B, Wasserkort R, Mitzner S. Antibiotics Removal by Continuous Venovenous Hemofiltration with a Novel Asymmetric Triacetate Membrane Hemofilter: An in vitro Study. Blood Purif 2021; 50:899-905. [PMID: 33631754 DOI: 10.1159/000513417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/17/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Continuous renal replacement therapies (CRRTs) are essential in the treatment of critically ill patients with acute kidney injury and are also discussed as a supporting sepsis therapy. CRRT can affect antibiotics plasma concentrations. OBJECTIVE The effect of continuous venovenous hemofiltration (CVVH) with an asymmetric triacetate (ATA) membrane hemofilter on concentrations of antibiotics with low (meropenem), medium (vancomycin), and high (daptomycin) protein binding (PB) was investigated. METHODS 1 L human whole blood supplemented with antibiotics was recirculated and filtrated for 6 h in vitro. Clearances and sieving coefficients (SC) were determined from antibiotics concentrations measured at filter inlet, outlet, and filtrate side. Reservoir concentration data were fitted using a first-order kinetic model. RESULTS Meropenem and vancomycin concentrations decreased to 5-10% of the initial plasma level, while only 50% of daptomycin were removed. Clearances and SCs were (10.8 [10.8-17.4] mL/min, SC = 0.72 [0.72-1.16]) for meropenem, (13.4 [12.3-13.7] mL/min, 0.89 [0.82-0.92]) for vancomycin, and (2.1 [1.8-2.1] mL/min, 0.14 [0.12-0.14]) for daptomycin. Removal by adsorption was negligible. CONCLUSIONS The clearances and SCs presented are comparable with findings of other authors. Meropenem and vancomycin, which exhibit low and medium PB, respectively, were strongly removed, while considerably less daptomycin was removed because of its high PB. Our results suggest that in clinical use of the tested antibiotics during CRRT with the ATA hemofilter, the same factors have to be considered for determining the dosing strategy as with filters with other commonly applied membrane materials.
Collapse
Affiliation(s)
- Andreas Körtge
- Department of Extracorporeal Immunomodulation EXIM, Fraunhofer Institute for Cell Therapy and Immunology IZI, Rostock, Germany, .,Division of Nephrology, Centre for Internal Medicine, University Medicine Rostock, Rostock, Germany,
| | | | - Benjamin Heskamp
- Department of Extracorporeal Immunomodulation EXIM, Fraunhofer Institute for Cell Therapy and Immunology IZI, Rostock, Germany.,Division of Nephrology, Centre for Internal Medicine, University Medicine Rostock, Rostock, Germany
| | - Reinhold Wasserkort
- Department of Extracorporeal Immunomodulation EXIM, Fraunhofer Institute for Cell Therapy and Immunology IZI, Rostock, Germany.,Division of Nephrology, Centre for Internal Medicine, University Medicine Rostock, Rostock, Germany
| | - Steffen Mitzner
- Department of Extracorporeal Immunomodulation EXIM, Fraunhofer Institute for Cell Therapy and Immunology IZI, Rostock, Germany.,Division of Nephrology, Centre for Internal Medicine, University Medicine Rostock, Rostock, Germany
| |
Collapse
|
16
|
Peng L, Gao Y, Zhang G, Tian X, Xu H, Yu Q, Cheng J, Li Y, Li Q, Chen Y, Zhao W, Luo Z. Effects of continuous venovenous hemofiltration on vancomycin trough concentrations in critically ill children. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:224. [PMID: 33708851 PMCID: PMC7940948 DOI: 10.21037/atm-20-4005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background Vancomycin trough concentrations are associated with clinical outcomes and drug adverse effects. This study investigates the effects of continuous venovenous hemofiltration (CVVH) on vancomycin trough concentrations in critically ill children with a vancomycin dosage of 40–60 mg/kg/day. Methods Children with steady-state vancomycin trough concentrations admitted to the pediatric intensive care unit (PICU) between January 2016 and December 2019 were retrospectively enrolled. Patients were divided into CVVH and non-CVVH groups according to treatment differences and renal function. Vancomycin trough concentrations were then compared between the groups, and risk factors for supratherapeutic trough concentrations (>20 mg/L) were analyzed with logistic regression. Results Of the 119 patients included, 35 were enrolled in the CVVH group and 84 in the non-CVVH group. Median vancomycin trough concentrations were significantly higher in the CVVH group than those in the non-CVVH group [14.9 (IQR =9.6–19.6) vs. 9.3 (IQR =7.0–13.4), P<0.001] and the proportion of therapeutic trough concentrations (10–20 mg/L) was similar between CVVH and non-CVVH groups (54.3% vs. 39.3%, P=0.133). However, CVVH therapy patients had a significantly higher proportion of supratherapeutic trough concentrations (20.0% vs. 1.2%, P=0.001) compared to the non-CVVH group. Multivariate analysis demonstrated that the Pediatric Risk of Mortality (PRISM) III score ≥28 (OR =13.7; 95% CI, 1.4–137.0; P=0.026] was an independent risk factor for supratherapeutic trough concentrations in critically ill patients. Conclusions CVVH therapy affects vancomycin trough concentrations and is associated with supratherapeutic concentrations with a 40–60 mg/kg/day vancomycin dosage. PRISM III scores ≥28 may serve as an independent risk factor for supratherapeutic trough concentrations in children receiving CVVH therapy.
Collapse
Affiliation(s)
- Lengyue Peng
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yawen Gao
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Guangli Zhang
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xiaoyin Tian
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Huiting Xu
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Qinghong Yu
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Jie Cheng
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yuanyuan Li
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Qinyuan Li
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yingfu Chen
- Department of Pediatric Intensive Care Unit Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Wei Zhao
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Zhengxiu Luo
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
17
|
Li L, Li X, Xia Y, Chu Y, Zhong H, Li J, Liang P, Bu Y, Zhao R, Liao Y, Yang P, Lu X, Jiang S. Recommendation of Antimicrobial Dosing Optimization During Continuous Renal Replacement Therapy. Front Pharmacol 2020; 11:786. [PMID: 32547394 PMCID: PMC7273837 DOI: 10.3389/fphar.2020.00786] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
Continuous Renal Replacement Therapy (CRRT) is more and more widely used in patients for various indications recent years. It is still intricate for clinicians to decide a suitable empiric antimicrobial dosing for patients receiving CRRT. Inappropriate doses of antimicrobial agents may lead to treatment failure or drug resistance of pathogens. CRRT factors, patient individual conditions and drug pharmacokinetics/pharmacodynamics are the main elements effecting the antimicrobial dosing adjustment. With the development of CRRT techniques, some antimicrobial dosing recommendations in earlier studies were no longer appropriate for clinical use now. Here, we reviewed the literatures involving in new progresses of antimicrobial dosages, and complied the updated empirical dosing strategies based on CRRT modalities and effluent flow rates. The following antimicrobial agents were included for review: flucloxacillin, piperacillin/tazobactam, ceftriaxone, ceftazidime/avibactam, cefepime, ceftolozane/tazobactam, sulbactam, meropenem, imipenem, panipenem, biapenem, ertapenem, doripenem, amikacin, ciprofloxacin, levofloxacin, moxifloxacin, clindamycin, azithromycin, tigecycline, polymyxin B, colistin, vancomycin, teicoplanin, linezolid, daptomycin, sulfamethoxazole/trimethoprim, fluconazole, voriconazole, posaconzole, caspofungin, micafungin, amphotericin B, acyclovir, ganciclovir, oseltamivir, and peramivir.
Collapse
Affiliation(s)
- Lu Li
- Department of Pharmacy, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Xin Li
- Department of Pharmacy, Second Hospital of Jilin University, Changchun, China
| | - Yanzhe Xia
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanqi Chu
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Haili Zhong
- Department of Pharmacy, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jia Li
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Pei Liang
- Department of Pharmacy, Nanjing Drum Tower Hospital, Nanjing, China
| | - Yishan Bu
- Department of Pharmacy, Tianjin First Central Hospital, Tianjin, China
| | - Rui Zhao
- School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Yun Liao
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Yang
- Department of Pharmacy, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Xiaoyang Lu
- Department of Pharmacy, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Saiping Jiang
- Department of Pharmacy, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|