1
|
Lecocq M, Groussin M, Gouy M, Brochier-Armanet C. The Molecular Determinants of Thermoadaptation: Methanococcales as a Case Study. Mol Biol Evol 2021; 38:1761-1776. [PMID: 33450027 PMCID: PMC8097290 DOI: 10.1093/molbev/msaa312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Previous reports have shown that environmental temperature impacts proteome evolution in Bacteria and Archaea. However, it is unknown whether thermoadaptation mainly occurs via the sequential accumulation of substitutions, massive horizontal gene transfers, or both. Measuring the real contribution of amino acid substitution to thermoadaptation is challenging, because of confounding environmental and genetic factors (e.g., pH, salinity, genomic G + C content) that also affect proteome evolution. Here, using Methanococcales, a major archaeal lineage, as a study model, we show that optimal growth temperature is the major factor affecting variations in amino acid frequencies of proteomes. By combining phylogenomic and ancestral sequence reconstruction approaches, we disclose a sequential substitutional scheme in which lysine plays a central role by fine tuning the pool of arginine, serine, threonine, glutamine, and asparagine, whose frequencies are strongly correlated with optimal growth temperature. Finally, we show that colonization to new thermal niches is not associated with high amounts of horizontal gene transfers. Altogether, although the acquisition of a few key proteins through horizontal gene transfer may have favored thermoadaptation in Methanococcales, our findings support sequential amino acid substitutions as the main factor driving thermoadaptation.
Collapse
Affiliation(s)
- Michel Lecocq
- Laboratoire de Biométrie et Biologie Évolutive, Université de Lyon, Université Lyon 1, CNRS, UMR5558, Villeurbanne, France
| | - Mathieu Groussin
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Manolo Gouy
- Laboratoire de Biométrie et Biologie Évolutive, Université de Lyon, Université Lyon 1, CNRS, UMR5558, Villeurbanne, France
| | - Céline Brochier-Armanet
- Laboratoire de Biométrie et Biologie Évolutive, Université de Lyon, Université Lyon 1, CNRS, UMR5558, Villeurbanne, France
| |
Collapse
|
2
|
Microbial cyclophilins: specialized functions in virulence and beyond. World J Microbiol Biotechnol 2017; 33:164. [PMID: 28791545 DOI: 10.1007/s11274-017-2330-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/05/2017] [Indexed: 01/18/2023]
Abstract
Cyclophilins belong to the superfamily of peptidyl-prolyl cis/trans isomerases (PPIases, EC: 5.2.1.8), the enzymes that catalyze the cis/trans isomerization of peptidyl-prolyl peptide bonds in unfolded and partially folded polypeptide chains and native state proteins. Cyclophilins have been extensively studied, since they are involved in multiple cellular processes related to human pathologies, such as neurodegenerative disorders, infectious diseases, and cancer. However, the presence of cyclophilins in all domains of life indicates a broader biological importance. In this mini-review, we summarize current advances in the study of microbial cyclophilins. Apart from their anticipated role in protein folding and chaperoning, cyclophilins are involved in several other biological processes, such as cellular signal transduction, adaptation to stress, control of pathogens virulence, and modulation of host immune response. Since many existing family members do not have well-defined functions and novel ones are being characterized, the requirement for further studies on their biological role and molecular mechanism of action is apparent.
Collapse
|
3
|
Single-Domain Peptidyl-Prolyl cis/trans Isomerase FkpA from Corynebacterium glutamicum Improves the Biomass Yield at Increased Growth Temperatures. Appl Environ Microbiol 2015; 81:7839-50. [PMID: 26341203 DOI: 10.1128/aem.02113-15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/30/2015] [Indexed: 12/15/2022] Open
Abstract
Peptidyl-prolyl cis/trans isomerases (PPIases) catalyze the rate-limiting protein folding step at peptidyl bonds preceding proline residues and were found to be involved in several biological processes, including gene expression, signal transduction, and protein secretion. Representative enzymes were found in almost all sequenced genomes, including Corynebacterium glutamicum, a facultative anaerobic Gram-positive and industrial workhorse for the production of amino acids. In C. glutamicum, a predicted single-domain FK-506 (tacrolimus) binding protein (FKBP)-type PPIase (FkpA) is encoded directly downstream of gltA, which encodes citrate synthase (CS). This gene cluster is also present in other Actinobacteria. Here we carried out in vitro and in vivo experiments to study the function and influence of predicted FkpA in C. glutamicum. In vitro, FkpA indeed shows typical PPIase activity with artificial substrates and is inhibited by FK-506. Furthermore, FkpA delays the aggregation of CS, which is also inhibited by FK-506. Surprisingly, FkpA has a positive effect on the activity and temperature range of CS in vitro. Deletion of fkpA causes a 50% reduced biomass yield compared to that of the wild type when grown at 37°C, whereas there is only a 10% reduced biomass yield at the optimal growth temperature of 30°C accompanied by accumulation of 7 mM l-glutamate and 22 mM 2-oxoglutarate. Thus, FkpA may be exploited for improved product formation in biotechnical processes. Comparative transcriptome analysis revealed 69 genes which exhibit ≥2-fold mRNA level changes in C. glutamicum ΔfkpA, giving insight into the transcriptional response upon mild heat stress when FkpA is absent.
Collapse
|
4
|
Bhaduri A, Misra R, Maji A, Bhetaria PJ, Mishra S, Arora G, Singh LK, Dhasmana N, Dubey N, Virdi JS, Singh Y. Mycobacterium tuberculosis cyclophilin A uses novel signal sequence for secretion and mimics eukaryotic cyclophilins for interaction with host protein repertoire. PLoS One 2014; 9:e88090. [PMID: 24505389 PMCID: PMC3913756 DOI: 10.1371/journal.pone.0088090] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 01/03/2014] [Indexed: 11/19/2022] Open
Abstract
Cyclophilins are prolyl isomerases with multitude of functions in different cellular processes and pathological conditions. Cyclophilin A (PpiA) of Mycobacterium tuberculosis is secreted during infection in intraphagosomal niche. However, our understanding about the evolutionary origin, secretory mechanism or the interactome of M. tuberculosis PpiA is limited. This study demonstrates through phylogenetic and structural analyses that PpiA has more proximity to human cyclophilins than the prokaryotic counterparts. We report a unique N-terminal sequence (MADCDSVTNSP) present in pathogenic mycobacterial PpiA and absent in non-pathogenic strains. This sequence stretch was shown to be essential for PpiA secretion. The overexpression of full-length PpiA from M. tuberculosis in non-pathogenic Mycobacterium smegmatis resulted in PpiA secretion while truncation of the N-terminal stretch obstructed the secretion. In addition, presence of an ESX pathway substrate motif in M. tuberculosis PpiA suggested possible involvement of Type VII secretion system. Site-directed mutagenesis of key residues in this motif in full-length PpiA also hindered the secretion in M. smegmatis. Bacterial two-hybrid screens with human lung cDNA library as target were utilized to identify interaction partners of PpiA from host repertoire, and a number of substrates with functional representation in iron storage, signal transduction and immune responses were detected. The extensive host interactome coupled with the sequence and structural similarity to human cyclophilins is strongly suggestive of PpiA being deployed by M. tuberculosis as an effector mimic against the host cyclophilins.
Collapse
Affiliation(s)
- Asani Bhaduri
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
- Department of Microbiology, University of Delhi, Delhi, India
| | - Richa Misra
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Abhijit Maji
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | | | - Sonakshi Mishra
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Gunjan Arora
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | | | - Neha Dhasmana
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Neha Dubey
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | | | - Yogendra Singh
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
- * E-mail: mail:
| |
Collapse
|
5
|
New method for monitoring programmed cell death and differentiation in submerged Streptomyces cultures. Appl Environ Microbiol 2010; 76:3401-4. [PMID: 20348294 DOI: 10.1128/aem.00120-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vital stains were used in combination with fluorimetry for the elaboration of a new method to quantify Streptomyces programmed cell death, one of the key events in Streptomyces differentiation. The experimental approach described opens the possibility of designing online protocols for automatic monitoring of industrial fermentations.
Collapse
|
6
|
Alam MT, Merlo ME, Takano E, Breitling R. Genome-based phylogenetic analysis of Streptomyces and its relatives. Mol Phylogenet Evol 2009; 54:763-72. [PMID: 19948233 DOI: 10.1016/j.ympev.2009.11.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 11/18/2009] [Accepted: 11/19/2009] [Indexed: 11/18/2022]
Abstract
MOTIVATION Streptomyces is one of the best-studied genera of the order Actinomycetales due to its great importance in medical science, ecology and the biotechnology industry. A comprehensive, detailed and robust phylogeny of Streptomyces and its relatives is needed for understanding how this group emerged and maintained such a vast diversity throughout evolution and how soil-living mycelial forms (e.g., Streptomyces s. str.) are related to parasitic, unicellular pathogens (e.g., Mycobacterium tuberculosis) or marine species (e.g., Salinispora tropica). The most important application area of such a phylogenetic analysis will be in the comparative re-annotation of genome sequences and the reconstruction of Streptomyces metabolic networks for biotechnology. METHODS Classical 16S-rRNA-based phylogenetic reconstruction does not guarantee to produce well-resolved robust trees that reflect the overall relationship between bacterial species with widespread horizontal gene transfer. In our study we therefore combine three whole genome-based phylogenies with eight different, highly informative single-gene phylogenies to determine a new robust consensus tree of 45 Actinomycetales species with completely sequenced genomes. RESULTS None of the individual methods achieved a resolved phylogeny of Streptomyces and its relatives. Single-gene approaches failed to yield a detailed phylogeny; even though the single trees are in good agreement among each other, they show very low resolution of inner branches. The three whole genome-based methods improve resolution considerably. Only by combining the phylogenies from single gene-based and genome-based approaches we finally obtained a consensus tree with well-resolved branches for the entire set of Actinomycetales species. This phylogenetic information is stable and informative enough for application to the system-wide comparative modeling of bacterial physiology.
Collapse
Affiliation(s)
- Mohammad Tauqeer Alam
- Groningen Bioinformatics Center, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | | | |
Collapse
|
7
|
Thai V, Renesto P, Fowler CA, Brown DJ, Davis T, Gu W, Pollock DD, Kern D, Raoult D, Eisenmesser EZ. Structural, biochemical, and in vivo characterization of the first virally encoded cyclophilin from the Mimivirus. J Mol Biol 2008; 378:71-86. [PMID: 18342330 PMCID: PMC2884007 DOI: 10.1016/j.jmb.2007.08.051] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 08/22/2007] [Accepted: 08/23/2007] [Indexed: 12/29/2022]
Abstract
Although multiple viruses utilize host cell cyclophilins, including severe acute respiratory syndrome (SARS) and human immunodeficiency virus type-1(HIV-1), their role in infection is poorly understood. To help elucidate these roles, we have characterized the first virally encoded cyclophilin (mimicyp) derived from the largest virus discovered to date (the Mimivirus) that is also a causative agent of pneumonia in humans. Mimicyp adopts a typical cyclophilin-fold, yet it also forms trimers unlike any previously characterized homologue. Strikingly, immunofluorescence assays reveal that mimicyp localizes to the surface of the mature virion, as recently proposed for several viruses that recruit host cell cyclophilins such as SARS and HIV-1. Additionally mimicyp lacks peptidyl-prolyl isomerase activity in contrast to human cyclophilins. Thus, this study suggests that cyclophilins, whether recruited from host cells (i.e. HIV-1 and SARS) or virally encoded (i.e. Mimivirus), are localized on viral surfaces for at least a subset of viruses.
Collapse
Key Words
- fiv, feline immunodeficiency virus
- hiv-1, human immunodeficiency virus type-1
- hcypa, human cyclophilin-a
- hcypb, human cyclophilin-b
- mimicyp, mimivirus cyclophilin
- ncldv, nuclear cytoplasmic large dna viruses
- ppiase, peptidyl-prolyl isomerase
- sars, sever acute respiratory syndrome
- vv, vaccinia virus
- sv, vesicular stomatitis virus
- csa, cyclosporine-a
- trosy-hsqc, transverse relaxation optimized spectroscopy-heteronuclear single quantum coherence
- dapi, diamidino-2-phylindole
- cyclophilin
- virus
- pneumonia
- peptidyl-prolyl isomerase
- mimivirus
Collapse
Affiliation(s)
- Vu Thai
- Department of Biochemistry, Brandeis University and Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02454, USA
| | - Patricia Renesto
- Unité des Rickettsies, Faculté de Médecine, CNRSUMR6020, Université de la Méditerranée, 13385 Marseille Cedex 05, France
| | - C. Andrew Fowler
- Department of Chemistry & Biochemistry, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Darin J. Brown
- Department of Biochemistry & Molecular Genetics, University of Colorado Health Science Center, School of Medicine, 12801 E 17 Ave, Aurora, CO 80045, USA
| | - Tara Davis
- Structural Genomics Consortium and the Department of Physiology, University of Toronto, 100 College St., Toronto, ON, Canada M5G1L5
| | - Wanjun Gu
- Department of Biochemistry & Molecular Genetics, University of Colorado Health Science Center, School of Medicine, 12801 E 17 Ave, Aurora, CO 80045, USA
| | - David D. Pollock
- Department of Biochemistry & Molecular Genetics, University of Colorado Health Science Center, School of Medicine, 12801 E 17 Ave, Aurora, CO 80045, USA
| | - Dorothee Kern
- Department of Biochemistry, Brandeis University and Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02454, USA
| | - Didier Raoult
- Unité des Rickettsies, Faculté de Médecine, CNRSUMR6020, Université de la Méditerranée, 13385 Marseille Cedex 05, France
| | - Elan Z. Eisenmesser
- Department of Biochemistry & Molecular Genetics, University of Colorado Health Science Center, School of Medicine, 12801 E 17 Ave, Aurora, CO 80045, USA
| |
Collapse
|