1
|
Jackson EK, Bellott DW, Skaletsky H, Page DC. GC-biased gene conversion in X-chromosome palindromes conserved in human, chimpanzee, and rhesus macaque. G3 GENES|GENOMES|GENETICS 2021; 11:6317831. [PMID: 34849781 PMCID: PMC8981503 DOI: 10.1093/g3journal/jkab224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/28/2021] [Indexed: 12/03/2022]
Abstract
Gene conversion is GC-biased across a wide range of taxa. Large palindromes on mammalian
sex chromosomes undergo frequent gene conversion that maintains arm-to-arm sequence
identity greater than 99%, which may increase their susceptibility to the effects of
GC-biased gene conversion. Here, we demonstrate a striking history of GC-biased gene
conversion in 12 palindromes conserved on the X chromosomes of human, chimpanzee, and
rhesus macaque. Primate X-chromosome palindrome arms have significantly higher GC content
than flanking single-copy sequences. Nucleotide replacements that occurred in human and
chimpanzee palindrome arms over the past 7 million years are one-and-a-half times as
GC-rich as the ancestral bases they replaced. Using simulations, we show that our observed
pattern of nucleotide replacements is consistent with GC-biased gene conversion with a
magnitude of 70%, similar to previously reported values based on analyses of human
meioses. However, GC-biased gene conversion since the divergence of human and rhesus
macaque explains only a fraction of the observed difference in GC content between
palindrome arms and flanking sequence, suggesting that palindromes are older than 29
million years and/or had elevated GC content at the time of their formation. This work
supports a greater than 2:1 preference for GC bases over AT bases during gene conversion
and demonstrates that the evolution and composition of mammalian sex chromosome
palindromes is strongly influenced by GC-biased gene conversion.
Collapse
Affiliation(s)
- Emily K Jackson
- Whitehead Institute, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Helen Skaletsky
- Whitehead Institute, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA
| | - David C Page
- Whitehead Institute, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
2
|
The red queen model of recombination hotspots evolution in the light of archaic and modern human genomes. PLoS Genet 2014; 10:e1004790. [PMID: 25393762 PMCID: PMC4230742 DOI: 10.1371/journal.pgen.1004790] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 10/01/2014] [Indexed: 12/17/2022] Open
Abstract
Recombination is an essential process in eukaryotes, which increases diversity by disrupting genetic linkage between loci and ensures the proper segregation of chromosomes during meiosis. In the human genome, recombination events are clustered in hotspots, whose location is determined by the PRDM9 protein. There is evidence that the location of hotspots evolves rapidly, as a consequence of changes in PRDM9 DNA-binding domain. However, the reasons for these changes and the rate at which they occur are not known. In this study, we investigated the evolution of human hotspot loci and of PRDM9 target motifs, both in modern and archaic human lineages (Denisovan) to quantify the dynamic of hotspot turnover during the recent period of human evolution. We show that present-day human hotspots are young: they have been active only during the last 10% of the time since the divergence from chimpanzee, starting to be operating shortly before the split between Denisovans and modern humans. Surprisingly, however, our analyses indicate that Denisovan recombination hotspots did not overlap with modern human ones, despite sharing similar PRDM9 target motifs. We further show that high-affinity PRDM9 target motifs are subject to a strong self-destructive drive, known as biased gene conversion (BGC), which should lead to the loss of the majority of them in the next 3 MYR. This depletion of PRDM9 genomic targets is expected to decrease fitness, and thereby to favor new PRDM9 alleles binding different motifs. Our refined estimates of the age and life expectancy of human hotspots provide empirical evidence in support of the Red Queen hypothesis of recombination hotspots evolution. In eukaryotic genomes, recombination plays a central role by ensuring the proper segregation of chromosomes during meiosis and increasing genetic diversity at the population scale. Recombination events are not uniformly distributed along chromosomes, but cluster in narrow regions called hotspots. The absence of overlap between human and chimpanzee hotspots indicates that the location of these hotspots evolves rapidly. However, the reasons for this rapid dynamic are still unknown. To gain insight into the processes driving the evolution of recombination hotspots we analyzed the recent history of human hotspots, using the genome of a closely related archaic hominid, Denisovan. We searched for genomic signatures of past recombination activity and compared them to present-day patterns of recombination in humans. Our results show that human hotspots are younger than previously thought and that they are not conserved in Denisovans. Moreover, we confirm that hotspots are subject to a self-destruction process, due to biased gene conversion. We quantified this process, and showed that its intensity is strong enough to cause the fast turnover of human hotspots.
Collapse
|
3
|
Goldstein RA. Population size dependence of fitness effect distribution and substitution rate probed by biophysical model of protein thermostability. Genome Biol Evol 2014; 5:1584-93. [PMID: 23884461 PMCID: PMC3787666 DOI: 10.1093/gbe/evt110] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The predicted effect of effective population size on the distribution of fitness effects and substitution rate is critically dependent on the relationship between sequence and fitness. This highlights the importance of using models that are informed by the molecular biology, biochemistry, and biophysics of the evolving systems. We describe a computational model based on fundamental aspects of biophysics, the requirement for (most) proteins to be thermodynamically stable. Using this model, we find that differences in population size have minimal impact on the distribution of population-scaled fitness effects, as well as on the rate of molecular evolution. This is because larger populations result in selection for more stable proteins that are less affected by mutations. This reduction in the magnitude of the fitness effects almost exactly cancels the greater selective pressure resulting from the larger population size. Conversely, changes in the population size in either direction cause transient increases in the substitution rate. As differences in population size often correspond to changes in population size, this makes comparisons of substitution rates in different lineages difficult to interpret.
Collapse
Affiliation(s)
- Richard A Goldstein
- Division of Infection and Immunity, University College London, United Kingdom
| |
Collapse
|
4
|
Abstract
The recent explosion of genome sequences from all major phylogenetic groups has unveiled an unexpected wealth of cases of recurrent evolution of strikingly similar genomic features in different lineages. Here, we review the diverse known types of recurrent evolution in eukaryotic genomes, with a special focus on metazoans, ranging from reductive genome evolution to origins of splice-leader trans-splicing, from tandem exon duplications to gene family expansions. We first propose a general classification scheme for evolutionary recurrence at the genomic level, based on the type of driving force-mutation or selection-and the environmental and genomic circumstances underlying these forces. We then discuss various cases of recurrent genomic evolution under this scheme. Finally, we provide a broader context for repeated genomic evolution, including the unique relationship of genomic recurrence with the genotype-phenotype map, and the ways in which the study of recurrent genomic evolution can be used to understand fundamental evolutionary processes.
Collapse
Affiliation(s)
- Ignacio Maeso
- Department of Zoology, University of Oxford, United Kingdom
| | - Scott William Roy
- Department of Biology, Stanford University
- Department of Biology, San Francisco State University
| | - Manuel Irimia
- Department of Biology, Stanford University
- Banting and Best Department of Medical Research, Donnelly Centre, University of Toronto, Canada
| |
Collapse
|
5
|
Panchin AY, Mitrofanov SI, Alexeevski AV, Spirin SA, Panchin YV. New words in human mutagenesis. BMC Bioinformatics 2011; 12:268. [PMID: 21718472 PMCID: PMC3152918 DOI: 10.1186/1471-2105-12-268] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 06/30/2011] [Indexed: 11/28/2022] Open
Abstract
Background The substitution rates within different nucleotide contexts are subject to varying levels of bias. The most well known example of such bias is the excess of C to T (C > T) mutations in CpG (CG) dinucleotides. The molecular mechanisms underlying this bias are important factors in human genome evolution and cancer development. The discovery of other nucleotide contexts that have profound effects on substitution rates can improve our understanding of how mutations are acquired, and why mutation hotspots exist. Results We compared rates of inherited mutations in 1-4 bp nucleotide contexts using reconstructed ancestral states of human single nucleotide polymorphisms (SNPs) from intergenic regions. Chimp and orangutan genomic sequences were used as outgroups. We uncovered 3.5 and 3.3-fold excesses of T > C mutations in the second position of ATTG and ATAG words, respectively, and a 3.4-fold excess of A > C mutations in the first position of the ACAA word. Conclusions Although all the observed biases are less pronounced than the 5.1-fold excess of C > T mutations in CG dinucleotides, the three 4 bp mutation contexts mentioned above (and their complementary contexts) are well distinguished from all other mutation contexts. This provides a challenge to discover the underlying mechanisms responsible for the observed excesses of mutations.
Collapse
Affiliation(s)
- Alexander Y Panchin
- Department of Bioengineering and Bioinformatics, Moscow State University, Vorbyevy Gory 1-73, Moscow, 119992, Russian Federation.
| | | | | | | | | |
Collapse
|
6
|
Nevarez PA, DeBoever CM, Freeland BJ, Quitt MA, Bush EC. Context dependent substitution biases vary within the human genome. BMC Bioinformatics 2010; 11:462. [PMID: 20843365 PMCID: PMC2945941 DOI: 10.1186/1471-2105-11-462] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 09/15/2010] [Indexed: 01/16/2023] Open
Abstract
Background Models of sequence evolution typically assume that different nucleotide positions evolve independently. This assumption is widely appreciated to be an over-simplification. The best known violations involve biases due to adjacent nucleotides. There have also been suggestions that biases exist at larger scales, however this possibility has not been systematically explored. Results To address this we have developed a method which identifies over- and under-represented substitution patterns and assesses their overall impact on the evolution of genome composition. Our method is designed to account for biases at smaller pattern sizes, removing their effects. We used this method to investigate context bias in the human lineage after the divergence from chimpanzee. We examined bias effects in substitution patterns between 2 and 5 bp long and found significant effects at all sizes. This included some individual three and four base pair patterns with relatively large biases. We also found that bias effects vary across the genome, differing between transposons and non-transposons, between different classes of transposons, and also near and far from genes. Conclusions We found that nucleotides beyond the immediately adjacent one are responsible for substantial context effects, and that these biases vary across the genome.
Collapse
|
7
|
Duret L, Galtier N. Biased gene conversion and the evolution of mammalian genomic landscapes. Annu Rev Genomics Hum Genet 2009; 10:285-311. [PMID: 19630562 DOI: 10.1146/annurev-genom-082908-150001] [Citation(s) in RCA: 496] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recombination is typically thought of as a symmetrical process resulting in large-scale reciprocal genetic exchanges between homologous chromosomes. Recombination events, however, are also accompanied by short-scale, unidirectional exchanges known as gene conversion in the neighborhood of the initiating double-strand break. A large body of evidence suggests that gene conversion is GC-biased in many eukaryotes, including mammals and human. AT/GC heterozygotes produce more GC- than AT-gametes, thus conferring a population advantage to GC-alleles in high-recombining regions. This apparently unimportant feature of our molecular machinery has major evolutionary consequences. Structurally, GC-biased gene conversion explains the spatial distribution of GC-content in mammalian genomes-the so-called isochore structure. Functionally, GC-biased gene conversion promotes the segregation and fixation of deleterious AT --> GC mutations, thus increasing our genomic mutation load. Here we review the recent evidence for a GC-biased gene conversion process in mammals, and its consequences for genomic landscapes, molecular evolution, and human functional genomics.
Collapse
Affiliation(s)
- Laurent Duret
- Université de Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, F-69622, Villeurbanne, France.
| | | |
Collapse
|
8
|
Gaffney DJ, Keightley PD. Effect of the assignment of ancestral CpG state on the estimation of nucleotide substitution rates in mammals. BMC Evol Biol 2008; 8:265. [PMID: 18826599 PMCID: PMC2576242 DOI: 10.1186/1471-2148-8-265] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 09/30/2008] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Molecular evolutionary studies in mammals often estimate nucleotide substitution rates within and outside CpG dinucleotides separately. Frequently, in alignments of two sequences, the division of sites into CpG and non-CpG classes is based simply on the presence or absence of a CpG dinucleotide in either sequence, a procedure that we refer to as CpG/non-CpG assignment. Although it likely that this procedure is biased, it is generally assumed that the bias is negligible if species are very closely related. RESULTS Using simulations of DNA sequence evolution we show that assignment of the ancestral CpG state based on the simple presence/absence of the CpG dinucleotide can seriously bias estimates of the substitution rate, because many true non-CpG changes are misassigned as CpG. Paradoxically, this bias is most severe between closely related species, because a minimum of two substitutions are required to misassign a true ancestral CpG site as non-CpG whereas only a single substitution is required to misassign a true ancestral non-CpG site as CpG in a two branch tree. We also show that CpG misassignment bias differentially affects fourfold degenerate and noncoding sites due to differences in base composition such that fourfold degenerate sites can appear to be evolving more slowly than noncoding sites. We demonstrate that the effects predicted by our simulations occur in a real evolutionary setting by comparing substitution rates estimated from human-chimp coding and intronic sequence using CpG/non-CpG assignment with estimates derived from a method that is largely free from bias. CONCLUSION Our study demonstrates that a common method of assigning sites into CpG and non CpG classes in pairwise alignments is seriously biased and recommends against the adoption of ad hoc methods of ancestral state assignment.
Collapse
Affiliation(s)
- Daniel J Gaffney
- McGill University and Genome Québec Innovation Centre, 740 ave Dr Penfield Rm 7208, Montréal (Québec), H3A 1A4, Canada
| | - Peter D Keightley
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK
| |
Collapse
|
9
|
Squartini F, Arndt PF. Quantifying the stationarity and time reversibility of the nucleotide substitution process. Mol Biol Evol 2008; 25:2525-35. [PMID: 18682605 DOI: 10.1093/molbev/msn169] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Markov models describing the evolution of the nucleotide substitution process, widely used in phylogeny reconstruction, usually assume the hypotheses of stationarity and time reversibility. Although these models give meaningful results when applied to biological data, it is not clear if the 2 assumptions mentioned above hold and, if not, how much sequence evolution processes deviate from them. To this aim, we introduce 2 sets of indices that can be calculated from the nucleotide distribution and the substitution rates. The stationarity indices (STIs) can be used to test the validity of the equilibrium assumption. The irreversibility indices (IRIs) are derived from the Kolmogorov cycle conditions for time reversibility and quantify the degree of nontime reversibility of a process. We have computed STIs and IRIs for the evolutionary process of 2 lineages, Drosophila simulans and Homo sapiens. In the latter case, we use a modified form of the indices that takes into account the CpG decay process. In both cases, we find statistically significant deviations from the ideal case of a process that has reached stationarity and is time reversible.
Collapse
Affiliation(s)
- Federico Squartini
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| | | |
Collapse
|
10
|
Antezana MA, Jordan IK. Highly conserved regimes of neighbor-base-dependent mutation generated the background primary-structural heterogeneities along vertebrate chromosomes. PLoS One 2008; 3:e2145. [PMID: 18478116 PMCID: PMC2366069 DOI: 10.1371/journal.pone.0002145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Accepted: 03/17/2008] [Indexed: 01/01/2023] Open
Abstract
The content of guanine+cytosine varies markedly along the chromosomes of homeotherms and great effort has been devoted to studying this heterogeneity and its biological implications. Already before the DNA-sequencing era, however, it was established that the dinucleotides in the DNA of mammals in particular, and of most organisms in general, show striking over- and under-representations that cannot be explained by the base composition. Here we show that in the coding regions of vertebrates both GC content and codon occurrences are strongly correlated with such "motif preferences" even though we quantify the latter using an index that is not affected by the base composition, codon usage, and protein-sequence encoding. These correlations are likely to be the result of the long-term shaping of the primary structure of genic and non-genic DNA by a regime of mutation of which central features have been maintained by natural selection. We find indeed that these preferences are conserved in vertebrates even more rigidly than codon occurrences and we show that the occurrence-preference correlations are stronger in intronic and non-genic DNA, with the R(2)s reaching 99% when GC content is approximately 0.5. The mutation regime appears to be characterized by rates that depend markedly on the bases present at the site preceding and at that following each mutating site, because when we estimate such rates of neighbor-base-dependent mutation (NBDM) from substitutions retrieved from alignments of coding, intronic, and non-genic mammalian DNA sorted and grouped by GC content, they suffice to simulate DNA sequences in which motif occurrences and preferences as well as the correlations of motif preferences with GC content and with motif occurrences, are very similar to the mammalian ones. The best fit, however, is obtained with NBDM regimes lacking strand effects, which indicates that over the long term NBDM switches strands in the germline as one would expect for effects due to loosely contained background transcription. Finally, we show that human coding regions are less mutable under the estimated NBDM regimes than under matched context-independent mutation and that this entails marked differences between the spectra of amino-acid mutations that either mutation regime should generate. In the Discussion we examine the mechanisms likely to underlie NBDM heterogeneity along chromosomes and propose that it reflects how the diversity and activity of lesion-bypass polymerases (LBPs) track the landscapes of scheduled and non-scheduled genome repair, replication, and transcription during the cell cycle. We conclude that the primary structure of vertebrate genic DNA at and below the trinucleotide level has been governed over the long term by highly conserved regimes of NBDM which should be under direct natural selection because they alter drastically missense-mutation rates and hence the somatic and the germline mutational loads. Therefore, the non-coding DNA of vertebrates may have been shaped by NBDM only epiphenomenally, with non-genic DNA being affected mainly when found in the proximity of genes.
Collapse
Affiliation(s)
- Marcos A Antezana
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America.
| | | |
Collapse
|
11
|
Duret L, Arndt PF. The impact of recombination on nucleotide substitutions in the human genome. PLoS Genet 2008; 4:e1000071. [PMID: 18464896 PMCID: PMC2346554 DOI: 10.1371/journal.pgen.1000071] [Citation(s) in RCA: 259] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Accepted: 04/11/2008] [Indexed: 01/19/2023] Open
Abstract
Unraveling the evolutionary forces responsible for variations of neutral substitution patterns among taxa or along genomes is a major issue for detecting selection within sequences. Mammalian genomes show large-scale regional variations of GC-content (the isochores), but the substitution processes at the origin of this structure are poorly understood. We analyzed the pattern of neutral substitutions in 1 Gb of primate non-coding regions. We show that the GC-content toward which sequences are evolving is strongly negatively correlated to the distance to telomeres and positively correlated to the rate of crossovers (R2 = 47%). This demonstrates that recombination has a major impact on substitution patterns in human, driving the evolution of GC-content. The evolution of GC-content correlates much more strongly with male than with female crossover rate, which rules out selectionist models for the evolution of isochores. This effect of recombination is most probably a consequence of the neutral process of biased gene conversion (BGC) occurring within recombination hotspots. We show that the predictions of this model fit very well with the observed substitution patterns in the human genome. This model notably explains the positive correlation between substitution rate and recombination rate. Theoretical calculations indicate that variations in population size or density in recombination hotspots can have a very strong impact on the evolution of base composition. Furthermore, recombination hotspots can create strong substitution hotspots. This molecular drive affects both coding and non-coding regions. We therefore conclude that along with mutation, selection and drift, BGC is one of the major factors driving genome evolution. Our results also shed light on variations in the rate of crossover relative to non-crossover events, along chromosomes and according to sex, and also on the conservation of hotspot density between human and chimp. Mammalian genomes show a very strong heterogeneity of base composition along chromosomes (the so-called isochores). The functional significance of these peculiar genomic landscapes is highly debated: do isochores confer some selective advantage, or are they simply the by-product of neutral evolutionary processes? To resolve this issue, we analyzed the pattern of substitution in the human genome by comparison with chimpanzee and macaque. We show that the evolution of base composition (GC-content) is essentially determined by the rate of recombination. This effect appears to be much stronger in male than in female germline, which rules out selective explanations for the evolution of isochores. We show that this impact of recombination is most probably a consequence of the process of biased gene conversion (BGC). This neutral process mimics the action of selection and can induce strong substitution hotspots within recombination hotspots, sometimes leading to the fixation of deleterious mutations. BGC appears to be one of the major factors driving genome evolution. It is therefore essential to take this process into account if we want to be able to interpret genome sequences.
Collapse
Affiliation(s)
- Laurent Duret
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, CNRS, UMR 5558, Villeurbanne, France
- * E-mail: (LD); (PFA)
| | - Peter F. Arndt
- Department for Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
- * E-mail: (LD); (PFA)
| |
Collapse
|
12
|
Elango N, Kim SH, NISC Comparative Sequencing Program, Vigoda E, Yi SV. Mutations of different molecular origins exhibit contrasting patterns of regional substitution rate variation. PLoS Comput Biol 2008; 4:e1000015. [PMID: 18463707 PMCID: PMC2265638 DOI: 10.1371/journal.pcbi.1000015] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Accepted: 01/30/2008] [Indexed: 11/19/2022] Open
Abstract
Transitions at CpG dinucleotides, referred to as “CpG substitutions”, are a major mutational input into vertebrate genomes and a leading cause of human genetic disease. The prevalence of CpG substitutions is due to their mutational origin, which is dependent on DNA methylation. In comparison, other single nucleotide substitutions (for example those occurring at GpC dinucleotides) mainly arise from errors during DNA replication. Here we analyzed high quality BAC-based data from human, chimpanzee, and baboon to investigate regional variation of CpG substitution rates. We show that CpG substitutions occur approximately 15 times more frequently than other single nucleotide substitutions in primate genomes, and that they exhibit substantial regional variation. Patterns of CpG rate variation are consistent with differences in methylation level and susceptibility to subsequent deamination. In particular, we propose a “distance-decaying” hypothesis, positing that due to the molecular mechanism of a CpG substitution, rates are correlated with the stability of double-stranded DNA surrounding each CpG dinucleotide, and the effect of local DNA stability may decrease with distance from the CpG dinucleotide. Consistent with our “distance-decaying” hypothesis, rates of CpG substitution are strongly (negatively) correlated with regional G+C content. The influence of G+C content decays as the distance from the target CpG site increases. We estimate that the influence of local G+C content extends up to 1,500∼2,000 bps centered on each CpG site. We also show that the distance-decaying relationship persisted when we controlled for the effect of long-range homogeneity of nucleotide composition. GpC sites, in contrast, do not exhibit such “distance-decaying” relationship. Our results highlight an example of the distinctive properties of methylation-dependent substitutions versus substitutions mostly arising from errors during DNA replication. Furthermore, the negative relationship between G+C content and CpG rates may provide an explanation for the observation that GC-rich SINEs show lower CpG rates than other repetitive elements. Mutations are raw materials of evolution. Earlier studies have shown that mutations occur at different frequencies in different genomic regions. By investigating the patterns and causes of such “regional” variation of mutations, we can better understand the mechanisms of underlying mutagenesis. In the human and other mammalian genomes, the most common type of mutation is caused by DNA methylation, which targets cytosines followed by guanine (CpG dinucleotides). Methylated cytosines are then subject to spontaneous deamination, which will cause a C to T (or G to A) transition (CpG substitution). Because this mutational process is unique to CpG substitutions, we reasoned that they might show different patterns of variability from other substitutions. Using high quality genomic sequences from primates and by separately analyzing variability of CpG substitutions and other substitutions, we demonstrate that CpG substitutions occur approximately 15 times more frequently than other substitutions, and show a distinctive pattern of regional variability. Particularly, we propose and provide evidence that because the deamination step requires temporary strand separation, G+C composition near 1,500–2,000 bps each direction from a target CpG affects the probability of a CpG substitution. Incorporating the difference in CpG and other substitutions discovered in this study will help build more realistic evolutionary models.
Collapse
Affiliation(s)
- Navin Elango
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Seong-Ho Kim
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - NISC Comparative Sequencing Program
- Genome Technology Branch and NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Eric Vigoda
- College of Computing, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Soojin V. Yi
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
13
|
Karro JE, Peifer M, Hardison RC, Kollmann M, von Grünberg HH. Exponential decay of GC content detected by strand-symmetric substitution rates influences the evolution of isochore structure. Mol Biol Evol 2007; 25:362-74. [PMID: 18042807 DOI: 10.1093/molbev/msm261] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The distribution of guanine and cytosine nucleotides throughout a genome, or the GC content, is associated with numerous features in mammals; understanding the pattern and evolutionary history of GC content is crucial to our efforts to annotate the genome. The local GC content is decaying toward an equilibrium point, but the causes and rates of this decay, as well as the value of the equilibrium point, remain topics of debate. By comparing the results of 2 methods for estimating local substitution rates, we identify 620 Mb of the human genome in which the rates of the various types of nucleotide substitutions are the same on both strands. These strand-symmetric regions show an exponential decay of local GC content at a pace determined by local substitution rates. DNA segments subjected to higher rates experience disproportionately accelerated decay and are AT rich, whereas segments subjected to lower rates decay more slowly and are GC rich. Although we are unable to draw any conclusions about causal factors, the results support the hypothesis proposed by Khelifi A, Meunier J, Duret L, and Mouchiroud D (2006. GC content evolution of the human and mouse genomes: insights from the study of processed pseudogenes in regions of different recombination rates. J Mol Evol. 62:745-752.) that the isochore structure has been reshaped over time. If rate variation were a determining factor, then the current isochore structure of mammalian genomes could result from the local differences in substitution rates. We predict that under current conditions strand-symmetric portions of the human genome will stabilize at an average GC content of 30% (considerably less than the current 42%), thus confirming that the human genome has not yet reached equilibrium.
Collapse
Affiliation(s)
- J E Karro
- Department of Computer Science and Systems Analysis, Miami University, Ohio, USA.
| | | | | | | | | |
Collapse
|
14
|
Directionality of point mutation and 5-methylcytosine deamination rates in the chimpanzee genome. BMC Genomics 2006; 7:316. [PMID: 17166280 PMCID: PMC1764022 DOI: 10.1186/1471-2164-7-316] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Accepted: 12/13/2006] [Indexed: 12/02/2022] Open
Abstract
Background The pattern of point mutation is important for studying mutational mechanisms, genome evolution, and diseases. Previous studies of mutation direction were largely based on substitution data from a limited number of loci. To date, there is no genome-wide analysis of mutation direction or methylation-dependent transition rates in the chimpanzee or its categorized genomic regions. Results In this study, we performed a detailed examination of mutation direction in the chimpanzee genome and its categorized genomic regions using 588,918 SNPs whose ancestral alleles could be inferred by mapping them to human genome sequences. The C→T (G→A) changes occurred most frequently in the chimpanzee genome. Each type of transition occurred approximately four times more frequently than each type of transversion. Notably, the frequency of C→T (G→A) was the highest in exons among the genomic categories regardless of whether we calculated directly, normalized with the nucleotide content, or removed the SNPs involved in the CpG effect. Moreover, the directionality of the point mutation in exons and CpG islands were opposite relative to their corresponding intergenic regions, indicating that different forces govern the nucleotide changes. Our analysis suggests that the GC content is not in equilibrium in the chimpanzee genome. Further quantitative analysis revealed that the 5-methylcytosine deamination rates at CpG sites were highly dependent on the local GC content and the lengths of SNP flanking sequences and varied among categorized genomic regions. Conclusion We present the first mutational spectrum, estimated by three different approaches, in the chimpanzee genome. Our results provide detailed information on recent nucleotide changes and methylation-dependent transition rates in the chimpanzee genome after its split from the human. These results have important implications for understanding genome composition evolution, mechanisms of point mutation, and other genetic factors such as selection, biased codon usage, biased gene conversion, and recombination.
Collapse
|
15
|
Duret L, Eyre-Walker A, Galtier N. A new perspective on isochore evolution. Gene 2006; 385:71-4. [PMID: 16971063 DOI: 10.1016/j.gene.2006.04.030] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Accepted: 04/07/2006] [Indexed: 11/30/2022]
Abstract
The genomes of mammals and birds show dramatic variation in base composition over large scales, the so called isochore structure of the genome. The origin of isochores is still controversial: various neutral and selectionist models have been proposed--and criticized--since the discovery of isochores in the 1970s. The availability of complete mammalian genomes has yielded new opportunities for addressing this question. In particular, it was recently proposed that (i) the isochore structure is declining in many mammalian groups, and that (ii) GC-content is influenced by local recombination rate, possibly via the mechanism of GC-biased gene conversion. In this article we review the existing support for these two hypotheses, and discuss how they can be combined to provide a new perspective on isochore evolution.
Collapse
Affiliation(s)
- Laurent Duret
- CNRS UMR 5558, BBE, Université C. Bernard Lyon 1, France
| | | | | |
Collapse
|
16
|
Webster MT, Axelsson E, Ellegren H. Strong Regional Biases in Nucleotide Substitution in the Chicken Genome. Mol Biol Evol 2006; 23:1203-16. [PMID: 16551647 DOI: 10.1093/molbev/msk008] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Interspersed repeats have emerged as a valuable tool for studying neutral patterns of molecular evolution. Here we analyze variation in the rate and pattern of nucleotide substitution across all autosomes in the chicken genome by comparing the present-day CR1 repeat sequences with their ancestral copies and reconstructing nucleotide substitutions with a maximum likelihood model. The results shed light on the origin and evolution of large-scale heterogeneity in GC content found in the genomes of birds and mammals--the isochore structure. In contrast to mammals, where GC content is becoming homogenized, heterogeneity in GC content is being reinforced in the chicken genome. This is also supported by patterns of substitution inferred from alignments of introns in chicken, turkey, and quail. Analysis of individual substitution frequencies is consistent with the biased gene conversion (BGC) model of isochore evolution, and it is likely that patterns of evolution in the chicken genome closely resemble those in the ancestral amniote genome, when it is inferred that isochores originated. Microchromosomes and distal regions of macrochromosomes are found to have elevated substitution rates and a more GC-biased pattern of nucleotide substitution. This can largely be accounted for by a strong correlation between GC content and the rate and pattern of substitution. The results suggest that an interaction between increased mutability at CpG motifs and fixation biases due to BGC could explain increased levels of divergence in GC-rich regions.
Collapse
Affiliation(s)
- Matthew T Webster
- Department of Evolution, Genomics and Systematics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.
| | | | | |
Collapse
|