1
|
Wolfes J, Kirchner L, Doldi F, Wegner F, Rath B, Eckardt L, Ellermann C, Frommeyer G. Electrophysiological Profile of Different Antiviral Therapies in a Rabbit Whole-Heart Model. Cardiovasc Toxicol 2024; 24:656-666. [PMID: 38851664 PMCID: PMC11211193 DOI: 10.1007/s12012-024-09872-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/13/2024] [Indexed: 06/10/2024]
Abstract
Antiviral therapies for treatment of COVID-19 may be associated with significant proarrhythmic potential. In the present study, the potential cardiotoxic side effects of these therapies were evaluated using a Langendorff model of the isolated rabbit heart. 51 hearts of female rabbits were retrogradely perfused, employing a Langendorff-setup. Eight catheters were placed endo- and epicardially to perform an electrophysiology study, thus obtaining cycle length-dependent action potential duration at 90% of repolarization (APD90), QT intervals and dispersion of repolarization. After generating baseline data, the hearts were assigned to four groups: In group 1 (HXC), hearts were treated with 1 µM hydroxychloroquine. Thereafter, 3 µM hydroxychloroquine were infused additionally. Group 2 (HXC + AZI) was perfused with 3 µM hydroxychloroquine followed by 150 µM azithromycin. In group 3 (LOP) the hearts were perfused with 3 µM lopinavir followed by 5 µM and 10 µM lopinavir. Group 4 (REM) was perfused with 1 µM remdesivir followed by 5 µM and 10 µM remdesivir. Hydroxychloroquine- and azithromycin-based therapies have a significant proarrhythmic potential mediated by action potential prolongation and an increase in dispersion. Lopinavir and remdesivir showed overall significantly less pronounced changes in electrophysiology. In accordance with the reported bradycardic events under remdesivir, it significantly reduced the rate of the ventricular escape rhythm.
Collapse
Affiliation(s)
- Julian Wolfes
- Department of Cardiology II (Electrophysiology), University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.
| | - Lina Kirchner
- Department of Cardiology II (Electrophysiology), University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Florian Doldi
- Department of Cardiology II (Electrophysiology), University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Felix Wegner
- Department of Cardiology II (Electrophysiology), University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Benjamin Rath
- Department of Cardiology II (Electrophysiology), University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Lars Eckardt
- Department of Cardiology II (Electrophysiology), University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Christian Ellermann
- Department of Cardiology II (Electrophysiology), University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Gerrit Frommeyer
- Department of Cardiology II (Electrophysiology), University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| |
Collapse
|
2
|
Tan Z, Völler S, Yin A, Rieborn A, Gelderblom AJ, van der Hulle T, Knibbe CAJ, Moes DJAR. Population Pharmacokinetics of Cabozantinib in Metastatic Renal Cell Carcinoma Patients: Towards Drug Expenses Saving Regimens. Clin Pharmacokinet 2024; 63:857-869. [PMID: 38874883 PMCID: PMC11222182 DOI: 10.1007/s40262-024-01379-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2024] [Indexed: 06/15/2024]
Abstract
INTRODUCTION Cabozantinib is one of the preferred treatment options in the latest metastatic renal cell carcinoma (mRCC) guidelines. Cabozantinib is also associated with high drug expenses irrespective of the used dose, because a flat-prizing model has been implemented. In addition, concomitant intake with a high-fat meal increases its bioavailability on average by 57%. Combined with the long terminal half-life of cabozantinib (99 h), this creates possibilities to extend the dosing interval to reduce drug expenses whilst maintaining equivalent exposure. OBJECTIVES The primary objective was to evaluate the population pharmacokinetic (POPPK) model of cabozantinib developed for its registration using real-world patients' therapeutic drug monitoring (TDM) data. The secondary objective was to design, simulate, and evaluate alternative dose regimens with the aim to reduce drug expenses whilst maintaining comparable exposure. METHODS Retrospective TDM data from mRCC patients treated with cabozantinib were obtained. The data were evaluated using the published Food and Drug Administration (FDA) cabozantinib POPPK model, a two-compartment disposition model with a dual (fast and slow) lagged first-order absorption process derived from FDA registration documents, as a basis. Subsequently, simulations of alternative drug expenses saving regimens were evaluated. RESULTS Twenty-seven mRCC patients with 75 pharmacokinetic observations were included. Patients were treated for a median of 75 days with a median dose of 40 mg. Model evaluation results showed that the cabozantinib TDM concentrations were adequately predicted by the published FDA cabozantinib POPPK model, except for a slightly higher clearance (CL) of 3.11 L/h compared to the reported value (2.23 L/h). The simulation study indicated that an alternative dose regimen that consists of taking 60 mg of cabozantinib for 2 days and then skipping 1 day results in comparable average exposure when compared with a 40 mg daily dose, both without food interaction, while saving 33.3% of the total drug expenses per month. The food effect of a high-fat meal was also taken into account when simulating other alternative dose regimens; 40 mg every 72 h combined with a high-fat meal resulted in comparable exposure when compared with a 20 mg daily dose fasted, while saving 66.7% in drug expenses. CONCLUSIONS In this study, the optimized cabozantinib POPPK model resulted in adequate prediction of real-world cabozantinib pharmacokinetic data. Alternative dosing regimens with and without using known food interactions were proposed that resulted in potential strategies to significantly reduce cabozantinib drug expenses.
Collapse
Affiliation(s)
- Zhiyuan Tan
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Swantje Völler
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Anyue Yin
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Amy Rieborn
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - A J Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom van der Hulle
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Catherijne A J Knibbe
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- Department of Clinical Pharmacy, St Antonius Hospital, Nieuwegein, The Netherlands
| | - Dirk Jan A R Moes
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|
3
|
Box HJ, Sharp J, Pennington SH, Kijak E, Tatham L, Caygill CH, Lopeman RC, Jeffreys LN, Herriott J, Neary M, Valentijn A, Pertinez H, Curley P, Arshad U, Rajoli RKR, Jochmans D, Vangeel L, Neyts J, Chatelain E, Escudié F, Scandale I, Rannard S, Stewart JP, Biagini GA, Owen A. Lack of antiviral activity of probenecid in vitro and in Syrian golden hamsters. J Antimicrob Chemother 2024; 79:172-178. [PMID: 37995258 PMCID: PMC10761260 DOI: 10.1093/jac/dkad362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
OBJECTIVES Antiviral interventions are required to complement vaccination programmes and reduce the global burden of COVID-19. Prior to initiation of large-scale clinical trials, robust preclinical data to support candidate plausibility are required. This work sought to further investigate the putative antiviral activity of probenecid against SARS-CoV-2. METHODS Vero E6 cells were preincubated with probenecid, or control media for 2 h before infection (SARS-CoV-2/Human/Liverpool/REMRQ0001/2020). Probenecid or control media was reapplied, plates reincubated and cytopathic activity quantified by spectrophotometry after 48 h. In vitro human airway epithelial cell (HAEC) assays were performed for probenecid against SARS-CoV-2-VoC-B.1.1.7 (hCoV-19/Belgium/rega-12211513/2020; EPI_ISL_791333, 2020-12-21) using an optimized cell model for antiviral testing. Syrian golden hamsters were intranasally inoculated (SARS-CoV-2 Delta B.1.617.2) 24 h prior to treatment with probenecid or vehicle for four twice-daily doses. RESULTS No observable antiviral activity for probenecid was evident in Vero E6 or HAEC assays. No reduction in total or subgenomic RNA was observed in terminal lung samples (P > 0.05) from hamsters. Body weight of uninfected hamsters remained stable whereas both probenecid- and vehicle-treated infected hamsters lost body weight (P > 0.5). CONCLUSIONS These data do not support probenecid as a SARS-CoV-2 antiviral drug.
Collapse
Affiliation(s)
- Helen J Box
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool L7 3NY, UK
| | - Joanne Sharp
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool L7 3NY, UK
| | - Shaun H Pennington
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Edyta Kijak
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool L7 3NY, UK
| | - Lee Tatham
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool L7 3NY, UK
| | - Claire H Caygill
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Rose C Lopeman
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Laura N Jeffreys
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Joanne Herriott
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool L7 3NY, UK
| | - Megan Neary
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool L7 3NY, UK
| | - Anthony Valentijn
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool L7 3NY, UK
| | - Henry Pertinez
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool L7 3NY, UK
| | - Paul Curley
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool L7 3NY, UK
| | - Usman Arshad
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool L7 3NY, UK
| | - Rajith K R Rajoli
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool L7 3NY, UK
| | - Dirk Jochmans
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, 3000, Leuven, Belgium and the Global Virus Network (GVN), Baltimore, MD, USA
| | - Laura Vangeel
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, 3000, Leuven, Belgium and the Global Virus Network (GVN), Baltimore, MD, USA
| | - Johan Neyts
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, 3000, Leuven, Belgium and the Global Virus Network (GVN), Baltimore, MD, USA
| | - Eric Chatelain
- Drugs for Neglected Diseases initiative (DNDi), Research and Development, 1202, Geneva, Switzerland
| | - Fanny Escudié
- Drugs for Neglected Diseases initiative (DNDi), Research and Development, 1202, Geneva, Switzerland
| | - Ivan Scandale
- Drugs for Neglected Diseases initiative (DNDi), Research and Development, 1202, Geneva, Switzerland
| | - Steve Rannard
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool L7 3NY, UK
- Department of Chemistry, University of Liverpool,Liverpool L7 3NY, UK
| | - James P Stewart
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Giancarlo A Biagini
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Andrew Owen
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool L7 3NY, UK
| |
Collapse
|
4
|
Thoueille P, Delfraysse M, Andre P, Buclin T, Decosterd LA, Fedeli C, Ustero P, Calmy A, Guidi M. Population pharmacokinetic analysis of lopinavir in HIV negative individuals exposed to SARS-CoV-2: a COPEP (COronavirus Post-Exposure Prophylaxis) sub-study. BMC Pharmacol Toxicol 2023; 24:47. [PMID: 37759315 PMCID: PMC10536696 DOI: 10.1186/s40360-023-00687-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Lopinavir/ritonavir (LPV/r) is a drug traditionally used for the treatment of HIV that has been repurposed as a potential post-exposure prophylaxis agent against COVID-19 in the COronavirus Post-Exposure Prophylaxis (COPEP) study. The present analysis aims to evaluate LPV levels in individuals exposed to SARS-CoV-2 versus people living with HIV (PLWH) by developing a population pharmacokinetic (popPK) model, while characterizing external and patient-related factors that might affect LPV exposure along with dose-response association. METHODS We built a popPK model on 105 LPV concentrations measured in 105 HIV-negative COPEP individuals exposed to SARS-CoV-2, complemented with 170 LPV concentrations from 119 PLWH followed in our routine therapeutic drug-monitoring programme. Published LPV popPK models developed in PLWH and in COVID-19 patients were retrieved and validated in our study population by mean prediction error (MPE) and root mean square error (RMSE). The association between LPV model-predicted residual concentrations (Cmin) and the appearance of the COVID-19 infection in the COPEP participants was investigated. RESULTS A one-compartment model with linear absorption and elimination best described LPV concentrations in both our analysis and in the majority of the identified studies. Globally, similar PK parameters were found in all PK models, and provided close MPEs (from -19.4% to 8.0%, with a RMSE of 3.4% to 49.5%). No statistically significant association between Cmin and the occurrence of a COVID-19 infection could be detected. CONCLUSION Our analysis indicated that LPV circulating concentrations were similar between COPEP participants and PLWH, and that published popPK models described our data in a comparable way.
Collapse
Affiliation(s)
- Paul Thoueille
- Service and Laboratory of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Margot Delfraysse
- Service and Laboratory of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Pascal Andre
- Service and Laboratory of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Thierry Buclin
- Service and Laboratory of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Laurent A Decosterd
- Service and Laboratory of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Chiara Fedeli
- Division of Infectious Diseases, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Pilar Ustero
- Division of Infectious Diseases, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Alexandra Calmy
- Division of Infectious Diseases, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
- Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Monia Guidi
- Service and Laboratory of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
- Centre for Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, University of Lausanne, Geneva, Switzerland.
| |
Collapse
|
5
|
Mahdavi R, Talebpour Z. Analytical approaches for determination of COVID-19 candidate drugs in human biological matrices. Trends Analyt Chem 2023; 160:116964. [PMID: 36816451 PMCID: PMC9922681 DOI: 10.1016/j.trac.2023.116964] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 02/24/2023]
Abstract
Since the outbreak of the COVID-19 pandemic, the use of antiviral and other available drugs has been considered to combat or reduce the clinical symptoms of patients. In this regard, it would be necessary to choose sensitive and selective analytical techniques for pharmacokinetic and pharmacodynamic studies, monitoring of drug concentration in biological fluids, and determination of the most appropriate dose to achieve the desired effect on the disease. In the present study, the analytical techniques based on spectroscopy and chromatography with different detectors for diagnosis and determination of candidate drugs in the treatment of COVID-19 in human biological fluids are reviewed during the period 2015-2022. Moreover, various sample preparation and extraction techniques, are being used for this purpose, such as protein precipitation (PP), solid-phase extraction (SPE), liquid-liquid extraction (LLE), and QuEChERS (quick, easy, cheap, effective, rugged, and safe) are investigated.
Collapse
Affiliation(s)
- Rabee Mahdavi
- Department of Analytical Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran, Iran
| | - Zahra Talebpour
- Department of Analytical Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran, Iran,Analytical and Bioanalytical Research Centre, Alzahra University, Vanak, Tehran, Iran,Corresponding author. Department of Analytical Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran, Iran
| |
Collapse
|
6
|
Venturas JP. HIV and COVID-19 Disease. Semin Respir Crit Care Med 2023; 44:35-49. [PMID: 36646084 DOI: 10.1055/s-0042-1758852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Despite effective antiretroviral therapy (ART), HIV infected individuals throughout the world remain at significant risk of respiratory infections and non-communicable disease. Severe disease from SARS-CoV-2 is associated with a hyperinflammatory phenotype which manifests in the lungs as pneumonia and in some cases can lead to acute respiratory failure. Progression to severe COVID-19 is associated with comorbid disease such as obesity, diabetes mellitus and cardiovascular disease, however data concerning the associated risks of HIV coinfection are still conflicting, with large population studies demonstrating poorer outcomes, whilst smaller, case-controlled studies showing better outcomes. Furthermore, underlying immunopathological processes within the lungs and elsewhere, including interactions with other opportunistic infections (OI), remain largely undefined. Nonetheless, new and repurposed anti-viral therapies and vaccines which have been developed are safe to use in this population, and anti-inflammatory agents are recommended with the caveat that the coexistence of opportunistic infections is considered and excluded. Finally, HIV infected patients remain reliant on good ART adherence practices to maintain HIV viral suppression, and some of these practices were disrupted during the COVID-19 pandemic, putting these patients at further risk for acute and long-term adverse outcomes.
Collapse
Affiliation(s)
- Jacqui P Venturas
- Department of Internal Medicine and Pulmonology, Charlotte Maxeke Johannesburg Academic Hospital and Universtity of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
7
|
Xue Y, Chen D, Smith SR, Ruan X, Tang S. Coupling the Within-Host Process and Between-Host Transmission of COVID-19 Suggests Vaccination and School Closures are Critical. Bull Math Biol 2022; 85:6. [PMID: 36536179 PMCID: PMC9762651 DOI: 10.1007/s11538-022-01104-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 11/02/2022] [Indexed: 12/23/2022]
Abstract
Most models of COVID-19 are implemented at a single micro or macro scale, ignoring the interplay between immune response, viral dynamics, individual infectiousness and epidemiological contact networks. Here we develop a data-driven model linking the within-host viral dynamics to the between-host transmission dynamics on a multilayer contact network to investigate the potential factors driving transmission dynamics and to inform how school closures and antiviral treatment can influence the epidemic. Using multi-source data, we initially determine the viral dynamics and estimate the relationship between viral load and infectiousness. Then, we embed the viral dynamics model into a four-layer contact network and formulate an agent-based model to simulate between-host transmission. The results illustrate that the heterogeneity of immune response between children and adults and between vaccinated and unvaccinated infections can produce different transmission patterns. We find that school closures play a significant effect on mitigating the pandemic as more adults get vaccinated and the virus mutates. If enough infected individuals are diagnosed by testing before symptom onset and then treated quickly, the transmission can be effectively curbed. Our multiscale model reveals the critical role played by younger individuals and antiviral treatment with testing in controlling the epidemic.
Collapse
Affiliation(s)
- Yuyi Xue
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Daipeng Chen
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Mathematical Institute, Leiden University, Leiden, The Netherlands
| | - Stacey R Smith
- The Department of Mathematics and Faculty of Medicine, The University of Ottawa, Ottawa, Canada
| | - Xiaoe Ruan
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Sanyi Tang
- School of Mathematics and Statistics, Shaanxi Normal university, Xi'an, 710062, People's Republic of China.
| |
Collapse
|
8
|
Box H, Pennington SH, Kijak E, Tatham L, Caygill CH, Lopeman RC, Jeffreys LN, Herriott J, Sharp J, Neary M, Valentijn A, Pertinez H, Curley P, Arshad U, Rajoli RKR, Rannard S, Stewart JP, Biagini GA, Owen A. Lack of antiviral activity of probenecid in Vero E6 cells and Syrian golden hamsters: a need for better understanding of inter-lab differences in preclinical assays. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.03.03.482788. [PMID: 35262084 PMCID: PMC8902890 DOI: 10.1101/2022.03.03.482788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Antiviral interventions are urgently required to support vaccination programmes and reduce the global burden of COVID-19. Prior to initiation of large-scale clinical trials, robust preclinical data in support of candidate plausibility are required. The speed at which preclinical models have been developed during the pandemic are unprecedented but there is a vital need for standardisation and assessment of the Critical Quality Attributes. This work provides cross-validation for the recent report demonstrating potent antiviral activity of probenecid against SARS-CoV-2 in preclinical models (1). Vero E6 cells were pre-incubated with probenecid, across a 7-point concentration range, or control media for 2 hours before infection with SARS-CoV-2 (SARS-CoV-2/Human/Liverpool/REMRQ0001/2020, Pango B; MOI 0.05). Probenecid or control media was then reapplied and plates incubated for 48 hours. Cells were fixed with 4% v/v paraformaldehyde, stained with crystal violet and cytopathic activity quantified by spectrophotometry at 590 nm. Syrian golden hamsters (n=5 per group) were intranasally inoculated with virus (SARS-CoV-2 Delta variant B.1.617.2; 103 PFU/hamster) for 24 hours prior to treatment. Hamsters were treated with probenecid or vehicle for 4 doses. Hamsters were ethically euthanised before quantification of total and sub-genomic pulmonary viral RNAs. No inhibition of cytopathic activity was observed for probenecid at any concentration in Vero E6 cells. Furthermore, no reduction in either total or subgenomic RNA was observed in terminal lung samples from hamsters on day 3 (P > 0.05). Body weight of uninfected hamsters remained stable throughout the course of the experiment whereas both probenecid- (6 - 9% over 3 days) and vehicle-treated (5 - 10% over 3 days) infected hamsters lost body weight which was comparable in magnitude (P > 0.5). The presented data do not support probenecid as a SARS-CoV-2 antiviral. These data do not support use of probenecid in COVID-19 and further analysis is required prior to initiation of clinical trials to investigate the potential utility of this drug.
Collapse
Affiliation(s)
- Helen Box
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, L7 3NY, UK
| | - Shaun H Pennington
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA
| | - Edyta Kijak
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, L7 3NY, UK
| | - Lee Tatham
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, L7 3NY, UK
| | - Claire H Caygill
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA
| | - Rose C Lopeman
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA
| | - Laura N Jeffreys
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA
| | - Joanne Herriott
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, L7 3NY, UK
| | - Joanne Sharp
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, L7 3NY, UK
| | - Megan Neary
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, L7 3NY, UK
| | - Anthony Valentijn
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, L7 3NY, UK
| | - Henry Pertinez
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, L7 3NY, UK
| | - Paul Curley
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, L7 3NY, UK
| | - Usman Arshad
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, L7 3NY, UK
| | - Rajith KR Rajoli
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, L7 3NY, UK
| | - Steve Rannard
- Department of Chemistry, University of Liverpool, L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, L7 3NY, UK
| | - James P. Stewart
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, UK
| | - Giancarlo A Biagini
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA
| | - Andrew Owen
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, L7 3NY, UK
| |
Collapse
|
9
|
Alvarez JC, Davido B, Moine P, Etting I, Annane D, Larabi IA, Simon N. Population Pharmacokinetics of Hydroxychloroquine and 3 Metabolites in COVID-19 Patients and Pharmacokinetic/Pharmacodynamic Application. Pharmaceuticals (Basel) 2022; 15:ph15020256. [PMID: 35215368 PMCID: PMC8877570 DOI: 10.3390/ph15020256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
We develop a population pharmacokinetic model for hydroxychloroquine (HCQ) and three of its metabolites (desethylhydroxychloroquine, Des HCQ; desethylchloroquine, DesCQ; and didesethylchloroquine, didesCQ) in COVID-19 patients in order to determine whether a pharmacokinetic (PK)/pharmacodynamic (PD) relationship was present. The population PK of HCQ was described using non-linear mixed effects modelling. The duration of hospitalization, the number of deaths, and poor clinical outcomes (death, transfer to ICU, or hospitalization ≥ 10 d) were evaluated as PD parameters. From 100 hospitalized patients (age = 60.7 ± 16 y), 333 BHCQ and M were available for analysis. The data for BHCQ were best described by a four-compartment model with a first-order input (KA) and a first-order output. For M, the better model of the data used one compartment for each metabolite with a first-order input from HCQ and a first-order output. The fraction of HCQ converted to the metabolites was 75%. A significant relationship was observed between the duration of hospitalization and BHCQ at 48 h (r2 = 0.12; p = 0.0052) or 72 h (r2 = 0.16; p = 0.0012). At 48 h or 72 h, 87% or 91% of patients vs. 63% or 62% had a duration < 25 d with a BHCQ higher or below 200 μg/L, respectively. Clinical outcome was significantly related to BHCQ at 48 h (good outcome 369 +/- 181 μg/L vs. poor 285 +/- 144 μg/L; p = 0.0441) but not at 72 h (407 +/- 207 μg/L vs. 311 +/- 174 μg/L; p = 0.0502). The number of deaths was not significantly different according to the trough concentration (p = 0.972 and 0.836 for 48 h and 72 h, respectively).
Collapse
Affiliation(s)
- Jean Claude Alvarez
- Department of Pharmacology and Toxicology, Paris-Saclay University (Versailles Saint-Quentin-en-Yvelines), Inserm U-1173, FHU Sepsis, Raymond Poincaré hospital, AP-HP, 104 Boulevard Raymond Poincaré, 92380 Garches, France; (I.E.); (I.A.L.)
- Correspondence: ; Tel.: +33-1-4710-7946; Fax: +33-147-1079-23
| | - Benjamin Davido
- Infectious Unit, Paris-Saclay University (Versailles Saint-Quentin-en-Yvelines), Raymond Poincaré Hospital, AP-HP, 104 Boulevard Raymond Poincaré, 92380 Garches, France;
| | - Pierre Moine
- Intensive Care Unit, Paris-Saclay University (Versailles Saint-Quentin-en-Yvelines), Inserm U-1173, FHU Sepsis, Raymond Poincaré Hospital, AP-HP, 104 Boulevard Raymond Poincaré, 92380 Garches, France; (P.M.); (D.A.)
| | - Isabelle Etting
- Department of Pharmacology and Toxicology, Paris-Saclay University (Versailles Saint-Quentin-en-Yvelines), Inserm U-1173, FHU Sepsis, Raymond Poincaré hospital, AP-HP, 104 Boulevard Raymond Poincaré, 92380 Garches, France; (I.E.); (I.A.L.)
| | - Djillali Annane
- Intensive Care Unit, Paris-Saclay University (Versailles Saint-Quentin-en-Yvelines), Inserm U-1173, FHU Sepsis, Raymond Poincaré Hospital, AP-HP, 104 Boulevard Raymond Poincaré, 92380 Garches, France; (P.M.); (D.A.)
| | - Islam Amine Larabi
- Department of Pharmacology and Toxicology, Paris-Saclay University (Versailles Saint-Quentin-en-Yvelines), Inserm U-1173, FHU Sepsis, Raymond Poincaré hospital, AP-HP, 104 Boulevard Raymond Poincaré, 92380 Garches, France; (I.E.); (I.A.L.)
| | - Nicolas Simon
- Department of clinical Pharmacology, CAP-TV Aix-Marseille University, APHM, INSERM, IRD, SESSTIM, Hop Sainte Marguerite, 13000 Marseille, France;
| |
Collapse
|
10
|
Ye L, Cheng L, Deng Y, Liu H, Wu X, Wang T, Chang Q, Zhang Y, Wang D, Li Z, Yang X. Herb-Drug Interaction Between Xiyanping Injection and Lopinavir/Ritonavir, Two Agents Used in COVID-19 Pharmacotherapy. Front Pharmacol 2021; 12:773126. [PMID: 34899329 PMCID: PMC8660086 DOI: 10.3389/fphar.2021.773126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/25/2021] [Indexed: 01/12/2023] Open
Abstract
The global epidemic outbreak of the coronavirus disease 2019 (COVID-19), which exhibits high infectivity, resulted in thousands of deaths due to the lack of specific drugs. Certain traditional Chinese medicines (TCMs), such as Xiyanping injection (XYPI), have exhibited remarkable benefits against COVID-19. Although TCM combined with Western medicine is considered an effective approach for the treatment of COVID-19, the combination may result in potential herb-drug interactions in the clinical setting. The present study aims to verify the effect of XYPI on the oral pharmacokinetics of lopinavir (LPV)/ritonavir (RTV) using an in vivo rat model and in vitro incubation model of human liver microsomes. After being pretreated with an intravenous dose of XYPI (52.5 mg/kg) for one day and for seven consecutive days, the rats received an oral dose of LPV/RTV (42:10.5 mg/kg). Except for the t1/2 of LPV is significantly prolonged from 4.66 to 7.18 h (p < 0.05) after seven consecutive days pretreatment, the pretreatment resulted in only a slight change in the other pharmacokinetic parameters of LPV. However, the pharmacokinetic parameters of RTV were significantly changed after pretreatment with XYPI, particularly in treatment for seven consecutive days, the AUC0-∞ of RTV was significantly shifted from 0.69 to 2.72 h μg/mL (p < 0.05) and the CL exhibited a tendency to decrease from 2.71 L/h to 0.94 L/h (p < 0.05), and the t1/2 of RTV prolonged from 3.70 to 5.51 h (p < 0.05), in comparison with the corresponding parameters in untreated rats. After administration of XYPI, the expression of Cyp3a1 protein was no significant changed in rats. The in vitro incubation study showed XYPI noncompetitively inhibited human CYP3A4 with an apparent Ki value of 0.54 mg/ml in a time-dependent manner. Our study demonstrated that XYPI affects the pharmacokinetics of LPV/RTV by inhibiting CYP3A4 activity. On the basis of this data, patients and clinicians can take precautions to avoid potential drug-interaction risks in COVID-19 treatment.
Collapse
Affiliation(s)
- Linhu Ye
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China.,Department of Pharmacy, Bijie City First People's Hospital, Bijie, China
| | - Lei Cheng
- Department of Pharmacy, Bijie City First People's Hospital, Bijie, China
| | - Yan Deng
- Department of Pharmacy, Bijie City First People's Hospital, Bijie, China
| | - Hong Liu
- Department of Pharmacy, Bijie City First People's Hospital, Bijie, China
| | - Xinyu Wu
- Department of Pharmacy, Bijie City First People's Hospital, Bijie, China
| | - Tingting Wang
- Department of Pharmacy, Bijie City First People's Hospital, Bijie, China
| | - Qi Chang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yan Zhang
- Department of Pharmacy, Bijie City First People's Hospital, Bijie, China
| | - Dan Wang
- Department of Pharmacy, Bijie City First People's Hospital, Bijie, China
| | - Zongze Li
- Department of Pharmacy, Bijie City First People's Hospital, Bijie, China
| | - Xixiao Yang
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
11
|
Stader F, Battegay M, Sendi P, Marzolini C. Physiologically Based Pharmacokinetic Modelling to Investigate the Impact of the Cytokine Storm on CYP3A Drug Pharmacokinetics in COVID-19 Patients. Clin Pharmacol Ther 2021; 111:579-584. [PMID: 34496043 PMCID: PMC8652944 DOI: 10.1002/cpt.2402] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/03/2021] [Indexed: 12/16/2022]
Abstract
Patients with coronavirus disease 2019 (COVID‐19) may experience a cytokine storm with elevated interleukin‐6 (IL‐6) levels in response to severe acute respiratory syndrome‐coronavirus 2 (SARS‐CoV‐2). IL‐6 suppresses hepatic enzymes, including CYP3A; however, the effect on drug exposure and drug‐drug interaction magnitudes of the cytokine storm and resulting elevated IL‐6 levels have not been characterized in patients with COVID‐19. We used physiologically‐based pharmacokinetic (PBPK) modeling to simulate the effect of inflammation on the pharmacokinetics of CYP3A metabolized drugs. A PBPK model was developed for lopinavir boosted with ritonavir (LPV/r), using clinically observed data from people living with HIV (PLWH). The inhibition of CYPs by IL‐6 was implemented by a semimechanistic suppression model and verified against clinical data from patients with COVID‐19, treated with LPV/r. Subsequently, the verified model was used to simulate the effect of various clinically observed IL‐6 levels on the exposure of LPV/r and midazolam, a CYP3A model drug. Clinically observed LPV/r concentrations in PLWH and patients with COVID‐19 were predicted within the 95% confidence interval of the simulation results, demonstrating its predictive capability. Simulations indicated a twofold higher LPV exposure in patients with COVID‐19 compared with PLWH, whereas ritonavir exposure was predicted to be comparable. Varying IL‐6 levels under COVID‐19 had only a marginal effect on LPV/r pharmacokinetics according to our model. Simulations showed that a cytokine storm increased the exposure of the CYP3A paradigm substrate midazolam by 40%. Our simulations suggest that CYP3A metabolism is altered in patients with COVID‐19 having increased cytokine release. Caution is required when prescribing narrow therapeutic index drugs particularly in the presence of strong CYP3A inhibitors.
Collapse
Affiliation(s)
- Felix Stader
- Departments of Medicine and Clinical Research, University Hospital Basel, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Manuel Battegay
- Departments of Medicine and Clinical Research, University Hospital Basel, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Parham Sendi
- Departments of Medicine and Clinical Research, University Hospital Basel, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Catia Marzolini
- Departments of Medicine and Clinical Research, University Hospital Basel, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
12
|
Population pharmacokinetics of meropenem in critically ill infant patients. Int J Infect Dis 2021; 111:58-64. [PMID: 34419581 DOI: 10.1016/j.ijid.2021.08.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/08/2021] [Accepted: 08/12/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Population pharmacokinetic analysis in critically ill infants remains a challenge for lack of information. OBJECTIVES To determine the population pharmacokinetic parameters of meropenem and evaluate the covariates affecting population pharmacokinetic parameters. METHODS A prospective study was conducted on 35 patients. A total of 160 blood samples were collected and determined free of drug concentrations of meropenem. Population pharmacokinetic data were analyzed using NONMEM software. Internal validation methods, including bootstrapping and prediction-corrected visual predictive checks, were applied to evaluate the robustness and predictive power of the final model. RESULTS A one-compartment model with first-order elimination showed the best fit to the data. The typical clearance (CL) values and volume of distribution (Vd) were 1.33 L/h and 2.27 L, respectively. Weight and creatinine clearance were influential covariates for CL, while weight was a significant covariate for Vd of meropenem. The model evaluation results suggested robustness and good predictability of the final model. The standard dosage regimens of meropenem achieved 40% f T>MIC but not enough if a more aggressive target of 80% f T>MIC at MIC value of ≥ 16 µg/mL is desired. CONCLUSIONS This population pharmacokinetic model could be used for suggesting individualized meropenem dosage regimens in critically ill infants.
Collapse
|
13
|
Mohamadi Yarijani Z, Najafi H. Kidney injury in COVID-19 patients, drug development and their renal complications: Review study. Biomed Pharmacother 2021; 142:111966. [PMID: 34333286 PMCID: PMC8313500 DOI: 10.1016/j.biopha.2021.111966] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/15/2021] [Accepted: 07/23/2021] [Indexed: 01/08/2023] Open
Abstract
Since December 2019, the world was encountered a new disease called coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although SARS-CoV-2 initially causes lung damage, it also affects many other organs, including the kidneys, and on average, 5–23% of people with COVID-19 develop the symptoms of acute kidney injury (AKI), including elevated blood creatinine and urea, hematuria, proteinuria, and histopathological damages. The exact mechanism is unknown, but the researchers believe that SARS-CoV-2 directly and indirectly affects the kidneys. The direct pathway is by binding the virus to ACE2 receptor in the kidney, damage to cells, the renin-angiotensin system disturbances, activating coagulation pathways, and damaging the renal vascular endothelium. The initial evidence from studying the kidney tissue in postmortem patients is more in favor of the direct pathway. The indirect pathway is created by increased cytokines and cytokine storm, sepsis, circulatory disturbances, hypoxemia, as well as using the nephrotoxic drugs. Using renal tissue biopsy and autopsy in the patients with COVID-19, recent studies found evidence for a predominant indirect pathway in AKI induction by SARS-CoV-2. Besides, some studies showed that the degree of acute tubular injury (ATI) in autopsies from COVID-19 victims is milder compared to AKI degree. We review the mechanism of AKI induction and the renal side effects of the most common drugs used to treat COVID-19 after the overview of the latest findings on SARS-CoV-2 pathogenicity.
Collapse
Affiliation(s)
- Zeynab Mohamadi Yarijani
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran; Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Houshang Najafi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran; Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
14
|
Simon N, Alvarez JC. Reply to the letter to the Editor "Prediction of lopinavir/ritonavir effectiveness in COVID-19 patients: a recall of basic pharmacology concepts". Eur J Clin Pharmacol 2021; 77:793-794. [PMID: 33244631 PMCID: PMC7690333 DOI: 10.1007/s00228-020-03056-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Nicolas Simon
- APHM, INSERM, IRD, SESSTIM, Hop Sainte Marguerite, Service de Pharmacologie Clinique, CAP-TV, Aix-Marseille University, Marseille, France
| | - Jean Claude Alvarez
- Département de Pharmacologie-Toxicologie, Hôpitaux Universitaires Paris-Ile de France-Ouest, APHP, Hôpital Raymond Poincaré, FHU Sepsis, MasSpecLab, Plateforme de spectrométrie de masse, Inserm U-1173, Université Paris Saclay (Versailles Saint Quentin-en-Yvelines), 92380, Garches, France.
| |
Collapse
|
15
|
Deb S, Arrighi S. Potential Effects of COVID-19 on Cytochrome P450-Mediated Drug Metabolism and Disposition in Infected Patients. Eur J Drug Metab Pharmacokinet 2021; 46:185-203. [PMID: 33538960 PMCID: PMC7859725 DOI: 10.1007/s13318-020-00668-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Coronavirus Disease 2019 (COVID-19) has been a global health crisis since it was first identified in December 2019. In addition to fever, cough, headache, and shortness of breath, an intense increase in immune response-based inflammation has been the hallmark of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) virus infection. This narrative review summarizes and critiques pathophysiology of COVID-19 and its plausible effects on drug metabolism and disposition. The release of inflammatory cytokines (e.g., interleukins, tumor necrosis factor α), also known as 'cytokine storm', leads to altered molecular pathophysiology and eventually organ damage in the lung, heart, and liver. The laboratory values for various liver function tests (e.g., alanine aminotransferase, aspartate aminotransferase, total bilirubin, albumin) have indicated potential hepatocellular injury in COVID-19 patients. Since the liver is the powerhouse of protein synthesis and the primary site of cytochrome P450 (CYP)-mediated drug metabolism, even a minor change in the liver function status has the potential to affect the hepatic clearance of xenobiotics. It has now been well established that extreme increases in cytokine levels are common in COVID-19 patients, and previous studies with patients infected with non-SARS-CoV-2 virus have shown that CYP enzymes can be suppressed by an infection-related cytokine increase and inflammation. Alongside the investigational COVID-19 drugs, the patients may also be on therapeutics for comorbidities; especially epidemiological studies have indicated that individuals with hypertension, hyperglycemia, and obesity are more vulnerable to COVID-19 than the average population. This complicates the drug-disease interaction profile of the patients as both the investigational drugs (e.g., remdesivir, dexamethasone) and the agents for comorbidities can be affected by compromised CYP-mediated hepatic metabolism. Overall, it is imperative that healthcare professionals pay attention to the COVID-19 and CYP-driven drug metabolism interactions with the goal to adjust the dose or discontinue the affected drugs as appropriate.
Collapse
Affiliation(s)
- Subrata Deb
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL, 33169, USA.
| | - Scott Arrighi
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL, 33169, USA
| |
Collapse
|
16
|
Prediction of lopinavir/ritonavir effectiveness in COVID-19 patients: a recall of basic pharmacology concepts. Eur J Clin Pharmacol 2020; 77:791-792. [PMID: 33241457 PMCID: PMC7687976 DOI: 10.1007/s00228-020-03053-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/20/2020] [Indexed: 11/30/2022]
|