1
|
Zhang Q, Song L, Fu M, He J, Yang G, Jiang Z. Optogenetics in oral and craniofacial research. J Zhejiang Univ Sci B 2024; 25:656-671. [PMID: 39155779 PMCID: PMC11337086 DOI: 10.1631/jzus.b2300322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/17/2023] [Indexed: 08/20/2024]
Abstract
Optogenetics combines optics and genetic engineering to control specific gene expression and biological functions and has the advantages of precise spatiotemporal control, noninvasiveness, and high efficiency. Genetically modified photosensory sensors are engineered into proteins to modulate conformational changes with light stimulation. Therefore, optogenetic techniques can provide new insights into oral biological processes at different levels, ranging from the subcellular and cellular levels to neural circuits and behavioral models. Here, we introduce the origins of optogenetics and highlight the recent progress of optogenetic approaches in oral and craniofacial research, focusing on the ability to apply optogenetics to the study of basic scientific neural mechanisms and to establish different oral behavioral test models in vivo (orofacial movement, licking, eating, and drinking), such as channelrhodopsin (ChR), archaerhodopsin (Arch), and halorhodopsin from Natronomonas pharaonis (NpHR). We also review the synergic and antagonistic effects of optogenetics in preclinical studies of trigeminal neuralgia and maxillofacial cellulitis. In addition, optogenetic tools have been used to control the neurogenic differentiation of dental pulp stem cells in translational studies. Although the scope of optogenetic tools is increasing, there are limited large animal experiments and clinical studies in dental research. Potential future directions include exploring therapeutic strategies for addressing loss of taste in patients with coronavirus disease 2019 (COVID-19), studying oral bacterial biofilms, enhancing craniomaxillofacial and periodontal tissue regeneration, and elucidating the possible pathogenesis of dry sockets, xerostomia, and burning mouth syndrome.
Collapse
Affiliation(s)
- Qinmeng Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Luyao Song
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Mengdie Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jin He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
- Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China. ,
- Zhejiang University School of Medicine, Hangzhou 310058, China. ,
| |
Collapse
|
2
|
Shams Najafabadi H, Sadeghi M, Zibaii MI, Soheili ZS, Samiee S, Ghasemi P, Hosseini M, Gholami Pourbadie H, Ahmadieh H, Taghizadeh S, Ranaei Pirmardan E. Optogenetic control of neural differentiation in Opto-mGluR6 engineered retinal pigment epithelial cell line and mesenchymal stem cells. J Cell Biochem 2021; 122:851-869. [PMID: 33847009 DOI: 10.1002/jcb.29918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 11/11/2022]
Abstract
In retinal degenerative disorders, when neural retinal cells are damaged, cell transplantation is one of the most promising therapeutic approaches. Optogenetic technology plays an essential role in the neural differentiation of stem cells via membrane depolarization. This study explored the efficacy of blue light stimulation in neuroretinal differentiation of Opto-mGluR6-engineered mouse retinal pigment epithelium (mRPE) and bone marrow mesenchymal stem cells (BMSCs). mRPE and BMSCs were selected for optogenetic study due to their capability to differentiate into retinal-specific neurons. BMSCs were isolated and phenotypically characterized by the expression of mesenchymal stem cell-specific markers, CD44 (99%) and CD105 (98.8%). mRPE culture identity was confirmed by expression of RPE-specific marker, RPE65, and epithelial cell marker, ZO-1. mRPE cells and BMSCs were transduced with AAV-MCS-IRES-EGFP-Opto-mGluR6 viral vector and stimulated for 5 days with blue light (470 nm). RNA and protein expression of Opto-mGluR6 were verified. Optogenetic stimulation-induced elevated intracellular Ca2+ levels in mRPE- and BMS-treated cells. Significant increase in cell growth rate and G1/S phase transition were detected in mRPE- and BMSCs-treated cultures. Pou4f1, Dlx2, Eomes, Barlh2, Neurod2, Neurod6, Rorb, Rxrg, Nr2f2, Ascl1, Hes5, and Sox8 were overexpressed in treated BMSCs and Barlh2, Rorb, and Sox8 were overexpressed in treated mRPE cells. Expression of Rho, Thy1, OPN1MW, Recoverin, and CRABP, as retinal-specific neuron markers, in mRPE and BMS cell cultures were demonstrated. Differentiation of ganglion, amacrine, photoreceptor cells, and bipolar and Muller precursors were determined in BMSCs-treated culture and were compared with mRPE. mRPE cells represented more abundant terminal Muller glial differentiation compared with BMSCs. Our results also demonstrated that optical stimulation increased the intracellular Ca2+ level and proliferation and differentiation of Opto-mGluR6-engineered BMSCs. It seems that optogenetic stimulation of mRPE- and BMSCs-engineered cells would be a potential therapeutic approach for retinal degenerative disorders.
Collapse
Affiliation(s)
- Hoda Shams Najafabadi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mehdi Sadeghi
- Department of Medical Genetics, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohammad I Zibaii
- Laser & Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Zahra-Soheila Soheili
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Shahram Samiee
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Pouria Ghasemi
- Laser & Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Mohammad Hosseini
- Laser & Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | | | - Hamid Ahmadieh
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Taghizadeh
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Ehsan Ranaei Pirmardan
- Molecular Biomarkers Nano-imaging Laboratory, Brigham & Women's Hospital, Department of Radiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Asano T, Teh DBL, Yawo H. Application of Optogenetics for Muscle Cells and Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:359-375. [PMID: 33398826 DOI: 10.1007/978-981-15-8763-4_23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This chapter describes the current progress of basic research, and potential therapeutic applications primarily focused on the optical manipulation of muscle cells and neural stem cells using microbial rhodopsin as a light-sensitive molecule. Since the contractions of skeletal, cardiac, and smooth muscle cells are mainly regulated through their membrane potential, several studies have been demonstrated to up- or downregulate the muscle contraction directly or indirectly using optogenetic actuators or silencers with defined stimulation patterns and intensities. Light-dependent oscillation of membrane potential also facilitates the maturation of myocytes with the development of T tubules and sarcomere structures, tandem arrays of minimum contractile units consists of contractile proteins and cytoskeletal proteins. Optogenetics has been applied to various stem cells and multipotent/pluripotent cells such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) to generate light-sensitive neurons and to facilitate neuroscience. The chronic optical stimulation of the channelrhodopsin-expressing neural stem cells facilitates their neural differentiation. There are potential therapeutic applications of optogenetics in cardiac pacemaking, muscle regeneration/maintenance, locomotion recovery for the treatment of muscle paralysis due to motor neuron diseases such as amyotrophic lateral sclerosis (ALS). Optogenetics would also facilitate maturation, network integration of grafted neurons, and improve the microenvironment around them when applied to stem cells.
Collapse
Affiliation(s)
- Toshifumi Asano
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Daniel Boon Loong Teh
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hiromu Yawo
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Japan.
| |
Collapse
|
4
|
Maljevic S, Reid CA, Petrou S. Models for discovery of targeted therapy in genetic epileptic encephalopathies. J Neurochem 2017; 143:30-48. [PMID: 28742937 DOI: 10.1111/jnc.14134] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/14/2017] [Accepted: 07/19/2017] [Indexed: 12/20/2022]
Abstract
Epileptic encephalopathies are severe disorders emerging in the first days to years of life that commonly include refractory seizures, various types of movement disorders, and different levels of developmental delay. In recent years, many de novo occurring variants have been identified in individuals with these devastating disorders. To unravel disease mechanisms, the functional impact of detected variants associated with epileptic encephalopathies is investigated in a range of cellular and animal models. This review addresses efforts to advance and use such models to identify specific molecular and cellular targets for the development of novel therapies. We focus on ion channels as the best-studied group of epilepsy genes. Given the clinical and genetic heterogeneity of epileptic encephalopathy disorders, experimental models that can reflect this complexity are critical for the development of disease mechanisms-based targeted therapy. The convergence of technological advances in gene sequencing, stem cell biology, genome editing, and high throughput functional screening together with massive unmet clinical needs provides unprecedented opportunities and imperatives for precision medicine in epileptic encephalopathies.
Collapse
Affiliation(s)
- Snezana Maljevic
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - Christopher A Reid
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - Steven Petrou
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia.,University of Melbourne, Melbourne, Australia
| |
Collapse
|
5
|
Pomeroy JE, Nguyen HX, Hoffman BD, Bursac N. Genetically Encoded Photoactuators and Photosensors for Characterization and Manipulation of Pluripotent Stem Cells. Theranostics 2017; 7:3539-3558. [PMID: 28912894 PMCID: PMC5596442 DOI: 10.7150/thno.20593] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 07/14/2017] [Indexed: 12/28/2022] Open
Abstract
Our knowledge of pluripotent stem cell biology has advanced considerably in the past four decades, but it has yet to deliver on the great promise of regenerative medicine. The slow progress can be mainly attributed to our incomplete understanding of the complex biologic processes regulating the dynamic developmental pathways from pluripotency to fully-differentiated states of functional somatic cells. Much of the difficulty arises from our lack of specific tools to query, or manipulate, the molecular scale circuitry on both single-cell and organismal levels. Fortunately, the last two decades of progress in the field of optogenetics have produced a variety of genetically encoded, light-mediated tools that enable visualization and control of the spatiotemporal regulation of cellular function. The merging of optogenetics and pluripotent stem cell biology could thus be an important step toward realization of the clinical potential of pluripotent stem cells. In this review, we have surveyed available genetically encoded photoactuators and photosensors, a rapidly expanding toolbox, with particular attention to those with utility for studying pluripotent stem cells.
Collapse
Affiliation(s)
- Jordan E. Pomeroy
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Room 1427, Fitzpatrick CIEMAS, Durham, North Carolina 27708, USA
- Division of Cardiology, Department of Medicine, Duke University Health System, Durham, North Carolina, USA
| | - Hung X. Nguyen
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Room 1427, Fitzpatrick CIEMAS, Durham, North Carolina 27708, USA
| | - Brenton D. Hoffman
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Room 1427, Fitzpatrick CIEMAS, Durham, North Carolina 27708, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Room 1427, Fitzpatrick CIEMAS, Durham, North Carolina 27708, USA
| |
Collapse
|
6
|
Gene Delivery Approaches for Mesenchymal Stem Cell Therapy: Strategies to Increase Efficiency and Specificity. Stem Cell Rev Rep 2017; 13:725-740. [DOI: 10.1007/s12015-017-9760-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|