1
|
Li J, Xie W, Chen JM, Xu CZ, Huang YL, Chen S, Liu CY, Lu YQ, Zou ZY. Clinical and functional characterization of a novel STUB1 mutation in a Chinese spinocerebellar ataxia 48 pedigree. Orphanet J Rare Dis 2024; 19:471. [PMID: 39707479 DOI: 10.1186/s13023-024-03456-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/11/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Spinocerebellar ataxias (SCAs) encompass a wide spectrum of inherited neurodegenerative diseases, primarily characterized by pathological changes in the cerebellum, spinal cord, and brainstem degeneration. Autosomal dominant spinocerebellar ataxia type 48 (SCA48) is a newly identified subtype of SCA, marked by early-onset ataxia and cognitive impairment, and is associated with mutations in the STIP1 homology and U-box-containing protein 1 (STUB1) gene. The STUB1 gene encodes the protein CHIP (C-terminus of HSC70-interacting protein) which functions as E3 ubiquitin ligase and is crucial to the development of neural systems. RESULTS Here, we reported a Chinese SCA48 family exhibited typical features and defined a novel missense mutation STUB1 c.755A>C (CHIP p. Y252S) through whole-exome sequencing. The variant was interpreted as a variant of uncertain significance, so we conducted a series of experiments using minigene plasmids to evaluate the pathogenicity of the variant. We found that the variant STUB1 c.755A>C caused a significant reduction of CHIP level and the loss function of ubiquitin ligase activity as the pathogenic STUB1 mutations reported before. Besides, we also found that the CHIP p. Y252S could cause tau aggregation, which is considered to contribute to the progression of neurodegenerative disorders. CONCLUSIONS We diagnose the SCA48 pedigree in China and highlight the role of decreased ubiquitination and increased tau aggregation in the pathogenesis of the novel STUB1 c.755C>A mutation.
Collapse
Affiliation(s)
- Jiaqi Li
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Wenyi Xie
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Jian-Min Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Chun-Zuan Xu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Ya-Li Huang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Sheng Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Chang-Yun Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Ying-Qian Lu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China.
| | - Zhang-Yu Zou
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
2
|
Zochowski Y, Kumar KR, Katz M, Darveniza P, Tchan M, Smyth R, Tomlinson S, Wu KHC, Tisch S. Case Series of Cerebellar Ataxia with Tremor Due to Heterozygous STUB1 Variants (SCA48) without TBP Expansions: Further Evidence for SCA48 as a Monogenic Disease. CEREBELLUM (LONDON, ENGLAND) 2024; 24:13. [PMID: 39680235 PMCID: PMC11649839 DOI: 10.1007/s12311-024-01762-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/01/2024] [Indexed: 12/17/2024]
Abstract
Clinically-relevant variants in the STUB1 gene have been associated with an autosomal dominant spinocerebellar ataxia 48 (SCA48), a recently described inherited neurodegenerative condition that is characterised by cognitive and psychiatric changes. To describe the clinical phenotype and genetic findings of three new Australian probands with STUB1 to expand the current understanding of the spectrum of clinical presentation and natural history of SCA48. Clinical and genetic review of patients diagnosed with SCA48 ataxia drawn from our centres. The third case was derived from a collaborating centre (Royal Brisbane Hospital). We identified three unrelated SCA48 patients with heterozygous pathogenic STUB1 variants. All presented with slowly progressive cerebellar ataxia with tremor and additional findings of dysarthria, parkinsonism, hypertonia, cognitive and psychiatric symptoms. Age of onset varied from 34 to 65 years of age. Brain MRI showed significant diffuse cerebellar atrophy, affecting the vermis and cerebellar hemispheres. We identified two novel pathogenic variants of STUB1 gene, and one previously reported pathogenic variant. Genetic testing for intermediate expansions of TBP (SCA17) identified TBP repeats within the normal range of 25-40 in all 3 probands. Our case series expands the clinical spectrum of SCA48. We highlight the importance of tremor as part of the clinical phenotype including upper limb rest tremor and Parkinsonian signs. Our cases lacked pathological TBP expansions and provide additional evidence that STUB1 (SCA48) can manifest as a monogenic disease.
Collapse
Affiliation(s)
- Yan Zochowski
- School of Medicine, University of Notre Dame, Sydney, NSW, Australia
| | - Kishore R Kumar
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Medicine & Health, St Vincents Healthcare Clinical Campus, UNSW Sydney, Sydney, NSW, Australia
- St Vincent´s Clinical Genomics, St Vincents Hospital, Sydney, NSW, Australia
- Molecular Medicine in Neurology, Concord Repatriation General Hospital and the University of Sydney, Sydney, NSW, Australia
- Translational Neurogenomics Group, Genomic and Inherited Disease Program, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
| | - Matthew Katz
- Department of Neurology, Royal Brisbane Hospital, Brisbane, QLD, Australia
| | - Paul Darveniza
- School of Medicine, University of Notre Dame, Sydney, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Medicine & Health, St Vincents Healthcare Clinical Campus, UNSW Sydney, Sydney, NSW, Australia
- Department of Neurology, St Vincent's Health Network Sydney, 390 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia
| | - Michel Tchan
- Department of Genetic Medicine, Westmead Hospital, Sydney, NSW, Australia
- Discipline of Genetic Medicine, University of Sydney, Sydney, NSW, Australia
| | - Renee Smyth
- St Vincent´s Clinical Genomics, St Vincents Hospital, Sydney, NSW, Australia
| | - Susan Tomlinson
- School of Medicine, University of Notre Dame, Sydney, NSW, Australia
- St Vincent´s Clinical Genomics, St Vincents Hospital, Sydney, NSW, Australia
- Department of Neurology, St Vincent's Health Network Sydney, 390 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia
- Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
| | - Kathy H C Wu
- School of Medicine, University of Notre Dame, Sydney, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Medicine & Health, St Vincents Healthcare Clinical Campus, UNSW Sydney, Sydney, NSW, Australia
- St Vincent´s Clinical Genomics, St Vincents Hospital, Sydney, NSW, Australia
- Discipline of Genetic Medicine, University of Sydney, Sydney, NSW, Australia
| | - Stephen Tisch
- School of Medicine, University of Notre Dame, Sydney, NSW, Australia.
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Medicine & Health, St Vincents Healthcare Clinical Campus, UNSW Sydney, Sydney, NSW, Australia.
- St Vincent´s Clinical Genomics, St Vincents Hospital, Sydney, NSW, Australia.
- Department of Neurology, St Vincent's Health Network Sydney, 390 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia.
| |
Collapse
|
3
|
van Prooije TH, Pennings M, Dorresteijn L, Gardeitchik T, Odekerken VJJ, Oosterloo M, Pedersen A, Verschuuren-Bemelmans CC, Vrancken A, Kamsteeg EJ, van de Warrenburg BPC. A New Case Series Suggests That SCA48 (ATX/STUB1) Is Primarily a Monogenic Disorder. Mov Disord 2024; 39:1636-1640. [PMID: 38973070 DOI: 10.1002/mds.29912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/27/2024] [Accepted: 06/17/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Monoallelic, pathogenic STUB1 variants cause autosomal dominant cerebellar ataxia (ATX-STUB1/SCA48). Recently, a genetic interaction between STUB1 variants and intermediate or high-normal CAG/CAA repeats in TBP was suggested, indicating digenic inheritance or a disease-modifying role for TBP expansions. OBJECTIVE To determine the presence and impact of intermediate or high-normal TBP expansions in ataxic patients with heterozygous STUB1 variants. METHODS We describe 21 patients with ataxia carrying a heterozygous STUB1 variant and determined TBP repeat length. RESULTS A total of 15 of 21 patients (71%) carried a normal TBP <40 allele, 4 (19%) carried an intermediate TBP 41-42 allele, and two carried a high-normal TBP 40 allele (9.5%). Five of six carriers (83%) of both STUB1 variants and TBP 40-42 alleles showed marked cognitive impairment. CONCLUSIONS SCA48 is predominantly a monogenic disorder, because most patients carried an isolated, heterozygous STUB1 variant and presented with the typical combined phenotype of ataxia and cognitive dysfunction. Still, co-occurrence of TBP 41-42 or high-normal TBP40 alleles was relatively frequent and associated with marked cognitive defects (28.5%), suggesting a modifying effect on clinical expression in some cases.
Collapse
Affiliation(s)
- Teije H van Prooije
- Department of Neurology, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Maartje Pennings
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Thatjana Gardeitchik
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Mayke Oosterloo
- Department of Neurology, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Annie Pedersen
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Alexander Vrancken
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bart P C van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
4
|
Scaravilli A, Tranfa M, Pontillo G, Brais B, De Michele G, La Piana R, Saccà F, Santorelli FM, Synofzik M, Brunetti A, Cocozza S. A Review of Brain and Pituitary Gland MRI Findings in Patients with Ataxia and Hypogonadism. CEREBELLUM (LONDON, ENGLAND) 2024; 23:757-774. [PMID: 37155088 DOI: 10.1007/s12311-023-01562-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/26/2023] [Indexed: 05/10/2023]
Abstract
The association of cerebellar ataxia and hypogonadism occurs in a heterogeneous group of disorders, caused by different genetic mutations often associated with a recessive inheritance. In these patients, magnetic resonance imaging (MRI) plays a pivotal role in the diagnostic workflow, with a variable involvement of the cerebellar cortex, alone or in combination with other brain structures. Neuroimaging involvement of the pituitary gland is also variable. Here, we provide an overview of the main clinical and conventional brain and pituitary gland MRI imaging findings of the most common genetic mutations associated with the clinical phenotype of ataxia and hypogonadism, with the aim of helping neuroradiologists in the identification of these disorders.
Collapse
Affiliation(s)
- Alessandra Scaravilli
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Mario Tranfa
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Giuseppe Pontillo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
- Department of Electrical Engineering and Information Technology (DIETI), University of Naples "Federico II", Naples, Italy
| | - Bernard Brais
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, Montreal, Canada
| | - Giovanna De Michele
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | - Roberta La Piana
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, Montreal, Canada
| | - Francesco Saccà
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | | | - Matthis Synofzik
- German Center for Neurodegenerative Diseases (DZNE), Tubingen, Germany
- Division Translational Genomics of Neurodegenerative Diseases, Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Strasse 27, 72076, Tubingen, Germany
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
5
|
Salari M, Etemadifar M, Rashedi R, Mardani S. A Review of Ocular Movement Abnormalities in Hereditary Cerebellar Ataxias. CEREBELLUM (LONDON, ENGLAND) 2024; 23:702-721. [PMID: 37000369 DOI: 10.1007/s12311-023-01554-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/21/2023] [Indexed: 04/01/2023]
Abstract
Cerebellar ataxias are a wide heterogeneous group of disorders that may present with fine motor deficits as well as gait and balance disturbances that have a significant influence on everyday activities. To review the ocular movements in cerebellar ataxias in order to improve the clinical knowledge of cerebellar ataxias and related subtypes. English papers published from January 1990 to May 2022 were selected by searching PubMed services. The main search keywords were ocular motor, oculomotor, eye movement, eye motility, and ocular motility, along with each ataxia subtype. The eligible papers were analyzed for clinical presentation, involved mutations, the underlying pathology, and ocular movement alterations. Forty-three subtypes of spinocerebellar ataxias and a number of autosomal dominant and autosomal recessive ataxias were discussed in terms of pathology, clinical manifestations, involved mutations, and with a focus on the ocular abnormalities. A flowchart has been made using ocular movement manifestations to differentiate different ataxia subtypes. And underlying pathology of each subtype is reviewed in form of illustrated models to reach a better understanding of each disorder.
Collapse
Affiliation(s)
- Mehri Salari
- Neurology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Etemadifar
- Department of Functional Neurosurgery, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ronak Rashedi
- Neurology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sayna Mardani
- Neurology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Nanetti L, Magri S, Fichera M, Castaldo A, Nigri A, Pinardi C, Mongelli A, Sarro L, Pareyson D, Grisoli M, Gellera C, Di Bella D, Mariotti C, Taroni F. Complex Ataxia-Dementia Phenotype in Patients with Digenic TBP/STUB1 Spinocerebellar Ataxia. Mov Disord 2023; 38:665-675. [PMID: 36799493 DOI: 10.1002/mds.29352] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/12/2023] [Accepted: 01/27/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Spinocerebellar ataxias (SCAs) are autosomal dominant disorders with extensive clinical and genetic heterogeneity. We recently identified a form of SCA transmitted with a digenic pattern of inheritance caused by the concomitant presence of an intermediate-length expansion in TATA-box binding protein gene (TBP40-46 ) and a heterozygous pathogenic variant in the Stip1-homologous and U-Box containing protein 1 gene (STUB1). This SCATBP/STUB1 represents the first example of a cerebellar disorder in which digenic inheritance has been identified. OBJECTIVES We studied a large cohort of patients with SCATBP/STUB1 with the aim of describing specific clinical and neuroimaging features of this distinctive genotype. METHODS In this observational study, we recruited 65 affected and unaffected family members from 21 SCATBP/STUB1 families and from eight families with monogenic SCA17. Their characteristics and phenotypes were compared with those of 33 age-matched controls. RESULTS SCATBP/STUB1 patients had multi-domain dementia with a more severe impairment in respect to patient carrying only fully expanded SCA17 alleles. Cerebellar volume and thickness of cerebellar cortex were reduced in SCATBP/STUB1 compared with SCA17 patients (P = 0.03; P = 0.008). Basal ganglia volumes were reduced in both patient groups, as compared with controls, whereas brainstem volumes were significantly reduced in SCATBP/STUB1 , but not in SCA17 patients. CONCLUSIONS The identification of the complex SCATBP/STUB1 phenotype may impact on diagnosis and genetic counseling in the families with both hereditary and sporadic ataxia. The independent segregation of TBP and STUB1 alleles needs to be considered for recurrence risk and predictive genetic tests. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Lorenzo Nanetti
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta Milan, Milan, Italy
| | - Stefania Magri
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta Milan, Milan, Italy
| | - Mario Fichera
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta Milan, Milan, Italy
| | - Anna Castaldo
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta Milan, Milan, Italy
| | - Anna Nigri
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta Milan, Milan, Italy
| | - Chiara Pinardi
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta Milan, Milan, Italy.,Bassini Hospital, Cinisello Balsamo, Milan, Italy
| | - Alessia Mongelli
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta Milan, Milan, Italy
| | - Lidia Sarro
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta Milan, Milan, Italy.,Neurology Unit, Martini Hospital, Turin, Italy
| | - Davide Pareyson
- Rare Neurodegenerative and Neurometabolic Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta Milan, Milan, Italy
| | - Marina Grisoli
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta Milan, Milan, Italy
| | - Cinzia Gellera
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta Milan, Milan, Italy
| | - Daniela Di Bella
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta Milan, Milan, Italy
| | - Caterina Mariotti
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta Milan, Milan, Italy
| | - Franco Taroni
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta Milan, Milan, Italy
| |
Collapse
|
7
|
Umano A, Fang K, Qu Z, Scaglione JB, Altinok S, Treadway CJ, Wick ET, Paulakonis E, Karunanayake C, Chou S, Bardakjian TM, Gonzalez-Alegre P, Page RC, Schisler JC, Brown NG, Yan D, Scaglione KM. The molecular basis of spinocerebellar ataxia type 48 caused by a de novo mutation in the ubiquitin ligase CHIP. J Biol Chem 2022; 298:101899. [PMID: 35398354 PMCID: PMC9097460 DOI: 10.1016/j.jbc.2022.101899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 11/25/2022] Open
Abstract
The spinocerebellar ataxias (SCAs) are a class of incurable diseases characterized by degeneration of the cerebellum that results in movement disorder. Recently, a new heritable form of SCA, spinocerebellar ataxia type 48 (SCA48), was attributed to dominant mutations in STIP1 homology and U box-containing 1 (STUB1); however, little is known about how these mutations cause SCA48. STUB1 encodes for the protein C terminus of Hsc70 interacting protein (CHIP), an E3 ubiquitin ligase. CHIP is known to regulate proteostasis by recruiting chaperones via a N-terminal tetratricopeptide repeat domain and recruiting E2 ubiquitin-conjugating enzymes via a C-terminal U-box domain. These interactions allow CHIP to mediate the ubiquitination of chaperone-bound, misfolded proteins to promote their degradation via the proteasome. Here we have identified a novel, de novo mutation in STUB1 in a patient with SCA48 encoding for an A52G point mutation in the tetratricopeptide repeat domain of CHIP. Utilizing an array of biophysical, biochemical, and cellular assays, we demonstrate that the CHIPA52G point mutant retains E3-ligase activity but has decreased affinity for chaperones. We further show that this mutant decreases cellular fitness in response to certain cellular stressors and induces neurodegeneration in a transgenic Caenorhabditis elegans model of SCA48. Together, our data identify the A52G mutant as a cause of SCA48 and provide molecular insight into how mutations in STUB1 cause SCA48.
Collapse
Affiliation(s)
- A Umano
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - K Fang
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Z Qu
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - J B Scaglione
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - S Altinok
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - C J Treadway
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - E T Wick
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - E Paulakonis
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - C Karunanayake
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - S Chou
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - T M Bardakjian
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - P Gonzalez-Alegre
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - R C Page
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - J C Schisler
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - N G Brown
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - D Yan
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - K M Scaglione
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA; Department of Neurology, Duke University, Durham, North Carolina, USA; Duke Center for Neurodegeneration and Neurotherapeutics, Duke University, Durham, North Carolina, USA.
| |
Collapse
|
8
|
MRI CNS Atrophy Pattern and the Etiologies of Progressive Ataxias. Tomography 2022; 8:423-437. [PMID: 35202200 PMCID: PMC8877967 DOI: 10.3390/tomography8010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/16/2022] [Accepted: 02/02/2022] [Indexed: 11/18/2022] Open
Abstract
MRI shows the three archetypal patterns of CNS volume loss underlying progressive ataxias in vivo, namely spinal atrophy (SA), cortical cerebellar atrophy (CCA) and olivopontocerebellar atrophy (OPCA). The MRI-based CNS atrophy pattern was reviewed in 128 progressive ataxias. A CNS atrophy pattern was identified in 91 conditions: SA in Friedreich’s ataxia, CCA in 5 acquired and 72 (24 dominant, 47 recessive,1 X-linked) inherited ataxias, OPCA in Multi-System Atrophy and 12 (9 dominant, 2 recessive,1 X-linked) inherited ataxias. The MRI-based CNS atrophy pattern may be useful for genetic assessment, identification of shared cellular targets, repurposing therapies or the enlargement of drug indications in progressive ataxias.
Collapse
|
9
|
Choi S, Park SR, Jang JH, Ahn JH. Spinocerebellar Ataxia 48 Patient With a Novel De Novo Variant of STUB1. J Clin Neurol 2022; 18:714-716. [DOI: 10.3988/jcn.2022.18.6.714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Soyoun Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Soo Ryun Park
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Ja-Hyun Jang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jong Hyeon Ahn
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Korea
| |
Collapse
|
10
|
NGS in Hereditary Ataxia: When Rare Becomes Frequent. Int J Mol Sci 2021; 22:ijms22168490. [PMID: 34445196 PMCID: PMC8395181 DOI: 10.3390/ijms22168490] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/17/2022] Open
Abstract
The term hereditary ataxia (HA) refers to a heterogeneous group of neurological disorders with multiple genetic etiologies and a wide spectrum of ataxia-dominated phenotypes. Massive gene analysis in next-generation sequencing has entered the HA scenario, broadening our genetic and clinical knowledge of these conditions. In this study, we employed a targeted resequencing panel (TRP) in a large and highly heterogeneous cohort of 377 patients with a clinical diagnosis of HA, but no molecular diagnosis on routine genetic tests. We obtained a positive result (genetic diagnosis) in 33.2% of the patients, a rate significantly higher than those reported in similar studies employing TRP (average 19.4%), and in line with those performed using exome sequencing (ES, average 34.6%). Moreover, 15.6% of the patients had an uncertain molecular diagnosis. STUB1, PRKCG, and SPG7 were the most common causative genes. A comparison with published literature data showed that our panel would have identified 97% of the positive cases reported in previous TRP-based studies and 92% of those diagnosed by ES. Proper use of multigene panels, when combined with detailed phenotypic data, seems to be even more efficient than ES in clinical practice.
Collapse
|
11
|
De Michele G, Galatolo D, Galosi S, Mignarri A, Silvestri G, Casali C, Leuzzi V, Ricca I, Barghigiani M, Tessa A, Cioffi E, Caputi C, Riso V, Dotti MT, Saccà F, De Michele G, Cocozza S, Filla A, Santorelli FM. Episodic ataxia and severe infantile phenotype in spinocerebellar ataxia type 14: expansion of the phenotype and novel mutations. J Neurol 2021; 269:1476-1484. [PMID: 34292398 PMCID: PMC8857164 DOI: 10.1007/s00415-021-10712-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 12/30/2022]
Abstract
Introduction Spinocerebellar ataxia type 14 (SCA14) is a dominantly inherited neurological disorder characterized by slowly progressive cerebellar ataxia. SCA14 is caused by mutations in PRKCG, a gene encoding protein kinase C gamma (PKCγ), a master regulator of Purkinje cells development. Methods We performed next-generation sequencing targeted resequencing panel encompassing 273 ataxia genes in 358 patients with genetically undiagnosed ataxia. Results We identified fourteen patients in ten families harboring nine pathogenic heterozygous variants in PRKCG, seven of which were novel. We encountered four patients with not previously described phenotypes: one with episodic ataxia, one with a spastic paraparesis dominating her clinical manifestations, and two children with an unusually severe phenotype. Conclusions Our study broadens the genetic and clinical spectrum of SCA14. Supplementary Information The online version contains supplementary material available at 10.1007/s00415-021-10712-5.
Collapse
Affiliation(s)
- Giovanna De Michele
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Daniele Galatolo
- Istituto Di Ricovero E Cura a Carattere Scientifico (IRCCS), Fondazione Stella Maris, Pisa, Italy
| | - Serena Galosi
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Andrea Mignarri
- Department of Medicine, Surgery and Neuroscience, Neurology and Neurometabolic Unit, University of Siena, Siena, Italy
| | - Gabriella Silvestri
- Department of Neurosciences, Faculty of Medicine and Surgery, Catholic University of Sacred Heart, Rome, Italy
- Neurology Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Carlo Casali
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Ivana Ricca
- Istituto Di Ricovero E Cura a Carattere Scientifico (IRCCS), Fondazione Stella Maris, Pisa, Italy
| | - Melissa Barghigiani
- Istituto Di Ricovero E Cura a Carattere Scientifico (IRCCS), Fondazione Stella Maris, Pisa, Italy
| | - Alessandra Tessa
- Istituto Di Ricovero E Cura a Carattere Scientifico (IRCCS), Fondazione Stella Maris, Pisa, Italy
| | - Ettore Cioffi
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Caterina Caputi
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Vittorio Riso
- Department of Neurosciences, Faculty of Medicine and Surgery, Catholic University of Sacred Heart, Rome, Italy
- Neurology Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Maria Teresa Dotti
- Department of Medicine, Surgery and Neuroscience, Neurology and Neurometabolic Unit, University of Siena, Siena, Italy
| | - Francesco Saccà
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Giuseppe De Michele
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Alessandro Filla
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Via Sergio Pansini 5, 80131, Naples, Italy.
| | - Filippo M Santorelli
- Istituto Di Ricovero E Cura a Carattere Scientifico (IRCCS), Fondazione Stella Maris, Pisa, Italy
| |
Collapse
|
12
|
Mengel D, Traschütz A, Reich S, Leyva-Gutiérrez A, Bender F, Hauser S, Haack TB, Synofzik M. A de novo STUB1 variant associated with an early adult-onset multisystemic ataxia phenotype. J Neurol 2021; 268:3845-3851. [PMID: 33811518 PMCID: PMC8463406 DOI: 10.1007/s00415-021-10524-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/03/2021] [Accepted: 03/15/2021] [Indexed: 11/28/2022]
Abstract
Background Biallelic STUB1 variants are a well-established cause of autosomal-recessive early-onset multisystemic ataxia (SCAR16). Evidence for STUB1 variants causing autosomal-dominant ataxia (SCA48) so far largely relies on segregation data in larger families. Presenting the first de novo occurrence of a heterozygous STUB1 variant, we here present additional qualitative evidence for STUB1-disease as an autosomal-dominant disorder. Methods Whole exome sequencing on an index patient with sporadic early-onset ataxia, followed by Sanger sequencing in all family members, was used to identify causative variants as well as to rule out alternative genetic hits and intronic STUB1 variants. STUB1 mRNA and protein levels in PBMCs in all family members were analysed using qRT-PCR and Western Blot. Results A previously unreported start-lost loss-of-function variant c.3G>A in the start codon of STUB1 was identified in the index case, occurring de novo and without evidence for a second (potentially missed) variant (e.g., intronic or copy number) in STUB1. The patient showed an early adult-onset multisystemic ataxia complicated by spastic gait disorder, distal myoclonus and cognitive dysfunction, thus closely mirroring the systems affected in autosomal-recessive STUB1-associated disease. In line with the predicted start-lost effect of the variant, functional investigations demonstrated markedly reduced STUB1 protein expression in PBMCs, whereas mRNA levels were intact. Conclusion De novo occurrence of the loss-of-function STUB1 variant in our case with multisystemic ataxia provides a qualitatively additional line of evidence for STUB1-disease as an autosomal-dominant disorder, in which the same neurological systems are affected as in its autosomal-recessive counterpart. Moreover, this finding adds support for loss-of-function as a mechanism underlying autosomal-dominant STUB1-disease, thus mirroring its autosomal-recessive counterpart also in terms of the underlying mutational mechanism.
Collapse
Affiliation(s)
- David Mengel
- Department of Neurodegenerative Diseases, Center for Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Centre for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Andreas Traschütz
- Department of Neurodegenerative Diseases, Center for Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Centre for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Selina Reich
- Department of Neurodegenerative Diseases, Center for Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Centre for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Alejandra Leyva-Gutiérrez
- Department of Neurodegenerative Diseases, Center for Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Centre for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Friedemann Bender
- Department of Neurodegenerative Diseases, Center for Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Centre for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Stefan Hauser
- Department of Neurodegenerative Diseases, Center for Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Centre for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Center for Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany. .,German Centre for Neurodegenerative Diseases (DZNE), Tübingen, Germany.
| |
Collapse
|
13
|
Schmitz-Hübsch T, Lux S, Bauer P, Brandt AU, Schlapakow E, Greschus S, Scheel M, Gärtner H, Kirlangic ME, Gras V, Timmann D, Synofzik M, Giorgetti A, Carloni P, Shah JN, Schöls L, Kopp U, Bußenius L, Oberwahrenbrock T, Zimmermann H, Pfueller C, Kadas EM, Rönnefarth M, Grosch AS, Endres M, Amunts K, Paul F, Doss S, Minnerop M. Spinocerebellar ataxia type 14: refining clinicogenetic diagnosis in a rare adult-onset disorder. Ann Clin Transl Neurol 2021; 8:774-789. [PMID: 33739604 PMCID: PMC8045942 DOI: 10.1002/acn3.51315] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/29/2020] [Accepted: 01/13/2021] [Indexed: 12/29/2022] Open
Abstract
Objectives Genetic variant classification is a challenge in rare adult‐onset disorders as in SCA‐PRKCG (prior spinocerebellar ataxia type 14) with mostly private conventional mutations and nonspecific phenotype. We here propose a refined approach for clinicogenetic diagnosis by including protein modeling and provide for confirmed SCA‐PRKCG a comprehensive phenotype description from a German multi‐center cohort, including standardized 3D MR imaging. Methods This cross‐sectional study prospectively obtained neurological, neuropsychological, and brain imaging data in 33 PRKCG variant carriers. Protein modeling was added as a classification criterion in variants of uncertain significance (VUS). Results Our sample included 25 cases confirmed as SCA‐PRKCG (14 variants, thereof seven novel variants) and eight carriers of variants assigned as VUS (four variants) or benign/likely benign (two variants). Phenotype in SCA‐PRKCG included slowly progressive ataxia (onset at 4–50 years), preceded in some by early‐onset nonprogressive symptoms. Ataxia was often combined with action myoclonus, dystonia, or mild cognitive‐affective disturbance. Inspection of brain MRI revealed nonprogressive cerebellar atrophy. As a novel finding, a previously not described T2 hyperintense dentate nucleus was seen in all SCA‐PRKCG cases but in none of the controls. Interpretation In this largest cohort to date, SCA‐PRKCG was characterized as a slowly progressive cerebellar syndrome with some clinical and imaging features suggestive of a developmental disorder. The observed non‐ataxia movement disorders and cognitive‐affective disturbance may well be attributed to cerebellar pathology. Protein modeling emerged as a valuable diagnostic tool for variant classification and the newly described T2 hyperintense dentate sign could serve as a supportive diagnostic marker of SCA‐PRKCG.
Collapse
Affiliation(s)
- Tanja Schmitz-Hübsch
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health Berlin, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Silke Lux
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Peter Bauer
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,CENTOGENE AG, Rostock, Germany
| | - Alexander U Brandt
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health Berlin, Berlin, Germany.,Department of Neurology, University of California, Irvine, CA, USA
| | - Elena Schlapakow
- Department of Neurology, University Hospital Bonn, Bonn, Germany.,Center for Rare Diseases, University of Bonn, Bonn, Germany
| | - Susanne Greschus
- Department of Radiology, University Hospital Bonn, Bonn, Germany
| | - Michael Scheel
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health Berlin, Berlin, Germany.,Department of Neuroradiology, Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Hanna Gärtner
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, Juelich, Germany
| | - Mehmet E Kirlangic
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, Juelich, Germany.,Institute for Biomedical Engineering and Computer Science, Technische Universität Ilmenau, Ilmenau, Germany
| | - Vincent Gras
- Institute of Neuroscience and Medicine (INM-4), Research Centre Juelich, Juelich, Germany
| | - Dagmar Timmann
- Department of Neurology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Center for Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Alejandro Giorgetti
- Computational Biophysics, German Research School for Simulation Sciences, and Computational Biomedicine, Institute for Advanced Simulation (IAS-5) and Institute of Neuroscience and Medicine (INM-9), Research Centre Juelich, Juelich, Germany.,Department of Biotechnology, University of Verona, Verona, 37134, Italy
| | - Paolo Carloni
- Computational Biophysics, German Research School for Simulation Sciences, and Computational Biomedicine, Institute for Advanced Simulation (IAS-5) and Institute of Neuroscience and Medicine (INM-9), Research Centre Juelich, Juelich, Germany
| | - Jon N Shah
- Institute of Neuroscience and Medicine (INM-4), Research Centre Juelich, Juelich, Germany.,Department of Neurology, Faculty of Medicine, JARA, RWTH Aachen University, Aachen, Germany
| | - Ludger Schöls
- Department of Neurodegenerative Diseases, Center for Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Ute Kopp
- Klinik und Hochschulambulanz für Neurologie, Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Lisa Bußenius
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, Juelich, Germany.,Institute for Biochemistry and Molecular Cell Biology, Center for Experimental Medicine, University Clinic Hamburg Eppendorf, Hamburg, Germany
| | - Timm Oberwahrenbrock
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health Berlin, Berlin, Germany
| | - Hanna Zimmermann
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health Berlin, Berlin, Germany
| | - Caspar Pfueller
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health Berlin, Berlin, Germany
| | - Ella-Maria Kadas
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health Berlin, Berlin, Germany
| | - Maria Rönnefarth
- Klinik und Hochschulambulanz für Neurologie, Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Anne-Sophie Grosch
- Klinik und Hochschulambulanz für Neurologie, Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Matthias Endres
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health Berlin, Berlin, Germany.,Klinik und Hochschulambulanz für Neurologie, Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.,German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, Juelich, Germany.,C. and O. Vogt Institute for Brain Research, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health Berlin, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Klinik und Hochschulambulanz für Neurologie, Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Sarah Doss
- Klinik und Hochschulambulanz für Neurologie, Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Movement Disorders Section, Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Martina Minnerop
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, Juelich, Germany.,Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.,Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
14
|
Olszewska DA, Kinsella JA. Reply to STUB1-Related Ataxias: A Challenging Diagnosis. Mov Disord Clin Pract 2020; 7:735-736. [PMID: 32775534 PMCID: PMC7396829 DOI: 10.1002/mdc3.12993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 05/23/2020] [Indexed: 12/22/2022] Open
Affiliation(s)
- Diana A. Olszewska
- Department of NeurologyDublin Neurological Institute at the Mater Misericordiae University HospitalDublinIreland
- Department of NeurologySt. Vincent's University HospitalDublinIreland
| | | |
Collapse
|
15
|
Cocozza S, Santorelli FM, De Michele G. STUB1-Related Ataxias: A Challenging Diagnosis. Mov Disord Clin Pract 2020; 7:733-734. [PMID: 32775533 DOI: 10.1002/mdc3.12992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/01/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
- Sirio Cocozza
- Department of Advanced Biomedical Sciences Federico II University Naples Italy
| | - Filippo M Santorelli
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Stella Maris Pisa Italy
| | - Giuseppe De Michele
- Department of Neurosciences and Reproductive and Odontostomatological Sciences Federico II University Naples Italy
| |
Collapse
|