1
|
Petrou E, Chatzipapas K, Papadimitroulas P, Andrade-Miranda G, Katsakiori PF, Papathanasiou ND, Visvikis D, Kagadis GC. Investigation of Machine and Deep Learning Techniques to Detect HPV Status. J Pers Med 2024; 14:737. [PMID: 39063991 PMCID: PMC11278505 DOI: 10.3390/jpm14070737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND This study investigated alternative, non-invasive methods for human papillomavirus (HPV) detection in head and neck cancers (HNCs). We compared two approaches: analyzing computed tomography (CT) scans with a Deep Learning (DL) model and using radiomic features extracted from CT images with machine learning (ML) models. METHODS Fifty patients with histologically confirmed HNC were included. We first trained a modified ResNet-18 DL model on CT data to predict HPV status. Next, radiomic features were extracted from manually segmented regions of interest near the oropharynx and used to train four ML models (K-Nearest Neighbors, logistic regression, decision tree, random forest) for the same purpose. RESULTS The CT-based model achieved the highest accuracy (90%) in classifying HPV status. Among the ML models, K-Nearest Neighbors performed best (80% accuracy). Weighted Ensemble methods combining the CT-based model with each ML model resulted in moderate accuracy improvements (70-90%). CONCLUSIONS Our findings suggest that CT scans analyzed by DL models hold promise for non-invasive HPV detection in HNC. Radiomic features, while less accurate in this study, offer a complementary approach. Future research should explore larger datasets and investigate the potential of combining DL and radiomic techniques.
Collapse
Affiliation(s)
- Efstathia Petrou
- 3dmi Research Group, Department of Medical Physics, School of Medicine, University of Patras, 26504 Rion, Greece (G.C.K.)
| | - Konstantinos Chatzipapas
- Laboratoire de Traitement de l’Information Médicale (LaTIM), UMR 1101, INSERM, University of Brest, 29200 Brest, France
| | - Panagiotis Papadimitroulas
- 3dmi Research Group, Department of Medical Physics, School of Medicine, University of Patras, 26504 Rion, Greece (G.C.K.)
| | - Gustavo Andrade-Miranda
- Laboratoire de Traitement de l’Information Médicale (LaTIM), UMR 1101, INSERM, University of Brest, 29200 Brest, France
| | - Paraskevi F. Katsakiori
- 3dmi Research Group, Department of Medical Physics, School of Medicine, University of Patras, 26504 Rion, Greece (G.C.K.)
| | - Nikolaos D. Papathanasiou
- 3dmi Research Group, Department of Medical Physics, School of Medicine, University of Patras, 26504 Rion, Greece (G.C.K.)
| | - Dimitris Visvikis
- Laboratoire de Traitement de l’Information Médicale (LaTIM), UMR 1101, INSERM, University of Brest, 29200 Brest, France
| | - George C. Kagadis
- 3dmi Research Group, Department of Medical Physics, School of Medicine, University of Patras, 26504 Rion, Greece (G.C.K.)
| |
Collapse
|
2
|
Fanizzi A, Comes MC, Bove S, Cavalera E, de Franco P, Di Rito A, Errico A, Lioce M, Pati F, Portaluri M, Saponaro C, Scognamillo G, Troiano I, Troiano M, Zito FA, Massafra R. Explainable prediction model for the human papillomavirus status in patients with oropharyngeal squamous cell carcinoma using CNN on CT images. Sci Rep 2024; 14:14276. [PMID: 38902523 PMCID: PMC11189928 DOI: 10.1038/s41598-024-65240-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 06/18/2024] [Indexed: 06/22/2024] Open
Abstract
Several studies have emphasised how positive and negative human papillomavirus (HPV+ and HPV-, respectively) oropharyngeal squamous cell carcinoma (OPSCC) has distinct molecular profiles, tumor characteristics, and disease outcomes. Different radiomics-based prediction models have been proposed, by also using innovative techniques such as Convolutional Neural Networks (CNNs). Although some of these models reached encouraging predictive performances, there evidence explaining the role of radiomic features in achieving a specific outcome is scarce. In this paper, we propose some preliminary results related to an explainable CNN-based model to predict HPV status in OPSCC patients. We extracted the Gross Tumor Volume (GTV) of pre-treatment CT images related to 499 patients (356 HPV+ and 143 HPV-) included into the OPC-Radiomics public dataset to train an end-to-end Inception-V3 CNN architecture. We also collected a multicentric dataset consisting of 92 patients (43 HPV+ , 49 HPV-), which was employed as an independent test set. Finally, we applied Gradient-weighted Class Activation Mapping (Grad-CAM) technique to highlight the most informative areas with respect to the predicted outcome. The proposed model reached an AUC value of 73.50% on the independent test. As a result of the Grad-CAM algorithm, the most informative areas related to the correctly classified HPV+ patients were located into the intratumoral area. Conversely, the most important areas referred to the tumor edges. Finally, since the proposed model provided additional information with respect to the accuracy of the classification given by the visualization of the areas of greatest interest for predictive purposes for each case examined, it could contribute to increase confidence in using computer-based predictive models in the actual clinical practice.
Collapse
Affiliation(s)
- Annarita Fanizzi
- Laboratorio Biostatistica e Bioinformatica, I.R.C.C.S. Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - Maria Colomba Comes
- Laboratorio Biostatistica e Bioinformatica, I.R.C.C.S. Istituto Tumori 'Giovanni Paolo II', Bari, Italy.
| | - Samantha Bove
- Laboratorio Biostatistica e Bioinformatica, I.R.C.C.S. Istituto Tumori 'Giovanni Paolo II', Bari, Italy.
| | - Elisa Cavalera
- Radiation Oncology Unit, Dipartimento di Oncoematologia, Ospedale Vito Fazzi, Lecce, Italy
| | - Paola de Franco
- Radiation Oncology Unit, Dipartimento di Oncoematologia, Ospedale Vito Fazzi, Lecce, Italy
| | | | - Angelo Errico
- Ospedale Monsignor Raffaele Dimiccoli, Barletta, Italy
| | - Marco Lioce
- Unità Operativa Complessa di Radioterpia, I.R.C.C.S. Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | | | | | - Concetta Saponaro
- Unità Operativa Complessi di Anatomia Patologia, I.R.C.C.S. Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - Giovanni Scognamillo
- Unità Operativa Complessa di Radioterpia, I.R.C.C.S. Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - Ippolito Troiano
- Radiation Oncology Department, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy
| | - Michele Troiano
- Radiation Oncology Department, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy
| | - Francesco Alfredo Zito
- Unità Operativa Complessi di Anatomia Patologia, I.R.C.C.S. Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - Raffaella Massafra
- Laboratorio Biostatistica e Bioinformatica, I.R.C.C.S. Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| |
Collapse
|
3
|
Ammirabile A, Mastroleo F, Marvaso G, Alterio D, Franzese C, Scorsetti M, Franco P, Giannitto C, Jereczek-Fossa BA. Mapping the research landscape of HPV-positive oropharyngeal cancer: a bibliometric analysis. Crit Rev Oncol Hematol 2024; 196:104318. [PMID: 38431241 DOI: 10.1016/j.critrevonc.2024.104318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024] Open
Abstract
OBJECTIVE The aim of the study is to evaluate the scientific interest, the collaboration patterns and the emerging trends regarding HPV+ OPSCC diagnosis and treatment. MATERIALS AND METHODS A cross-sectional bibliometric analysis of articles reporting on HPV+ OPSCC within Scopus database was performed and all documents published up to December 31th, 2022 were eligible for analysis. Outcomes included the exploration of key characteristics (number of manuscripts published per year, growth rate, top productive countries, most highly cited papers, and the most well-represented journals), collaboration parameters (international collaboration ratio and networks, co-occurrence networks), keywords analysis (trend topics, factorial analysis). RESULTS A total of 5200 documents were found, published from March, 1987 to December, 2022. The number of publications increased annually with an average growth rate of 19.94%, reaching a peak of 680 documents published in 2021. The 10 most cited documents (range 1105-4645) were published from 2000 to 2012. The keywords factorial analysis revealed two main clusters: one on epidemiology, diagnosis, prevention and association with other HPV tumors; the other one about the therapeutic options. According to the frequency of keywords, new items are emerging in the last three years regarding the application of Artifical Intelligence (machine learning and radiomics) and the diagnostic biomarkers (circulating tumor DNA). CONCLUSIONS This bibliometric analysis highlights the importance of research efforts in prevention, diagnostics, and treatment strategies for this disease. Given the urgency of optimizing treatment and improving clinical outcomes, further clinical trials are needed to bridge unaddressed gaps in the management of HPV+ OPSCC patients.
Collapse
Affiliation(s)
- Angela Ammirabile
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Milan, Pieve Emanuele 20090, Italy; Department of Diagnostic and Interventional Radiology, IRCCS Humanitas Research Hospital, Via Manzoni 56, Milan, Rozzano 20089, Italy
| | - Federico Mastroleo
- Department of Translational Medicine (DIMET), University of Eastern Piedmont and 'Maggiore della Carità' University Hospital, Novara, Italy; Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Giulia Marvaso
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
| | - Daniela Alterio
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Ciro Franzese
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Milan, Pieve Emanuele 20090, Italy; Radiotherapy and Radiosurgery Department, IRCSS Humanitas Research Hospital, Milan, Rozzano, Italy
| | - Marta Scorsetti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Milan, Pieve Emanuele 20090, Italy; Radiotherapy and Radiosurgery Department, IRCSS Humanitas Research Hospital, Milan, Rozzano, Italy
| | - Pierfrancesco Franco
- Department of Translational Medicine (DIMET), University of Eastern Piedmont and 'Maggiore della Carità' University Hospital, Novara, Italy
| | - Caterina Giannitto
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Milan, Pieve Emanuele 20090, Italy; Department of Diagnostic and Interventional Radiology, IRCCS Humanitas Research Hospital, Via Manzoni 56, Milan, Rozzano 20089, Italy
| | - Barbara Alicja Jereczek-Fossa
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
4
|
Ansari G, Mirza-Aghazadeh-Attari M, Mosier KM, Fakhry C, Yousem DM. Radiomics Features in Predicting Human Papillomavirus Status in Oropharyngeal Squamous Cell Carcinoma: A Systematic Review, Quality Appraisal, and Meta-Analysis. Diagnostics (Basel) 2024; 14:737. [PMID: 38611650 PMCID: PMC11011663 DOI: 10.3390/diagnostics14070737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
We sought to determine the diagnostic accuracy of radiomics features in predicting HPV status in oropharyngeal squamous cell carcinoma (SCC) compared to routine paraclinical measures used in clinical practice. Twenty-six articles were included in the systematic review, and thirteen were used for the meta-analysis. The overall sensitivity of the included studies was 0.78, the overall specificity was 0.76, and the overall area under the ROC curve was 0.84. The diagnostic odds ratio (DOR) equaled 12 (8, 17). Subgroup analysis showed no significant difference between radiomics features extracted from CT or MR images. Overall, the studies were of low quality in regard to radiomics quality score, although most had a low risk of bias based on the QUADAS-2 tool. Radiomics features showed good overall sensitivity and specificity in determining HPV status in OPSCC, though the low quality of the included studies poses problems for generalizability.
Collapse
Affiliation(s)
- Golnoosh Ansari
- Department of Radiology, Northwestern Hospital, Northwestern School of Medicine, Chicago, IL 60611, USA;
| | - Mohammad Mirza-Aghazadeh-Attari
- Division of Interventional Radiology, Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Kristine M. Mosier
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Carole Fakhry
- Department of Otolaryngology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA;
| | - David M. Yousem
- Division of Neuroradiology, Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA;
| |
Collapse
|
5
|
Wei C, Jiang T, Wang K, Gao X, Zhang H, Wang X. GEP-NETs radiomics in action: a systematical review of applications and quality assessment. Clin Transl Imaging 2024; 12:287-326. [DOI: 10.1007/s40336-024-00617-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/03/2024] [Indexed: 01/05/2025]
|
6
|
Woo C, Jo KH, Sohn B, Park K, Cho H, Kang WJ, Kim J, Lee SK. Development and Testing of a Machine Learning Model Using 18F-Fluorodeoxyglucose PET/CT-Derived Metabolic Parameters to Classify Human Papillomavirus Status in Oropharyngeal Squamous Carcinoma. Korean J Radiol 2023; 24:51-61. [PMID: 36606620 PMCID: PMC9830147 DOI: 10.3348/kjr.2022.0397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 09/28/2022] [Accepted: 10/31/2022] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE To develop and test a machine learning model for classifying human papillomavirus (HPV) status of patients with oropharyngeal squamous cell carcinoma (OPSCC) using 18F-fluorodeoxyglucose (18F-FDG) PET-derived parameters in derived parameters and an appropriate combination of machine learning methods in patients with OPSCC. MATERIALS AND METHODS This retrospective study enrolled 126 patients (118 male; mean age, 60 years) with newly diagnosed, pathologically confirmed OPSCC, that underwent 18F-FDG PET-computed tomography (CT) between January 2012 and February 2020. Patients were randomly assigned to training and internal validation sets in a 7:3 ratio. An external test set of 19 patients (16 male; mean age, 65.3 years) was recruited sequentially from two other tertiary hospitals. Model 1 used only PET parameters, Model 2 used only clinical features, and Model 3 used both PET and clinical parameters. Multiple feature transforms, feature selection, oversampling, and training models are all investigated. The external test set was used to test the three models that performed best in the internal validation set. The values for area under the receiver operating characteristic curve (AUC) were compared between models. RESULTS In the external test set, ExtraTrees-based Model 3, which uses two PET-derived parameters and three clinical features, with a combination of MinMaxScaler, mutual information selection, and adaptive synthetic sampling approach, showed the best performance (AUC = 0.78; 95% confidence interval, 0.46-1). Model 3 outperformed Model 1 using PET parameters alone (AUC = 0.48, p = 0.047) and Model 2 using clinical parameters alone (AUC = 0.52, p = 0.142) in predicting HPV status. CONCLUSION Using oversampling and mutual information selection, an ExtraTree-based HPV status classifier was developed by combining metabolic parameters derived from 18F-FDG PET/CT and clinical parameters in OPSCC, which exhibited higher performance than the models using either PET or clinical parameters alone.
Collapse
Affiliation(s)
- Changsoo Woo
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Kwan Hyeong Jo
- Department of Nuclear Medicine, Korea University Guro Hospital, Seoul, Korea.
| | - Beomseok Sohn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| | - Kisung Park
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.,Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Korea
| | - Hojin Cho
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Won Jun Kang
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jinna Kim
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Seung-Koo Lee
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
7
|
Zeng Q, Li H, Zhu Y, Feng Z, Shu X, Wu A, Luo L, Cao Y, Tu Y, Xiong J, Zhou F, Li Z. Development and validation of a predictive model combining clinical, radiomics, and deep transfer learning features for lymph node metastasis in early gastric cancer. Front Med (Lausanne) 2022; 9:986437. [PMID: 36262277 PMCID: PMC9573999 DOI: 10.3389/fmed.2022.986437] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/09/2022] [Indexed: 01/19/2023] Open
Abstract
Background This study aims to develop and validate a predictive model combining deep transfer learning, radiomics, and clinical features for lymph node metastasis (LNM) in early gastric cancer (EGC). Materials and methods This study retrospectively collected 555 patients with EGC, and randomly divided them into two cohorts with a ratio of 7:3 (training cohort, n = 388; internal validation cohort, n = 167). A total of 79 patients with EGC collected from the Second Affiliated Hospital of Soochow University were used as external validation cohort. Pre-trained deep learning networks were used to extract deep transfer learning (DTL) features, and radiomics features were extracted based on hand-crafted features. We employed the Spearman rank correlation test and least absolute shrinkage and selection operator regression for feature selection from the combined features of clinical, radiomics, and DTL features, and then, machine learning classification models including support vector machine, K-nearest neighbor, random decision forests (RF), and XGBoost were trained, and their performance by determining the area under the curve (AUC) were compared. Results We constructed eight pre-trained transfer learning networks and extracted DTL features, respectively. The results showed that 1,048 DTL features extracted based on the pre-trained Resnet152 network combined in the predictive model had the best performance in discriminating the LNM status of EGC, with an AUC of 0.901 (95% CI: 0.847-0.956) and 0.915 (95% CI: 0.850-0.981) in the internal validation and external validation cohorts, respectively. Conclusion We first utilized comprehensive multidimensional data based on deep transfer learning, radiomics, and clinical features with a good predictive ability for discriminating the LNM status in EGC, which could provide favorable information when choosing therapy options for individuals with EGC.
Collapse
Affiliation(s)
- Qingwen Zeng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
- Institute of Digestive Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hong Li
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yanyan Zhu
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Zongfeng Feng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
- Institute of Digestive Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xufeng Shu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Ahao Wu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Lianghua Luo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Yi Cao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Yi Tu
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jianbo Xiong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Fuqing Zhou
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Zhengrong Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
- Institute of Digestive Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
8
|
Staal FCR, Aalbersberg EA, van der Velden D, Wilthagen EA, Tesselaar MET, Beets-Tan RGH, Maas M. GEP-NET radiomics: a systematic review and radiomics quality score assessment. Eur Radiol 2022; 32:7278-7294. [PMID: 35882634 DOI: 10.1007/s00330-022-08996-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/25/2022] [Accepted: 06/26/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVE The number of radiomics studies in gastroenteropancreatic neuroendocrine tumours (GEP-NETs) is rapidly increasing. This systematic review aims to provide an overview of the available evidence of radiomics for clinical outcome measures in GEP-NETs, to understand which applications hold the most promise and which areas lack evidence. METHODS PubMed, Embase, and Wiley/Cochrane Library databases were searched and a forward and backward reference check of the identified studies was executed. Inclusion criteria were (1) patients with GEP-NETs and (2) radiomics analysis on CT, MRI or PET. Two reviewers independently agreed on eligibility and assessed methodological quality with the radiomics quality score (RQS) and extracted outcome data. RESULTS In total, 1364 unique studies were identified and 45 were included for analysis. Most studies focused on GEP-NET grade and differential diagnosis of GEP-NETs from other neoplasms, while only a minority analysed treatment response or long-term outcomes. Several studies were able to predict tumour grade or to differentiate GEP-NETs from other lesions with a good performance (AUCs 0.74-0.96 and AUCs 0.80-0.99, respectively). Only one study developed a model to predict recurrence in pancreas NETs (AUC 0.77). The included studies reached a mean RQS of 18%. CONCLUSION Although radiomics for GEP-NETs is still a relatively new area, some promising models have been developed. Future research should focus on developing robust models for clinically relevant aims such as prediction of response or long-term outcome in GEP-NET, since evidence for these aims is still scarce. KEY POINTS • The majority of radiomics studies in gastroenteropancreatic neuroendocrine tumours is of low quality. • Most evidence for radiomics is available for the identification of tumour grade or differentiation of gastroenteropancreatic neuroendocrine tumours from other neoplasms. • Radiomics for the prediction of response or long-term outcome in gastroenteropancreatic neuroendocrine tumours warrants further research.
Collapse
Affiliation(s)
- Femke C R Staal
- Department of Radiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.,GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands.,The Netherlands Cancer Institute/University Medical Center Utrecht Center for Neuroendocrine Tumors, ENETS Center of Excellence, Amsterdam/Utrecht, The Netherlands
| | - Else A Aalbersberg
- The Netherlands Cancer Institute/University Medical Center Utrecht Center for Neuroendocrine Tumors, ENETS Center of Excellence, Amsterdam/Utrecht, The Netherlands.,Department of Nuclear Medicine, The Netherlands Cancer Institute Amsterdam, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Daphne van der Velden
- Department of Radiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Erica A Wilthagen
- Scientific Information Service, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Margot E T Tesselaar
- The Netherlands Cancer Institute/University Medical Center Utrecht Center for Neuroendocrine Tumors, ENETS Center of Excellence, Amsterdam/Utrecht, The Netherlands.,Department of Medical Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Regina G H Beets-Tan
- Department of Radiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.,GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands.,Faculty of Health Sciences, University of Southern Denmark, J. B. Winsløws Vej 19, 3, 5000, Odense, Denmark
| | - Monique Maas
- Department of Radiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| |
Collapse
|