1
|
Kim W, Chung C. Effect of dynamic interaction of estrous cycle and stress on synaptic transmission and neuronal excitability in the lateral habenula. FASEB J 2024; 38:e70275. [PMID: 39734271 DOI: 10.1096/fj.202402296rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/04/2024] [Accepted: 12/17/2024] [Indexed: 12/31/2024]
Abstract
The prevalence of depressive disorders in women has been reported in many countries. However, the cellular mechanisms mediating such sex differences in stress susceptibility remain largely unknown. Previously, we showed that lateral habenula (LHb) neurons are more activated in female mice than in male mice by restraint stress. Given the important role of LHb in depressive disorders, we aimed to investigate the synaptic differences between male and female LHb and to examine the possible impact of the estrous cycle on neurotransmission in LHb. We found that the passive and active properties of LHb neurons differed according to the estrous cycle. Spontaneous excitatory postsynaptic currents exhibited higher amplitudes during the diestrus stage and lower frequencies in females than in males, whereas inhibitory postsynaptic currents showed no significant differences. Acute stress-induced hyperpolarization of resting membrane potentials (RMP) was observed in both sexes, with notable changes in female silent and tonic neurons. Stress exposure eliminated estrous cycle-dependent RMP differences and introduced cycle-specific excitability changes, especially in the metestrus and diestrus stages, suggesting that the hormonal cycle may set the synaptic tone of the LHb, thus modulating stress responses in females. Our study provides invaluable groundwork for understanding the detailed interaction between the estrous cycle and stress exposure in female LHb.
Collapse
Affiliation(s)
- Woonhee Kim
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - ChiHye Chung
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| |
Collapse
|
2
|
Gong Y, Liu R, Zha H, Dong D, Lu N, Yan H, Wan L, Nian Y. Analgesic Buxus alkaloids with Enhanced Selectivity for the Low-Voltage-Gated Calcium Channel Ca v 3.2 over Ca v 3.1 through a New Binding Mode. Angew Chem Int Ed Engl 2024; 63:e202313461. [PMID: 37997012 DOI: 10.1002/anie.202313461] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 11/25/2023]
Abstract
Low-voltage-gated calcium channels (LVGCCs; Cav 3.1-3.3) represent promising drug targets for epilepsy, pain, and essential tremor. At present, modulators with heightened selectivity for a subtype of LVGCCs are still highly desired. In this study we explored three classes of Buxus alkaloids and identified 9(10/19)abeo-artanes Buxusemine H and Buxusemine L (BXSL) as an unprecedented type of Cav 3.2 inhibitors. Particularly, BXSL exhibited Cav 3.2 inhibition comparable to Z944, a non-subtype-selective LVGCCs inhibitor under clinical trial. While lacking specificity for Cav 3.3, BXSL showed a 30-fold selectivity of Cav 3.2 over Cav 3.1. As compared to several well-known inhibitors, the experimental and computational studies suggested BXSL exhibits a distinct binding mode to Cav 3.2, notably through the essential interaction with serine-1543 in domain III. Furthermore, BXSL showed minimal impact on various recombinant and native nociceptive ion channels, while significantly reducing the excitability of isolated mouse dorsal root ganglion neurons. Animal studies in wild-type and Cav 3.2 knock-out mice revealed that BXSL (5 mg/kg), by inhibiting Cav 3.2, exhibits an analgesic effect equivalent to Z944 (10 mg/kg) or mibefradil (10 mg/kg). Moreover, we proposed a structural rationale for the high selectivity of 9(10/19)abeo-artane-type alkaloids towards Cav 3.2 over Cav 3.1. This study introduces a novel analgesic agent and valuable molecular insight for structure-based innovative Cav 3.2 drug development.
Collapse
Affiliation(s)
- Ye Gong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, P. R. China
| | - Rui Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, P. R. China
| | - Hongjing Zha
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, P. R. China
| | - Ding Dong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, P. R. China
| | - Nihong Lu
- Department of Respiratory Medicine, The Third People's Hospital of Kunming, Kunming, 650041, Yunnan, P. R. China
| | - Hui Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, P. R. China
| | - Luosheng Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, P. R. China
| | - Yin Nian
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, P. R. China
| |
Collapse
|
3
|
Blackwell JA, Silva JF, Louis EM, Savu A, Largent-Milnes TM, Brooks HL, Pires PW. Cerebral arteriolar and neurovascular dysfunction after chemically induced menopause in mice. Am J Physiol Heart Circ Physiol 2022; 323:H845-H860. [PMID: 36149767 PMCID: PMC9602916 DOI: 10.1152/ajpheart.00276.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 12/14/2022]
Abstract
Cognitive decline is linked to decreased cerebral blood flow, particularly in women after menopause. Impaired cerebrovascular function precedes the onset of dementia, possibly because of reduced functional dilation in parenchymal arterioles. These vessels are bottlenecks of the cerebral microcirculation, and dysfunction can limit functional hyperemia in the brain. Large-conductance Ca2+-activated K+ channels (BKCa) are the final effectors of several pathways responsible for functional hyperemia, and their expression is modulated by estrogen. However, it remains unknown whether BKCa function is altered in cerebral parenchymal arterioles after menopause. Using a chemically induced model of menopause, the 4-vinylcyclohexene diepoxide (VCD) model, which depletes follicles while maintaining intact ovaries, we hypothesized that menopause would be associated with reduced functional vasodilatory responses in cerebral parenchymal arterioles of wild-type mice via reduced BKCa function. Using pressure myography of isolated parenchymal arterioles, we observed that menopause (Meno) induced a significant increase in spontaneous myogenic tone. Endothelial function, assessed as nitric oxide production and dilation after cholinergic stimulation or endothelium-dependent hyperpolarization pathways, was unaffected by Meno. BKCa function was significantly impaired in Meno compared with control, without changes in voltage-gated K+ channel activity. Cerebral functional hyperemia, measured by laser-speckle contrast imaging during whisker stimulation, was significantly blunted in Meno mice, without detectable changes in basal perfusion. However, behavioral testing identified no change in cognition. These findings suggest that menopause induces cerebral microvascular and neurovascular deficits.NEW & NOTEWORTHY Cerebral parenchymal arterioles from menopause mice showed increased myogenic tone. We identified an impairment in smooth muscle cell BKCa channel activity, without a reduction in endothelium-dependent dilation or nitric oxide production. Microvascular dysfunction was associated with a reduction in neurovascular responses after somatosensory stimulation. Despite the neurovascular impairment, cognitive abilities were maintained in menopausal mice.
Collapse
Affiliation(s)
- Jade A Blackwell
- Department of Physiology, University of Arizona, Tucson, Arizona
| | - Josiane F Silva
- Department of Physiology, University of Arizona, Tucson, Arizona
| | - Emma M Louis
- Department of Physiology, University of Arizona, Tucson, Arizona
| | - Andrea Savu
- Department of Physiology, University of Arizona, Tucson, Arizona
| | - Tally M Largent-Milnes
- Department of Pharmacology, University of Arizona, Tucson, Arizona
- Bio5 Institute, University of Arizona, Tucson, Arizona
| | - Heddwen L Brooks
- Department of Physiology, University of Arizona, Tucson, Arizona
- Bio5 Institute, University of Arizona, Tucson, Arizona
- Sarver Heart Center, University of Arizona, Tucson, Arizona
| | - Paulo W Pires
- Department of Physiology, University of Arizona, Tucson, Arizona
- Bio5 Institute, University of Arizona, Tucson, Arizona
- Sarver Heart Center, University of Arizona, Tucson, Arizona
| |
Collapse
|
4
|
Estradiol and Estrogen-like Alternative Therapies in Use: The Importance of the Selective and Non-Classical Actions. Biomedicines 2022; 10:biomedicines10040861. [PMID: 35453610 PMCID: PMC9029610 DOI: 10.3390/biomedicines10040861] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 12/17/2022] Open
Abstract
Estrogen is one of the most important female sex hormones, and is indispensable for reproduction. However, its role is much wider. Among others, due to its neuroprotective effects, estrogen protects the brain against dementia and complications of traumatic injury. Previously, it was used mainly as a therapeutic option for influencing the menstrual cycle and treating menopausal symptoms. Unfortunately, hormone replacement therapy might be associated with detrimental side effects, such as increased risk of stroke and breast cancer, raising concerns about its safety. Thus, tissue-selective and non-classical estrogen analogues have become the focus of interest. Here, we review the current knowledge about estrogen effects in a broader sense, and the possibility of using selective estrogen-receptor modulators (SERMs), selective estrogen-receptor downregulators (SERDs), phytoestrogens, and activators of non-genomic estrogen-like signaling (ANGELS) molecules as treatment.
Collapse
|
5
|
Fang H, Deng Z, Liu J, Chen S, Deng Z, Li W. The Mechanism of Bone Remodeling After Bone Aging. Clin Interv Aging 2022; 17:405-415. [PMID: 35411139 PMCID: PMC8994557 DOI: 10.2147/cia.s349604] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/29/2022] [Indexed: 01/02/2023] Open
Abstract
Senescence mainly manifests as a series of degenerative changes in the morphological structure and function of the body. Osteoporosis is a systemic bone metabolic disease characterized by destruction of bone microstructure, low bone mineral content, decreased bone strength, and increased brittleness and fracture susceptibility. Osteoblasts, osteoclasts and osteocytes are the main cellular components of bones. However, in the process of aging, due to various self or environmental factors, the body’s function and metabolism are disordered, and osteoporosis will appear in the bones. Here, we summarize the mechanism of aging, and focus on the impact of aging on bone remodeling homeostasis, including the mechanism of ion channels on bone remodeling. Finally, we summarized the current clinical medications, targets and defects for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Huankun Fang
- Hand and Foot Surgery Department, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518035, People’s Republic of China
- Medical College, Shantou University, Shantou, Guangdong, 515041, People’s Republic of China
| | - Zhiqin Deng
- Hand and Foot Surgery Department, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518035, People’s Republic of China
| | - Jianquan Liu
- Hand and Foot Surgery Department, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518035, People’s Republic of China
| | - Siyu Chen
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518035, People’s Republic of China
| | - Zhenhan Deng
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518035, People’s Republic of China
- Correspondence: Zhenhan Deng, Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, 3002 Sungang West Road, Shenzhen City, 518025, People’s Republic of China, Tel +86 13928440786, Fax +86 755-83366388, Email
| | - Wencui Li
- Hand and Foot Surgery Department, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518035, People’s Republic of China
- Wencui Li, Department of Hand and Foot Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, 3002 Sungang West Road, Shenzhen City, 518025, People’s Republic of China, Tel +86 13923750767, Email
| |
Collapse
|
6
|
Gu RR, Meng XH, Zhang Y, Xu HY, Zhan L, Gao ZB, Yang JL, Zheng YM. (-)-Naringenin 4',7-dimethyl Ether Isolated from Nardostachys jatamansi Relieves Pain through Inhibition of Multiple Channels. Molecules 2022; 27:1735. [PMID: 35268839 PMCID: PMC8911579 DOI: 10.3390/molecules27051735] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 12/04/2022] Open
Abstract
(-)-Naringenin 4',7-dimethyl ether ((-)-NRG-DM) was isolated for the first time by our lab from Nardostachys jatamansi DC, a traditional medicinal plant frequently used to attenuate pain in Asia. As a natural derivative of analgesic, the current study was designed to test the potential analgesic activity of (-)-NRG-DM and its implicated mechanism. The analgesic activity of (-)-NRG-DM was assessed in a formalin-induced mouse inflammatory pain model and mustard oil-induced mouse colorectal pain model, in which the mice were intraperitoneally administrated with vehicle or (-)-NRG-DM (30 or 50 mg/kg) (n = 10 for each group). Our data showed that (-)-NRG-DM can dose dependently (30~50 mg/kg) relieve the pain behaviors. Notably, (-)-NRG-DM did not affect motor coordination in mice evaluated by the rotarod test, in which the animals were intraperitoneally injected with vehicle or (-)-NRG-DM (100, 200, or 400 mg/kg) (n = 10 for each group). In acutely isolated mouse dorsal root ganglion neurons, (-)-NRG-DM (1~30 μM) potently dampened the stimulated firing, reduced the action potential threshold and amplitude. In addition, the neuronal delayed rectifier potassium currents (IK) and voltage-gated sodium currents (INa) were significantly suppressed. Consistently, (-)-NRG-DM dramatically inhibited heterologously expressed Kv2.1 and Nav1.8 channels which represent the major components of the endogenous IK and INa. A pharmacokinetic study revealed the plasma concentration of (-)-NRG-DM is around 7 µM, which was higher than the effective concentrations for the IK and INa. Taken together, our study showed that (-)-NRG-DM is a potential analgesic candidate with inhibition of multiple neuronal channels (mediating IK and INa).
Collapse
Affiliation(s)
- Ru-Rong Gu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China;
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Y.Z.); (H.-Y.X.); (L.Z.)
| | - Xian-Hua Meng
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China;
| | - Yin Zhang
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Y.Z.); (H.-Y.X.); (L.Z.)
| | - Hai-Yan Xu
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Y.Z.); (H.-Y.X.); (L.Z.)
| | - Li Zhan
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Y.Z.); (H.-Y.X.); (L.Z.)
| | - Zhao-Bing Gao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China;
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Y.Z.); (H.-Y.X.); (L.Z.)
- Zhongshan Institute of Drug Discovery, Institution for Drug Discovery Innovation, Chinese Academy of Sciences, Zhongshan 528400, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Jun-Li Yang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China;
| | - Yue-Ming Zheng
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Y.Z.); (H.-Y.X.); (L.Z.)
| |
Collapse
|
7
|
Chen JH, Sun Y, Ju PJ, Wei JB, Li QJ, Winston JH. Estrogen augmented visceral pain and colonic neuron modulation in a double-hit model of prenatal and adult stress. World J Gastroenterol 2021; 27:5060-5075. [PMID: 34497435 PMCID: PMC8384739 DOI: 10.3748/wjg.v27.i30.5060] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/19/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Chronic stress during pregnancy may increase visceral hyperalgesia of offspring in a sex-dependent way. Combining adult stress in offspring will increase this sensitivity. Based on the evidence implicating estrogen in exacerbating visceral hypersensitivity in female rodents in preclinical models, we predicted that chronic prenatal stress (CPS) + chronic adult stress (CAS) will maximize visceral hyperalgesia; and that estrogen plays an important role in colonic hyperalgesia.
AIM The aim was to illuminate the role of estrogen in colonic hyperalgesia and its underlying mechanisms.
METHODS We established a CPS plus CAS rodent model in which the balloon was used to distend the colorectum. The single-fiber recording in vivo and patch clamp experiments in vitro were used to monitor the colonic neuron’s activity. The reverse transcription-polymerase chain reaction, western blot, and immunofluorescence were used to study the effects of CPS and CAS on colon primary afferent sensitivity. We used ovariectomy and letrozole to reduce estrogen levels of female rats respectively in order to assess the role of estrogen in female-specific enhanced primary afferent sensitization.
RESULTS Spontaneous activity and single fiber activity were significantly greater in females than in males. The enhanced sensitization in female rats mainly came from low-threshold neurons. CPS significantly increased single-unit afferent fiber activity in L6-S2 dorsal roots in response. Activity was further enhanced by CAS. In addition, the excitability of colon-projecting dorsal root ganglion (DRG) neurons increased in CPS + CAS rats and was associated with a decrease in transient A-type K+ currents. Compared with ovariectomy, treatment with the aromatase inhibitor letrozole significantly reduced estrogen levels in female rats, confirming the gender difference. Moreover, mice treated with letrozole had decreased colonic DRG neuron excitability. The intrathecal infusion of estrogen increased brain-derived neurotrophic factor (BDNF) protein levels and contributed to the response to visceral pain. Western blotting showed that nerve growth factor protein was upregulated in CPS + CAS mice.
CONCLUSION This study adds to the evidence that estrogen-dependent sensitization of primary afferent colon neurons is involved in the development of chronic stress-induced visceral hypersensitivity in female rats.
Collapse
Affiliation(s)
- Jing-Hong Chen
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Ying Sun
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Pei-Jun Ju
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Jin-Bao Wei
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Qing-Jie Li
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - John H Winston
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, United States
| |
Collapse
|
8
|
Sex Differences in Biophysical Signatures across Molecularly Defined Medial Amygdala Neuronal Subpopulations. eNeuro 2020; 7:ENEURO.0035-20.2020. [PMID: 32493755 PMCID: PMC7333980 DOI: 10.1523/eneuro.0035-20.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/20/2020] [Indexed: 12/29/2022] Open
Abstract
The medial amygdala (MeA) is essential for processing innate social and non-social behaviors, such as territorial aggression and mating, which display in a sex-specific manner. While sex differences in cell numbers and neuronal morphology in the MeA are well established, if and how these differences extend to the biophysical level remain unknown. Our previous studies revealed that expression of the transcription factors, Dbx1 and Foxp2, during embryogenesis defines separate progenitor pools destined to generate different subclasses of MEA inhibitory output neurons. We have also previously shown that Dbx1-lineage and Foxp2-lineage neurons display different responses to innate olfactory cues and in a sex-specific manner. To examine whether these neurons also possess sex-specific biophysical signatures, we conducted a multidimensional analysis of the intrinsic electrophysiological profiles of these transcription factor defined neurons in the male and female MeA. We observed striking differences in the action potential (AP) spiking patterns across lineages, and across sex within each lineage, properties known to be modified by different voltage-gated ion channels. To identify the potential mechanism underlying the observed lineage-specific and sex-specific differences in spiking adaptation, we conducted a phase plot analysis to narrow down putative ion channel candidates. Of these candidates, we found a subset expressed in a lineage-biased and/or sex-biased manner. Thus, our results uncover neuronal subpopulation and sex differences in the biophysical signatures of developmentally defined MeA output neurons, providing a potential physiological substrate for how the male and female MeA may process social and non-social cues that trigger innate behavioral responses.
Collapse
|
9
|
Qu L, Caterina MJ. Enhanced excitability and suppression of A-type K(+) currents in joint sensory neurons in a murine model of antigen-induced arthritis. Sci Rep 2016; 6:28899. [PMID: 27363579 PMCID: PMC4929491 DOI: 10.1038/srep28899] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/09/2016] [Indexed: 02/07/2023] Open
Abstract
Pain is a dominant symptom of rheumatoid arthritis (RA) and its adequate treatment represents a major unmet need. However, the cellular mechanisms that drive arthritis pain are largely unexplored. Here, we examined the changes in the activity of joint sensory neurons and the associated ionic mechanisms using an animal model of antigen-induced arthritis (AIA). Methylated-bovine serum albumin (mBSA), but not vehicle challenge, in the ankle of previously immunized mice produced time-dependent symptoms of arthritis, including joint inflammation, primary mechanical hyperalgesia in the ipsilateral ankle, and secondary mechanical and heat hyperalgesia in the ipsilateral hindpaw. In vivo electrophysiological recordings revealed that Dil-labeled joint sensory neurons in AIA mice exhibited a greater incidence of spontaneous activity, mechanically evoked after-discharges, and/or increased responses to mechanical stimulation of their receptive fields, compared to control animals. Whole-cell recordings in vitro showed that AIA enhanced the excitability of joint sensory neurons. These signs of neuronal hyperexcitability were associated with a significant reduction in the density of A-type K+ currents. Thus, our data suggest that neuronal hyperexcitability, brought about in part by reduced A-type K+ currents, may contribute to pain-related behaviors that accompany antigen-induced arthritis and/or other antigen-mediated diseases.
Collapse
Affiliation(s)
- Lintao Qu
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Michael J Caterina
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
10
|
Saleeon W, Jansri U, Srikiatkhachorn A, Bongsebandhu-Phubhakdi S. The estrous cycle modulates voltage-gated ion channels in trigeminal ganglion neurons. J Physiol Sci 2015; 65:S29-S35. [PMID: 31941171 PMCID: PMC10722641 DOI: 10.1007/bf03405853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Migraines typically occur more frequently in women than men because of the effects of estrogen on both the frequency and severity of migraine attacks. Many women suffer from migraine attacks during menstruation, which are known as menstrual migraines. The pathophysiology of menstrual migraines can be explored by using the rat estrous cycle, which shows a cyclical fluctuation of estrogen level that resembles the menstrual cycle. The aim of this study was to investigate whether different stages of the estrous cycle are involved in migraine development by comparing the excitability of trigeminal ganglion (TG) neurons in four different stages of the estrous cycle by using action potential (AP) parameter assessments. The stages of the estrous cycle were identified by a vaginal smear and measuring the estrogen levels in collected blood. The proestrus and estrus stages had higher estrogen levels compared with the diestrus and metestrus stages. Whole-cell patch clamp recordings demonstrated that TG neurons in the proestrus and estrus stage had lower AP threshold, lower rheobase, higher AP height, shorter AP falling time and deeper afterhyperpolarization (AHP) depth. Hence, our results revealed that the high level of estrogen in the proestrus and estrus stage alters the AP properties of TG neurons. Estrogen may increase membrane excitability and the summation of cellular responses, which alters the AP properties. The alterations of the AP properties in the proestrus and estrus stage may relate to a modification of voltage-gated ion channels in TG neurons, which is a pathogenesis for menstrual migraine. No COI.
Collapse
Affiliation(s)
- Wachirapong Saleeon
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Pathumwan, Bangkok, Thailand
| | - Ukkrit Jansri
- Research Affairs, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Pathumwan, Bangkok, Thailand
| | - Anan Srikiatkhachorn
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Pathumwan, Bangkok, Thailand
| | | |
Collapse
|
11
|
|