1
|
Peñin-Franch A, García-Vidal JA, Gómez AI, Escolar-Reina P, Medina-Mirapeix F, Pelegrín P. The total electric charge and time of application of galvanic currents to macrophages can optimize the release of IL-1β with low cell death. Sci Rep 2024; 14:30871. [PMID: 39730677 DOI: 10.1038/s41598-024-81848-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/29/2024] [Indexed: 12/29/2024] Open
Abstract
Galvanic current has been emerging as a novel therapy to regenerate chronic tissue lesions, including musculoskeletal and dermatological lesions. Recently, the NLRP3 inflammasome and IL-1β release have been identified as a signaling pathway triggered upon galvanic current application. However, the parameters for the clinical application of galvanic current remain subjective to the experience of the facultative in charge. In this study we used an in vitro model of macrophage culture and application of different combinations of the parameters of galvanic current to study IL-1β production and cell death. Increasing electric charge of galvanic current induces the release of IL-1β, but electric charges equal or higher to 144 mC also increase cell death. The release of IL-1β have a substantial variation within different electric charge of galvanic currents, being increased by decreasing the current and increasing the time of current application. Within the range of current intensities studied, the most optimal protocol for maximizing IL-1β release without inducing cell death was identified at electric charges equal to or near 144 mC, applied over a total duration of approximately 25 s. Our findings lay the groundwork for future in vivo studies assessing different electric charge of galvanic current, with the aim of yielding clinically relevant outcomes.
Collapse
Affiliation(s)
| | - José Antonio García-Vidal
- Biomedical Research Institute of Murcia IMIB-Pascual Parrilla, Murcia, Spain
- Department of Physical Therapy, University of Murcia, Murcia, Spain
| | - Ana Isabel Gómez
- Biomedical Research Institute of Murcia IMIB-Pascual Parrilla, Murcia, Spain
| | - Pilar Escolar-Reina
- Biomedical Research Institute of Murcia IMIB-Pascual Parrilla, Murcia, Spain
- Department of Physical Therapy, University of Murcia, Murcia, Spain
| | - Francesc Medina-Mirapeix
- Biomedical Research Institute of Murcia IMIB-Pascual Parrilla, Murcia, Spain.
- Department of Physical Therapy, University of Murcia, Murcia, Spain.
| | - Pablo Pelegrín
- Biomedical Research Institute of Murcia IMIB-Pascual Parrilla, Murcia, Spain.
- Department of Biochemistry and Molecular Biology B and Immunology, University of Murcia, Murcia, Spain.
| |
Collapse
|
2
|
Sözer EB, Semenov I, Vernier PT. Dihydroethidium-derived fluorescence in electrically stressed cells indicates intracellular microenvironment modifications independent of ROS. Bioelectrochemistry 2024; 160:108751. [PMID: 38851174 DOI: 10.1016/j.bioelechem.2024.108751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
Intracellular reactive oxygen species (ROS) generation is widely suggested as a trigger for biological consequences of electric field exposures, such as those in electroporation applications. ROS are linked with membrane barrier function degradation, genetic damage, and complex events like immunological cell death. Dihydroethidium (DHE) is commonly used to monitor ROS in cells. DHE is linked to intracellular ROS by a primary oxidation product, Ethidium (Eth+), that shows increased fluorescence upon binding to polynucleotides. We observed changes in DHE-derived fluorescence in Chinese hamster ovary (CHO) cells post 300-ns electric pulse exposures, comparing them to tert-butyl-hydroperoxide (t-BHP) induced oxidative stress. Immediate intracellular fluorescence changes were noted in both cases, but with distinct localization patterns. After electrical stress, cytosolic DHE-derived fluorescence intensity decreases, and nucleolar intensity increases. Conversely, t-BHP exposure increases DHE-derived fluorescence uniformly across the cell. Surprisingly, fluorescence patterns after electrical stress in Eth+-loaded cells is identical to those in DHE-loaded cells, in kinetics and localization patterns. These findings indicate that DHE-derived fluorescence changes after pulsed electric field stress are not due to intracellular ROS generation leading to DHE oxidation, but rather indicate stress-induced intracellular microenvironment alterations affecting Eth+ fluorescence.
Collapse
Affiliation(s)
- Esin B Sözer
- Old Dominion University, Frank Reidy Research Center for Bioelectrics, Norfolk, VA, USA.
| | - Iurii Semenov
- Old Dominion University, Frank Reidy Research Center for Bioelectrics, Norfolk, VA, USA
| | - P Thomas Vernier
- Old Dominion University, Frank Reidy Research Center for Bioelectrics, Norfolk, VA, USA.
| |
Collapse
|
3
|
Ma R, Wang Y, Wang Z, Yin S, Liu Z, Yan K. Enhanced Cellular Doxorubicin Uptake via Delayed Exposure Following Nanosecond Pulsed Electric Field Treatment: An In Vitro Study. Pharmaceutics 2024; 16:851. [PMID: 39065548 PMCID: PMC11280291 DOI: 10.3390/pharmaceutics16070851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/15/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
The combination of nanosecond Pulsed Electric Field (nsPEF) with pharmaceuticals is a pioneering therapeutic method capable of enhancing drug uptake efficacy in cells. Utilizing nsPEFs configured at 400 pulses, an electric field strength of 15 kV/cm, a pulse duration of 100 ns, and a repetition rate of 10 pulses per second (PPS), we combined the nsPEF with a low dose of doxorubicin (DOX) at 0.5 μM. Upon verifying that cells could continuously internalize DOX from the surrounding medium within 1 h post nsPEF exposure, we set the DOX exposure period to 10 min and contrasted the outcomes of varying sequences of DOX and nsPEF administration: pulsing followed by DOX, DOX followed by pulsing, and DOX applied 40 min after pulsing. Flow cytometry, CCK-8 assays, and transmission electron microscopy (TEM) were employed to examine intracellular DOX accumulation, cell viability, apoptosis, cell cycle, and ultrastructural transformations. Our findings demonstrate that exposing cells to DOX 40 min subsequent to nsPEF treatment can effectively elevate intracellular DOX levels, decrease cell viability, and inhibit the cell cycle. This research work presents a novel approach to enhance DOX uptake efficiency with moderate conditions of both DOX and nsPEF.
Collapse
Affiliation(s)
- Rongwei Ma
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310003, China; (R.M.); (Z.W.); (K.Y.)
| | - Yubo Wang
- Key Laboratory of Multi-Organ Transplantation Research, Ministry of Health, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China; (Y.W.); (S.Y.)
| | - Zhihao Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310003, China; (R.M.); (Z.W.); (K.Y.)
| | - Shengyong Yin
- Key Laboratory of Multi-Organ Transplantation Research, Ministry of Health, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China; (Y.W.); (S.Y.)
| | - Zhen Liu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310003, China; (R.M.); (Z.W.); (K.Y.)
| | - Keping Yan
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310003, China; (R.M.); (Z.W.); (K.Y.)
| |
Collapse
|
4
|
Qian K, Wang Y, Lei Y, Yang Q, Yao C. An experimental and theoretical study on cell swelling for osmotic imbalance induced by electroporation. Bioelectrochemistry 2024; 157:108637. [PMID: 38215652 DOI: 10.1016/j.bioelechem.2023.108637] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/02/2023] [Accepted: 12/28/2023] [Indexed: 01/14/2024]
Abstract
The cellular membrane serves as a pivotal barrier in regulating intra- and extracellular matter exchange. Disruption of this barrier through pulsed electric fields (PEFs) induces the transmembrane transport of ions and molecules, creating a concentration gradient that subsequently results in the imbalance of cellular osmolality. In this study, a multiphysics model was developed to simulate the electromechanical response of cells exposed to microsecond pulsed electric fields (μsPEFs). Within the proposed model, the diffusion coefficient of the cellular membrane for various ions was adjusted based on electropore density. Cellular osmolality was governed and described using Van't Hoff theory, subsequently converted to loop stress to dynamically represent the cell swelling process. Validation of the model was conducted through a hypotonic experiment and simulation at 200 mOsm/kg, revealing a 14.2% increase in the cell's equivalent radius, thereby confirming the feasibility of the cell mechanical model. With the transmembrane transport of ions induced by the applied μsPEF, the hoop stress acting on the cellular membrane reached 179.95 Pa, and the cell equivalent radius increased by 11.0% when the extra-cellular medium was supplied with normal saline. The multiphysics model established in this study accurately predicts the dynamic changes in cell volume resulting from osmotic imbalance induced by PEF action. This model holds theoretical significance, offering valuable references for research on drug delivery and tumor microenvironment modulation.
Collapse
Affiliation(s)
- Kun Qian
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, No.174 Shazhengjie Road, Chongqing 400044, China
| | - Yancheng Wang
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, No.174 Shazhengjie Road, Chongqing 400044, China
| | - Yizhen Lei
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, No.174 Shazhengjie Road, Chongqing 400044, China
| | - Qiang Yang
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, No.174 Shazhengjie Road, Chongqing 400044, China
| | - Chenguo Yao
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, No.174 Shazhengjie Road, Chongqing 400044, China.
| |
Collapse
|
5
|
Contraction of the rigor actomyosin complex drives bulk hemoglobin expulsion from hemolyzing erythrocytes. Biomech Model Mechanobiol 2022; 22:417-432. [PMID: 36357646 PMCID: PMC10097772 DOI: 10.1007/s10237-022-01654-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/23/2022] [Indexed: 11/12/2022]
Abstract
Erythrocyte ghost formation via hemolysis is a key event in the physiological clearance of senescent red blood cells (RBCs) in the spleen. The turnover rate of millions of RBCs per second necessitates a rapid efflux of hemoglobin (Hb) from RBCs by a not yet identified mechanism. Using high-speed video-microscopy of isolated RBCs, we show that electroporation-induced efflux of cytosolic ATP and other small solutes leads to transient cell shrinkage and echinocytosis, followed by osmotic swelling to the critical hemolytic volume. The onset of hemolysis coincided with a sudden self-propelled cell motion, accompanied by cell contraction and Hb-jet ejection. Our biomechanical model, which relates the Hb-jet-driven cell motion to the cytosolic pressure generation via elastic contraction of the RBC membrane, showed that the contributions of the bilayer and the bilayer-anchored spectrin cytoskeleton to the hemolytic cell motion are negligible. Consistent with the biomechanical analysis, our biochemical experiments, involving extracellular ATP and the myosin inhibitor blebbistatin, identify the low abundant non-muscle myosin 2A (NM2A) as the key contributor to the Hb-jet emission and fast hemolytic cell motion. Thus, our data reveal a rapid myosin-based mechanism of hemolysis, as opposed to a much slower diffusive Hb efflux.
Collapse
|
6
|
Kasprzycka W, Trębińska-Stryjewska A, Lewandowski RB, Stępińska M, Osuchowska PN, Dobrzyńska M, Achour Y, Osuchowski ŁP, Starzyński J, Mierczyk Z, Trafny EA. Nanosecond Pulsed Electric Field Only Transiently Affects the Cellular and Molecular Processes of Leydig Cells. Int J Mol Sci 2021; 22:ijms222011236. [PMID: 34681896 PMCID: PMC8541366 DOI: 10.3390/ijms222011236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 12/11/2022] Open
Abstract
The purpose of this study was to verify whether the nanosecond pulsed electric field, not eliciting thermal effects, permanently changes the molecular processes and gene expression of Leydig TM3 cells. The cells were exposed to a moderate electric field (80 quasi-rectangular shape pulses, 60 ns pulse width, and an electric field of 14 kV/cm). The putative disturbances were recorded over 24 h. After exposure to the nanosecond pulsed electric field, a 19% increase in cell diameter, a loss of microvilli, and a 70% reduction in cell adhesion were observed. Some cells showed the nonapoptotic externalization of phosphatidylserine through the pores in the plasma membrane. The cell proportion in the subG1 phase increased by 8% at the expense of the S and G2/M phases, and the DNA was fragmented in a small proportion of the cells. The membrane mitochondrial potential and superoxide content decreased by 37% and 23%, respectively. Microarray’s transcriptome analysis demonstrated a negative transient effect on the expression of genes involved in oxidative phosphorylation, DNA repair, cell proliferation, and the overexpression of plasma membrane proteins. We conclude that nanosecond pulsed electric field affected the physiology and gene expression of TM3 cells transiently, with a noticeable heterogeneity of cellular responses.
Collapse
Affiliation(s)
- Wiktoria Kasprzycka
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, 00-908 Warsaw, Poland; (W.K.); (A.T.-S.); (R.B.L.); (M.S.); (P.N.O.); (M.D.); (Ł.P.O.); (Z.M.)
| | - Alicja Trębińska-Stryjewska
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, 00-908 Warsaw, Poland; (W.K.); (A.T.-S.); (R.B.L.); (M.S.); (P.N.O.); (M.D.); (Ł.P.O.); (Z.M.)
| | - Rafał Bogdan Lewandowski
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, 00-908 Warsaw, Poland; (W.K.); (A.T.-S.); (R.B.L.); (M.S.); (P.N.O.); (M.D.); (Ł.P.O.); (Z.M.)
| | - Małgorzata Stępińska
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, 00-908 Warsaw, Poland; (W.K.); (A.T.-S.); (R.B.L.); (M.S.); (P.N.O.); (M.D.); (Ł.P.O.); (Z.M.)
| | - Paulina Natalia Osuchowska
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, 00-908 Warsaw, Poland; (W.K.); (A.T.-S.); (R.B.L.); (M.S.); (P.N.O.); (M.D.); (Ł.P.O.); (Z.M.)
| | - Monika Dobrzyńska
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, 00-908 Warsaw, Poland; (W.K.); (A.T.-S.); (R.B.L.); (M.S.); (P.N.O.); (M.D.); (Ł.P.O.); (Z.M.)
| | - Yahia Achour
- Faculty of Electronics, Military University of Technology, 00-908 Warsaw, Poland; (Y.A.); (J.S.)
| | - Łukasz Paweł Osuchowski
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, 00-908 Warsaw, Poland; (W.K.); (A.T.-S.); (R.B.L.); (M.S.); (P.N.O.); (M.D.); (Ł.P.O.); (Z.M.)
| | - Jacek Starzyński
- Faculty of Electronics, Military University of Technology, 00-908 Warsaw, Poland; (Y.A.); (J.S.)
| | - Zygmunt Mierczyk
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, 00-908 Warsaw, Poland; (W.K.); (A.T.-S.); (R.B.L.); (M.S.); (P.N.O.); (M.D.); (Ł.P.O.); (Z.M.)
| | - Elżbieta Anna Trafny
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, 00-908 Warsaw, Poland; (W.K.); (A.T.-S.); (R.B.L.); (M.S.); (P.N.O.); (M.D.); (Ł.P.O.); (Z.M.)
- Correspondence:
| |
Collapse
|
7
|
Steelman ZA, Coker ZN, Kiester A, Noojin G, Ibey BL, Bixler JN. Quantitative phase microscopy monitors subcellular dynamics in single cells exposed to nanosecond pulsed electric fields. JOURNAL OF BIOPHOTONICS 2021; 14:e202100125. [PMID: 34291579 DOI: 10.1002/jbio.202100125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/11/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
A substantial body of literature exists to study the dynamics of single cells exposed to short duration (<1 μs), high peak power (~1 MV/m) transient electric fields. Much of this research is limited to traditional fluorescence-based microscopy techniques, which introduce exogenous agents to the culture and are only sensitive to a single molecular target. Quantitative phase imaging (QPI) is a coherent imaging modality which uses optical path length as a label-free contrast mechanism, and has proven highly effective for the study of single-cell dynamics. In this work, we introduce QPI as a useful imaging tool for the study of cells undergoing cytoskeletal remodeling after nanosecond pulsed electric field (nsPEF) exposure. In particular, we use cell swelling, dry mass and disorder strength measurements derived from QPI phase images to monitor the cellular response to nsPEFs. We hope this demonstration of QPI's utility will lead to a further adoption of the technique for the study of directed energy bioeffects.
Collapse
Affiliation(s)
- Zachary A Steelman
- National Research Council Research Associateship Program, Washington, District of Columbia, USA
| | - Zachary N Coker
- Department of Physics and Astronomy, Texas A&M University, College Station, Texas, USA
- SAIC, San Antonio, Texas, USA
| | - Allen Kiester
- 711th Human Performance Wing, Airman Systems Directorate, Bioeffects Division, JBSA Fort Sam Houston, San Antonio, Texas, USA
| | | | - Bennett L Ibey
- 711th Human Performance Wing, Airman Systems Directorate, Bioeffects Division, JBSA Fort Sam Houston, San Antonio, Texas, USA
| | - Joel N Bixler
- 711th Human Performance Wing, Airman Systems Directorate, Bioeffects Division, JBSA Fort Sam Houston, San Antonio, Texas, USA
| |
Collapse
|
8
|
Yang Q, Kajimoto S, Kobayashi Y, Hiramatsu H, Nakabayashi T. Regulation of Cell Volume by Nanosecond Pulsed Electric Fields. J Phys Chem B 2021; 125:10692-10700. [PMID: 34519209 DOI: 10.1021/acs.jpcb.1c06058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Stimulation of cells by nanosecond pulsed electric fields (nsPEFs) has attracted attention as a technology for medical applications such as cancer treatment. nsPEFs have been shown to affect intracellular environments without significant damage to cell membranes; however, the mechanism underlying the effect of nsPEFs on cells remains unclear. In this study, we constructed electrodes for applying nsPEFs and analyzed the change in volume of a single cell due to nsPEFs using fluorescence and Raman microscopy. It was shown that the direction of the change depended on the applied electric field; expansion due to the influx of water was observed at high electric field, and cell shrinkage was observed at low electric field. The change in cell volume was correlated to the change in the intracellular Ca2+ concentration, and nsPEFs-induced shrinking was not observed when the Ca2+-free medium was used. This result suggests that the cell shrinkage is related to the regulatory volume decrease where the cell adjusts the increase in intracellular Ca2+ concentration, inducing the efflux of ions and water from the cell.
Collapse
Affiliation(s)
- Qi Yang
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Shinji Kajimoto
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan.,JST PRESTO, Kawaguchi, Saitama 332-0012, Japan
| | - Yuki Kobayashi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Hirotsugu Hiramatsu
- Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, 1001, Ta-Hsueh Road, Hsinchu 30010, Taiwan.,Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Takakazu Nakabayashi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
9
|
Carr L, Golzio M, Orlacchio R, Alberola G, Kolosnjaj-Tabi J, Leveque P, Arnaud-Cormos D, Rols MP. A nanosecond pulsed electric field (nsPEF) can affect membrane permeabilization and cellular viability in a 3D spheroids tumor model. Bioelectrochemistry 2021; 141:107839. [PMID: 34020398 DOI: 10.1016/j.bioelechem.2021.107839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/01/2022]
Abstract
Three-dimensional (3D) cellular models represent more realistically the complexity of in vivo tumors compared to 2D cultures. While 3D models were largely used in classical electroporation, the effects of nanosecond pulsed electric field (nsPEF) have been poorly investigated. In this study, we evaluated the biological effects induced by nsPEF on spheroid tumor model derived from the HCT-116 human colorectal carcinoma cell line. By varying the number of pulses (from 1 to 500) and the polarity (unipolar and bipolar), the response of nsPEF exposure (10 ns duration, 50 kV/cm) was assessed either immediately after the application of the pulses or over a period lasting up to 6 days. Membrane permeabilization and cellular death occurred following the application of at least 100 pulses. The extent of the response increased with the number of pulses, with a significant decrease of viability, 24 h post-exposure, when 250 and 500 pulses were applied. The effects were highly reduced when an equivalent number of bipolar pulses were delivered. This reduction was eliminated when a 100 ns interphase interval was introduced into the bipolar pulses. Altogether, our results show that nsPEF effects, previously observed at the single cell level, also occur in more realistic 3D tumor spheroids models.
Collapse
Affiliation(s)
- Lynn Carr
- Univ. Limoges, CNRS, XLIM, UMR 7252, F-87000 Limoges, France; School of Electronic Engineering, Bangor University, Bangor, UK
| | - Muriel Golzio
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Rosa Orlacchio
- Univ. Limoges, CNRS, XLIM, UMR 7252, F-87000 Limoges, France
| | - Geraldine Alberola
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Jelena Kolosnjaj-Tabi
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | | | - Delia Arnaud-Cormos
- Univ. Limoges, CNRS, XLIM, UMR 7252, F-87000 Limoges, France; Institut Universitaire de France (IUF), 75005 Paris, France.
| | - Marie-Pierre Rols
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France.
| |
Collapse
|
10
|
Abstract
The paper describes major issues related to the design of a portable SiC-based DC supply developed for evaluation of a high-voltage Marx generator. This generator is developed to be a part of an electromagnetic cannon providing very high voltage and current pulses aiming at the destruction of electronics equipment in a specific area. The portable DC supply offers a very high voltage gain: input voltage is 24 V, while the generator requires supply voltages up to 50 kV. Thus, the system contains two stages designed on the basis of SiC power devices operating with frequencies up to 100 kHz. At first, the input voltage is boosted up to 400 V by a non-isolated double-boost converter, and then a resonant DC-DC converter with a special transformer elevates the voltage to the required level. In the paper, the main components of the laboratory setup are presented, and experimental results of the DC supply and whole system are also shown.
Collapse
|
11
|
Cantu JC, Tolstykh GP, Tarango M, Beier HT, Ibey BL. Caveolin-1 is Involved in Regulating the Biological Response of Cells to Nanosecond Pulsed Electric Fields. J Membr Biol 2021; 254:141-156. [PMID: 33427940 DOI: 10.1007/s00232-020-00160-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/18/2020] [Indexed: 01/20/2023]
Abstract
Nanosecond pulsed electric fields (nsPEFs) induce changes in the plasma membrane (PM), including PM permeabilization (termed nanoporation), allowing free passage of ions into the cell and, in certain cases, cell death. Recent studies from our laboratory show that the composition of the PM is a critical determinant of PM nanoporation. Thus, we hypothesized that the biological response to nsPEF exposure could be influenced by lipid microdomains, including caveolae, which are specialized invaginations of the PM that are enriched in cholesterol and contain aggregates of important cell signaling proteins, such as caveolin-1 (Cav1). Caveolae play a significant role in cellular signal transduction, including control of calcium influx and cell death by interaction of Cav1 with regulatory signaling proteins. Present results show that depletion of Cav1 increased the influx of calcium, while Cav1 overexpression produced the opposite effect. Additionally, Cav1 is known to bind and sequester important cell signaling proteins within caveolae, rendering the binding partners inactive. Imaging of the PM after nsPEF exposure showed localized depletion of PM Cav1 and results of co-immunoprecipitation studies showed dissociation of two critical Cav1 binding partners (transient receptor potential cation channel subfamily C1 (TRPC1) and inositol trisphosphate receptor (IP3R)) after exposure to nsPEFs. Release of TRPC1 and IP3R from Cav1 would activate downstream signaling cascades, including store-operated calcium entry, which could explain the influx in calcium after nsPEF exposure. Results of the current study establish a significant relationship between Cav1 and the activation of cell signaling pathways in response to nsPEFs.
Collapse
Affiliation(s)
- Jody C Cantu
- General Dynamics Information Technology, JBSA Fort Sam Houston, 4141 Petroleum Road, Bldg. 3260, San Antonio, TX, 78234-2644, USA.
| | - Gleb P Tolstykh
- General Dynamics Information Technology, JBSA Fort Sam Houston, 4141 Petroleum Road, Bldg. 3260, San Antonio, TX, 78234-2644, USA
| | - Melissa Tarango
- General Dynamics Information Technology, JBSA Fort Sam Houston, 4141 Petroleum Road, Bldg. 3260, San Antonio, TX, 78234-2644, USA
| | - Hope T Beier
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Bioeffects Division, Optical Radiation Bioeffects Branch, JBSA Fort Sam Houston, San Antonio, TX, 78234, USA
| | - Bennett L Ibey
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Bioeffects Division, Radio Frequency Bioeffects Branch, JBSA Fort Sam Houston, San Antonio, TX, 78234, USA
| |
Collapse
|
12
|
Novickij V, Zinkevičienė A, Malyško V, Novickij J, Kulbacka J, Rembialkowska N, Girkontaitė I. Bioluminescence as a sensitive electroporation indicator in sub-microsecond and microsecond range of electrical pulses. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 213:112066. [PMID: 33142215 DOI: 10.1016/j.jphotobiol.2020.112066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/28/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022]
Abstract
The cell membrane permeabilization in electroporation studies is usually quantified using fluorescent markers such as propidium iodide (PI) or YO-PRO, while Chinese Hamster Ovary cell line frequently serves as a model. In this work, as an alternative, we propose a sensitive methodology for detection and analysis of electroporation phenomenon based on bioluminescence. Luminescent mice myeloma SP2/0 cells (transfected using Luciferase-pcDNA3 plasmid) were used as a cell model. Electroporation has been studied using the 0.1-5 μs × 250 and 100 μs × 1-8 pulsing protocols in 1-2.5 kV/cm PEF range. It was shown that the bioluminescence response is dependent on the cell permeabilization state and can be effectively used to detect even weak permeabilization. During saturated permeabilization the methodology accurately predicts the losses of cell viability due to irreversible electroporation. The results have been superpositioned with permeabilization and pore resealing (1 h post-treatment) data using PI. Also, the viability of the cells was evaluated. Lastly, the SP2/0 tumors have been developed in BALB/C mice and the methodology has been tested in vivo using electrochemotherapy with bleomycin.
Collapse
Affiliation(s)
- Vitalij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania.
| | - Auksė Zinkevičienė
- State Research Institute Centre for Innovative Medicine, Department of Immunology, Vilnius, Lithuania
| | - Veronika Malyško
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Jurij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Wroclaw, Poland
| | - Nina Rembialkowska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Wroclaw, Poland
| | - Irutė Girkontaitė
- State Research Institute Centre for Innovative Medicine, Department of Immunology, Vilnius, Lithuania
| |
Collapse
|
13
|
Kranjc Brezar S, Kranjc M, Čemažar M, Buček S, Serša G, Miklavčič D. Electrotransfer of siRNA to Silence Enhanced Green Fluorescent Protein in Tumor Mediated by a High Intensity Pulsed Electromagnetic Field. Vaccines (Basel) 2020; 8:E49. [PMID: 32012775 PMCID: PMC7157195 DOI: 10.3390/vaccines8010049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/10/2020] [Accepted: 01/23/2020] [Indexed: 02/07/2023] Open
Abstract
The contactless high intensity pulsed electromagnetic field (HI-PEMF)-induced increase of cell membrane permeability is similar to conventional electroporation, with the important difference of inducing an electric field non-invasively by exposing a treated tissue to a time-varying magnetic field. Due to the limited number of studies in the field of electroporation induced by HI-PEMF, we designed experiments to explore the feasibility of such a contactless delivery technique for the gene electrotransfer of nucleic acids in tissues in vivo. By using HI-PEMF for gene electrotransfer, we silenced enhanced green fluorescent protein (EGFP) with siRNA molecules against EGFP in B16F10-EGFP tumors. Six days after the transfer, the fluorescent tumor area decreased by up to 39% as determined by fluorescence imaging in vivo. In addition, the silencing of EGFP to the same extent was confirmed at the mRNA and protein level. The results obtained in the in vivo mouse model demonstrate the potential use of HI-PEMF-induced cell permeabilization for gene therapy and DNA vaccination. Further studies are thus warranted to improve the equipment, optimize the protocols for gene transfer and the HI-PEMF parameters, and demonstrate the effects of HI-PEMF on a broader range of different normal and tumor tissues.
Collapse
Affiliation(s)
- Simona Kranjc Brezar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia; (S.K.B.); (M.Č.); (G.S.)
| | - Matej Kranjc
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia;
| | - Maja Čemažar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia; (S.K.B.); (M.Č.); (G.S.)
- Faculty of Health Sciences, University of Primorska, Polje 42, 6310 Izola, Slovenia
| | - Simon Buček
- Department of Cytopathology, Institute of Oncology Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia;
| | - Gregor Serša
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia; (S.K.B.); (M.Č.); (G.S.)
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000 Ljubljana, Slovenia
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia;
| |
Collapse
|
14
|
Cellular Processes Involved in Jurkat Cells Exposed to Nanosecond Pulsed Electric Field. Int J Mol Sci 2019; 20:ijms20235847. [PMID: 31766457 PMCID: PMC6929111 DOI: 10.3390/ijms20235847] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 12/11/2022] Open
Abstract
Recently, nanosecond pulsed electric field (nsPEF) has been considered as a new tool for tumor therapy, but its molecular mechanism of function remains to be fully elucidated. Here, we explored the cellular processes of Jurkat cells exposed to nanosecond pulsed electric field. Differentially expressed genes (DEGs) were acquired from the GEO2R, followed by analysis with a series of bioinformatics tools. Subsequently, 3D protein models of hub genes were modeled by Modeller 9.21 and Rosetta 3.9. Then, a 100 ns molecular dynamics simulation for each hub protein was performed with GROMACS 2018.2. Finally, three kinds of nsPEF voltages (0.01, 0.05, and 0.5 mV/mm) were used to simulate the molecular dynamics of hub proteins for 100 ns. A total of 1769 DEGs and eight hub genes were obtained. Molecular dynamic analysis, including root mean square deviation (RMSD), root mean square fluctuation (RMSF), and the Rg, demonstrated that the 3D structure of hub proteins was built, and the structural characteristics of hub proteins under different nsPEFs were acquired. In conclusion, we explored the effect of nsPEF on Jurkat cell signaling pathway from the perspective of molecular informatics, which will be helpful in understanding the complex effects of nsPEF on acute T-cell leukemia Jurkat cells.
Collapse
|
15
|
Modulation of biological responses to 2 ns electrical stimuli by field reversal. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1228-1239. [DOI: 10.1016/j.bbamem.2019.03.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/05/2019] [Accepted: 03/28/2019] [Indexed: 01/06/2023]
|
16
|
Influence of the current density in moderate pulsed electric fields on P. putida F1 eradication. Bioelectrochemistry 2019; 126:172-179. [DOI: 10.1016/j.bioelechem.2018.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 01/24/2023]
|
17
|
Lamberti P, Compitiello M, Romeo S, Lamberti P, Compitiello M, Romeo S, Lamberti P, Romeo S, Compitiello M. ns Pulsed Electric Field-Induced Action Potentials in the Circuital Model of an Axon. IEEE Trans Nanobioscience 2019; 17:110-116. [PMID: 29870334 DOI: 10.1109/tnb.2018.2822840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pulsed electric fields with duration in the sub- and ns time scale (nsPEFs) increase the permeability of cell membranes, enabling the transport of normally impermeant molecules into or out of the cell (electroporation). Such effect is associated to intracellular alterations and indicates nsPEFs as a new stimulus to modulate cell functions. In particular, studies dealing with the application of nsPEFs to excitable cells suggest their use for the stimulation/inhibition of cell excitation. In this paper, the circuital model per surface unit of the plasma membrane of an axon was developed to implement the Hodgkin and Huxley equations, describing the action potential activation process. For the first time, a power electronics circuital simulator was adopted. The model was first validated with conventional microsecond stimuli, and then it was employed to identify the conditions for cell excitation by nsPEFs. The results demonstrated the possibility of electrostimulation by nsPEFs at depolarization levels far below those required for inducing electroporation, and with ionic current dynamics similar to that induced by conventional stimuli, confirming recent experimental findings. Moreover, by using a power electronics tool, easier integration of the cell modeling with the design and optimization of pulse generation systems can be gained.
Collapse
|
18
|
Stewart MP, Langer R, Jensen KF. Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts. Chem Rev 2018; 118:7409-7531. [PMID: 30052023 PMCID: PMC6763210 DOI: 10.1021/acs.chemrev.7b00678] [Citation(s) in RCA: 449] [Impact Index Per Article: 64.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracellular delivery is a key step in biological research and has enabled decades of biomedical discoveries. It is also becoming increasingly important in industrial and medical applications ranging from biomanufacture to cell-based therapies. Here, we review techniques for membrane disruption-based intracellular delivery from 1911 until the present. These methods achieve rapid, direct, and universal delivery of almost any cargo molecule or material that can be dispersed in solution. We start by covering the motivations for intracellular delivery and the challenges associated with the different cargo types-small molecules, proteins/peptides, nucleic acids, synthetic nanomaterials, and large cargo. The review then presents a broad comparison of delivery strategies followed by an analysis of membrane disruption mechanisms and the biology of the cell response. We cover mechanical, electrical, thermal, optical, and chemical strategies of membrane disruption with a particular emphasis on their applications and challenges to implementation. Throughout, we highlight specific mechanisms of membrane disruption and suggest areas in need of further experimentation. We hope the concepts discussed in our review inspire scientists and engineers with further ideas to improve intracellular delivery.
Collapse
Affiliation(s)
- Martin P. Stewart
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Klavs F. Jensen
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
| |
Collapse
|
19
|
Sözer EB, Pocetti CF, Vernier PT. Transport of charged small molecules after electropermeabilization - drift and diffusion. BMC BIOPHYSICS 2018; 11:4. [PMID: 29581879 PMCID: PMC5861730 DOI: 10.1186/s13628-018-0044-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/06/2018] [Indexed: 11/10/2022]
Abstract
Background Applications of electric-field-induced permeabilization of cells range from cancer therapy to wastewater treatment. A unified understanding of the underlying mechanisms of membrane electropermeabilization, however, has not been achieved. Protocols are empirical, and models are descriptive rather than predictive, which hampers the optimization and expansion of electroporation-based technologies. A common feature of existing models is the assumption that the permeabilized membrane is passive, and that transport through it is entirely diffusive. To demonstrate the necessity to go beyond that assumption, we present here a quantitative analysis of the post-permeabilization transport of three small molecules commonly used in electroporation research — YO-PRO-1, propidium, and calcein — after exposure of cells to minimally perturbing, 6 ns electric pulses. Results Influx of YO-PRO-1 from the external medium into the cell exceeds that of propidium, consistent with many published studies. Both are much greater than the influx of calcein. In contrast, the normalized molar efflux of calcein from pre-loaded cells into the medium after electropermeabilization is roughly equivalent to the influx of YO-PRO-1 and propidium. These relative transport rates are correlated not with molecular size or cross-section, but rather with molecular charge polarity. Conclusions This comparison of the kinetics of molecular transport of three small, charged molecules across electropermeabilized cell membranes reveals a component of the mechanism of electroporation that is customarily taken into account only for the time during electric pulse delivery. The large differences between the influx rates of propidium and YO-PRO-1 (cations) and calcein (anion), and between the influx and efflux of calcein, suggest a significant role for the post-pulse transmembrane potential in the migration of ions and charged small molecules across permeabilized cell membranes, which has been largely neglected in models of electroporation. Electronic supplementary material The online version of this article (10.1186/s13628-018-0044-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Esin B Sözer
- 1Frank Reidy Research Center for Bioelectrics, Old Dominion University, 4211 Monarch Way, Ste. 300, Norfolk, VA 23508 USA
| | - C Florencia Pocetti
- 2Department of Bioengineering, Instituto Tecnológico de Buenos Aires, Buenos Aires, Argentina
| | - P Thomas Vernier
- 1Frank Reidy Research Center for Bioelectrics, Old Dominion University, 4211 Monarch Way, Ste. 300, Norfolk, VA 23508 USA
| |
Collapse
|
20
|
Carr L, Bardet SM, Burke RC, Arnaud-Cormos D, Leveque P, O'Connor RP. Calcium-independent disruption of microtubule dynamics by nanosecond pulsed electric fields in U87 human glioblastoma cells. Sci Rep 2017; 7:41267. [PMID: 28117459 PMCID: PMC5259788 DOI: 10.1038/srep41267] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 12/19/2016] [Indexed: 12/26/2022] Open
Abstract
High powered, nanosecond duration, pulsed electric fields (nsPEF) cause cell death by a mechanism that is not fully understood and have been proposed as a targeted cancer therapy. Numerous chemotherapeutics work by disrupting microtubules. As microtubules are affected by electrical fields, this study looks at the possibility of disrupting them electrically with nsPEF. Human glioblastoma cells (U87-MG) treated with 100, 10 ns, 44 kV/cm pulses at a frequency of 10 Hz showed a breakdown of their interphase microtubule network that was accompanied by a reduction in the number of growing microtubules. This effect is temporally linked to loss of mitochondrial membrane potential and independent of cellular swelling and calcium influx, two factors that disrupt microtubule growth dynamics. Super-resolution microscopy revealed microtubule buckling and breaking as a result of nsPEF application, suggesting that nsPEF may act directly on microtubules.
Collapse
Affiliation(s)
- Lynn Carr
- XLIM Research Institute, UMR CNRS No 7252, University of Limoges, Faculty of Science and Techniques, 123 Avenue Albert Thomas, 87060 Limoges, France
| | - Sylvia M Bardet
- XLIM Research Institute, UMR CNRS No 7252, University of Limoges, Faculty of Science and Techniques, 123 Avenue Albert Thomas, 87060 Limoges, France
| | - Ryan C Burke
- XLIM Research Institute, UMR CNRS No 7252, University of Limoges, Faculty of Science and Techniques, 123 Avenue Albert Thomas, 87060 Limoges, France
| | - Delia Arnaud-Cormos
- XLIM Research Institute, UMR CNRS No 7252, University of Limoges, Faculty of Science and Techniques, 123 Avenue Albert Thomas, 87060 Limoges, France
| | - Philippe Leveque
- XLIM Research Institute, UMR CNRS No 7252, University of Limoges, Faculty of Science and Techniques, 123 Avenue Albert Thomas, 87060 Limoges, France
| | - Rodney P O'Connor
- XLIM Research Institute, UMR CNRS No 7252, University of Limoges, Faculty of Science and Techniques, 123 Avenue Albert Thomas, 87060 Limoges, France
| |
Collapse
|