1
|
How snake venom disintegrins affect platelet aggregation and cancer proliferation. Toxicon 2022; 221:106982. [DOI: 10.1016/j.toxicon.2022.106982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
|
2
|
Vasconcelos AA, Estrada JC, David V, Wermelinger LS, Almeida FCL, Zingali RB. Structure-Function Relationship of the Disintegrin Family: Sequence Signature and Integrin Interaction. Front Mol Biosci 2021; 8:783301. [PMID: 34926583 PMCID: PMC8678471 DOI: 10.3389/fmolb.2021.783301] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/11/2021] [Indexed: 01/09/2023] Open
Abstract
Disintegrins are small cysteine-rich proteins found in a variety of snake venom. These proteins selectively modulate integrin function, heterodimeric receptors involved in cell-cell and cell-matrix interaction that are widely studied as therapeutic targets. Snake venom disintegrins emerged from the snake venom metalloproteinase and are classified according to the sequence size and number of disulfide bonds. Evolutive structure and function diversification of disintegrin family involves a stepwise decrease in the polypeptide chain, loss of cysteine residues, and selectivity. Since the structure elucidation of echistatin, the description of the structural properties of disintegrins has allowed the investigation of the mechanisms involved in integrin-cell-extracellular matrix interaction. This review provides an analysis of the structures of all family groups enabling the description of an expanded classification of the disintegrin family in seven groups. Each group presents a particular disulfide pattern and sequence signatures, facilitating the identification of new disintegrins. The classification was based on the disintegrin-like domain of the human metalloproteinase (ADAM-10). We also present the sequence and structural signatures important for disintegrin-integrin interaction, unveiling the relationship between the structure and function of these proteins.
Collapse
Affiliation(s)
- Ariana A Vasconcelos
- Instituto de Bioquímica Médica (IBqM) Leopoldo de Meis, Centro Nacional de Ressonância Magnética Nuclear, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Centro Nacional de Ressonância Magnética Nuclear (CNRMN), Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jorge C Estrada
- Laboratório de Hemostase e Venenos, Instituto de Bioquímica Médica (IBqM) Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Victor David
- Laboratório de Hemostase e Venenos, Instituto de Bioquímica Médica (IBqM) Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana S Wermelinger
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio C L Almeida
- Instituto de Bioquímica Médica (IBqM) Leopoldo de Meis, Centro Nacional de Ressonância Magnética Nuclear, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Centro Nacional de Ressonância Magnética Nuclear (CNRMN), Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Russolina B Zingali
- Laboratório de Hemostase e Venenos, Instituto de Bioquímica Médica (IBqM) Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Kini RM. Accelerated evolution of toxin genes: Exonization and intronization in snake venom disintegrin/metalloprotease genes. Toxicon 2018; 148:16-25. [PMID: 29634956 DOI: 10.1016/j.toxicon.2018.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/21/2018] [Accepted: 04/01/2018] [Indexed: 12/20/2022]
Abstract
Toxin genes in animals undergo accelerated evolution compared to non-toxin genes to be effective and competitive in prey capture, as well as to enhance their predator defense. Several mechanisms have been proposed to explain this unusual phenomenon. These include (a) frequent mutations in exons compared to introns and nonsynonymous substitutions in exons; (b) high frequency of point mutations are due to the presence of more unstable triplets in exons compared to introns; (c) Accelerated Segment Switch in Exons to alter Targeting (ASSET); (d) Rapid Accumulation of Variations in Exposed Residues (RAVERs); (e) alteration in intron-exon boundary; (f) deletion of exon; and (g) loss/gain of domains through recombination. By systematic analyses of snake venom disintegrin/metalloprotease genes, I describe a new mechanism in the evolution of these genes through exonization and intronization. In the evolution of RTS/KTS disintegrins, a new exon (10a) is formed in intron 10 of the disintegrin/metalloprotease gene. Unlike more than 90% new exons that are from repetitive elements in introns, exon 10a originated from a non-repetitive element. To incorporate exon 10a, part of the exon 11 is intronized to retain the open reading frame. This is the first case of simultaneous exonization and intronization within a single gene. This new mechanism alters the function of toxins through drastic changes to the molecular surface via insertion of new exons and deletion of exons.
Collapse
Affiliation(s)
- R Manjunatha Kini
- Protein Science Laboratory, Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore.
| |
Collapse
|
4
|
Insights into the Evolution of a Snake Venom Multi-Gene Family from the Genomic Organization of Echis ocellatus SVMP Genes. Toxins (Basel) 2016; 8:toxins8070216. [PMID: 27420095 PMCID: PMC4963849 DOI: 10.3390/toxins8070216] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 06/29/2016] [Accepted: 07/06/2016] [Indexed: 02/04/2023] Open
Abstract
The molecular events underlying the evolution of the Snake Venom Metalloproteinase (SVMP) family from an A Disintegrin And Metalloproteinase (ADAM) ancestor remain poorly understood. Comparative genomics may provide decisive information to reconstruct the evolutionary history of this multi-locus toxin family. Here, we report the genomic organization of Echis ocellatus genes encoding SVMPs from the PII and PI classes. Comparisons between them and between these genes and the genomic structures of Anolis carolinensis ADAM28 and E. ocellatus PIII-SVMP EOC00089 suggest that insertions and deletions of intronic regions played key roles along the evolutionary pathway that shaped the current diversity within the multi-locus SVMP gene family. In particular, our data suggest that emergence of EOC00028-like PI-SVMP from an ancestral PII(e/d)-type SVMP involved splicing site mutations that abolished both the 3′ splice AG acceptor site of intron 12* and the 5′ splice GT donor site of intron 13*, and resulted in the intronization of exon 13* and the consequent destruction of the structural integrity of the PII-SVMP characteristic disintegrin domain.
Collapse
|
5
|
Wang H, Chen X, Wang L, Chen W, Zhou M, Chen T, Shaw C. Cloning and characterisation of three novel disintegrin precursors from the venoms of three Atheris species: Atheris chlorechis, Atheris nitschei and Atheris squamigera. Toxicon 2013; 71:31-40. [PMID: 23732124 DOI: 10.1016/j.toxicon.2013.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 05/15/2013] [Indexed: 11/28/2022]
Abstract
Snake venom constitutes one of the most complex mixtures of naturally-occurring toxic proteins/polypeptides and a large number of these possess very profound biological activities. Disintegrins, that are commonly found in viper venoms, are low molecular weight proteins that usually contain an -Arg-Gly-Asp- (-RGD-) motif that is known to be involved in cell adhesion ligand recognition, binding specifically to cell surface integrin receptors and also exhibiting platelet anti-aggregation activity. Here, we report for the first time, the successful cloning of three cDNAs encoding disintegrin precursors from lyophilised venom-derived libraries of Atheris chlorechis, Atheris nitschei and Atheris squamigera, respectively. All of these disintegrins belong to the short-coding class and all exhibit high degrees of structural identity, both in their amino acid sequences and in the arrangement of their functional domains. Mass spectrometric analyses of the HPLC-separated/in-gel digested venom proteins was performed to characterise the mature disintegrins as expressed in the venom proteome. Studies on both the structures and conserved sites within these disintegrins are of considerable theoretical interest in the field of biological evolution and in the development of new research tools or novel templates for drug design.
Collapse
Affiliation(s)
- He Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK
| | | | | | | | | | | | | |
Collapse
|
6
|
Sanz-Soler R, Lorente C, Company B, Sanz L, Juárez P, Pérez A, Zhang Y, Jin Y, Chen R, Eble JA, Calvete JJ, Bolás G. Recombinant expression of mutants of the Frankenstein disintegrin, RTS-ocellatusin. Evidence for the independent origin of RGD and KTS/RTS disintegrins. Toxicon 2012; 60:665-75. [PMID: 22677804 DOI: 10.1016/j.toxicon.2012.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/05/2012] [Accepted: 05/17/2012] [Indexed: 12/14/2022]
Abstract
The requirements to transform a short disintegrin of the RGD clade into an RTS disintegrin, were investigated through the generation of recombinant mutants of ocellatusin in which the RGD tripeptide was substituted for RTS in different positions along the integrin-specificity loop. Any attempt to create an active integrin α(1)β(1) inhibitory motif within the specificity loop of ocellatusin was unsuccessful. Replacing the whole RGD-loop of ocellatusin by the RTS-loop of jerdostatin was neither sufficient for confering α(1)β(1) binding specificity to this ocellatusin-RTS Frankenstein(2) mutant. Factors other than the integrin-binding loop sequence per se are thus required to transform a disintegrin scaffold from the RGD clade into another scaffold from the RTS/KTS clade. Moreover, our results provide evidences, that the RTS/KTS short disintegrins have potentially been recruited into the venom gland of Eurasian vipers independently from the canonical neofunctionalization pathway of the RGD disintegrins. PCR-amplifications of jerdostatin-like sequences from a number of taxa across reptiles, including snakes (Crotalinae, Viperinae, and Elapidae taxa) and lizards (Lacertidae and Iguanidae) clearly showed that genes coding for RTS/KTS disintegrins existed long before the split of Lacertidae and Iguania, thus predating the recruitment of the SVMP precursors of disintegrins, providing strong support for the view of an independent evolutionary history of the RTS/KTS and the RGD clades of short disintegrins.
Collapse
Affiliation(s)
- Raquel Sanz-Soler
- Instituto de Biomedicina de Valencia, C.S.I.C., Jaume Roig 11, 46010 Valencia, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Sanz L, Harrison RA, Calvete JJ. First draft of the genomic organization of a PIII-SVMP gene. Toxicon 2012; 60:455-69. [PMID: 22543188 DOI: 10.1016/j.toxicon.2012.04.331] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 03/27/2012] [Accepted: 04/04/2012] [Indexed: 11/20/2022]
Abstract
The evolutionary pathway of highly toxic proteins expressed in snake venom glands from proteins without toxic function and expressed in non-parotid tissues remains poorly understood. Here we examine gene structure of a representative of a venom protein with an ADAMs metalloproteinase evolutionary origin. The structure of the 15,652 bp Echis ocellatus pre-pro EOC00089-like PIII-SVMP gene was assembled from PCR-amplified sequences of overlapping genomic fragments. The gene comprises 12 exons interrupted by 11 introns. In a homology model of the EOC00089-like protein, the insertion of introns interrupting coding regions lie just after or between secondary structure elements. Long interspersed nuclear retroelements (LINE) L2/CR1 and RTE/Bov-B, short interspersed nuclear retroelements SINE/Sauria, and a hobo-activator DNA (Charlie, hAT) transposon were identified within introns 1, 3, 7 and 8. Pairwise amino acid sequence comparisons between EOC00089-like PIII-SVMP and its closest orthologs, ADAM28, from a mammal, Homo sapiens, and the lizard, Anolis carolinensis, showed that the ORFs of these three proteins share 42%/59%, 49%/69%, and 48%/65% (identity/similarity), respectively. The protein-coding positions interrupted by each of the 11 introns of the Echis PIII-SVMP gene are entirely conserved in the A. carolinensis and human ADAM28 genes. However, the lizard and the human ADAM28 genes contain 5 introns not present in the E. ocellatus gene. Furthermore, Echis and Anolis introns exhibit quantitatively and qualitatively distinctions in their inserted retroelements. These findings identify introns as possible key elements in the recruitment and amplification process of SVMPs into the venom gland of extant snakes. Ongoing reptile genome sequencing projects may shed light on this intriguing aspect of the emergence and evolution of venom toxin genes. Furthermore, the organization of the PIII-SVMP reported here provides a genomic explanation for the emergence of dimeric disintegrin subunits encoded by short messengers.
Collapse
Affiliation(s)
- Libia Sanz
- Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | | | | |
Collapse
|
8
|
Casewell NR, Harrison RA, Wüster W, Wagstaff SC. Comparative venom gland transcriptome surveys of the saw-scaled vipers (Viperidae: Echis) reveal substantial intra-family gene diversity and novel venom transcripts. BMC Genomics 2009; 10:564. [PMID: 19948012 PMCID: PMC2790475 DOI: 10.1186/1471-2164-10-564] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 11/30/2009] [Indexed: 12/03/2022] Open
Abstract
Background Venom variation occurs at all taxonomical levels and can impact significantly upon the clinical manifestations and efficacy of antivenom therapy following snakebite. Variation in snake venom composition is thought to be subject to strong natural selection as a result of adaptation towards specific diets. Members of the medically important genus Echis exhibit considerable variation in venom composition, which has been demonstrated to co-evolve with evolutionary shifts in diet. We adopt a venom gland transcriptome approach in order to investigate the diversity of toxins in the genus and elucidate the mechanisms which result in prey-specific adaptations of venom composition. Results Venom gland transcriptomes were created for E. pyramidum leakeyi, E. coloratus and E. carinatus sochureki by sequencing ~1000 expressed sequence tags from venom gland cDNA libraries. A standardised methodology allowed a comprehensive intra-genus comparison of the venom gland profiles to be undertaken, including the previously described E. ocellatus transcriptome. Blast annotation revealed the presence of snake venom metalloproteinases, C-type lectins, group II phopholipases A2, serine proteases, L-amino oxidases and growth factors in all transcriptomes throughout the genus. Transcripts encoding disintegrins, cysteine-rich secretory proteins and hyaluronidases were obtained from at least one, but not all, species. A representative group of novel venom transcripts exhibiting similarity to lysosomal acid lipase were identified from the E. coloratus transcriptome, whilst novel metallopeptidases exhibiting similarity to neprilysin and dipeptidyl peptidase III were identified from E. p. leakeyi and E. coloratus respectively. Conclusion The comparison of Echis venom gland transcriptomes revealed substantial intrageneric venom variation in representations and cluster numbers of the most abundant venom toxin families. The expression profiles of established toxin groups exhibit little obvious association with venom-related adaptations to diet described from this genus. We suggest therefore that alterations in isoform diversity or transcript expression levels within the major venom protein families are likely to be responsible for prey specificity, rather than differences in the representation of entire toxin families or the recruitment of novel toxin families, although the recruitment of lysosomal acid lipase as a response to vertebrate feeding cannot be excluded. Evidence of marked intrageneric venom variation within the medically important genus Echis strongly advocates further investigations into the medical significance of venom variation in this genus and its impact upon antivenom therapy.
Collapse
Affiliation(s)
- Nicholas R Casewell
- School of Biological Sciences, Bangor University, Environment Centre Wales, Bangor, UK.
| | | | | | | |
Collapse
|
9
|
Vija H, Samel M, Siigur E, Aaspõllu A, Tõnismägi K, Trummal K, Subbi J, Siigur J. VGD and MLD-motifs containing heterodimeric disintegrin viplebedin-2 from Vipera lebetina snake venom. Purification and cDNA cloning. Comp Biochem Physiol B Biochem Mol Biol 2009; 153:253-60. [PMID: 19296915 DOI: 10.1016/j.cbpb.2009.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 03/05/2009] [Accepted: 03/10/2009] [Indexed: 11/29/2022]
Abstract
We have previously demonstrated that the fibrinolytic enzyme lebetase is synthesized with disintegrin-like domain that is cleaved posttranslationally (Siigur et al., 1996). Now we isolated a heterodimeric disintegrin viplebedin-2 containing this disintegrin-like part from Vipera lebetina venom using size-exclusion chromatography on Sephadex G-100 sf and HPLC on C18 column. The molecular masses of viplebedin-2 and tryptic peptides from both chains of viplebedin-2 were determined by MALDI-TOF mass spectrometry. Using cDNA library of the venom gland of a single V. lebetina turanica snake the viplebedin-2 coding cDNAs were cloned and sequenced. Viplebedin-2 chains are synthesized from two different genes. One chain, containing VGD sequence in disintegrin loop, is synthesized as a disintegrin-like part of the PII-type metalloprotease, lebetase. The other chain, containing MLD sequence in disintegrin loop, is synthesized from the gene without metalloproteinase domain. Two polyadenylation signal sequences have been found in MLD sequence coding chain precursor cDNAs. Viplebedin-2 dose-dependently inhibited adhesion of platelets to immobilized collagen and inhibited collagen-induced platelet aggregation.
Collapse
Affiliation(s)
- Heiki Vija
- National Institute of Chemical Physics and Biophysics, Akadeemia tee 23,Tallinn 12618, Estonia
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Wagstaff SC, Sanz L, Juárez P, Harrison RA, Calvete JJ. Combined snake venomics and venom gland transcriptomic analysis of the ocellated carpet viper, Echis ocellatus. J Proteomics 2009; 71:609-23. [PMID: 19026773 DOI: 10.1016/j.jprot.2008.10.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 10/16/2008] [Accepted: 10/16/2008] [Indexed: 01/05/2023]
Abstract
Snakebite in Africa causes thousands of deaths annually and considerable permanent physical disability. The saw-scaled viper, Echis ocellatus, represents the single most medically important snake species in West Africa. To provide a detailed compositional analysis of the venom of E. ocellatus for designing novel toxin-specific immunotherapy and to delineate sequence structure-function relationships of individual toxins, we characterised the venom proteome and the venom gland transcriptome. Whole E. ocellatus venom was fractionated by reverse-phase HPLC, followed by analysis of each chromatographic fraction using a combination of SDS-PAGE, N-terminal sequencing, MALDI-TOF mass fingerprinting, and CID-MS/MS of tryptic peptides. This analysis identified around 35 distinct proteins of molecular masses in the range of 5.5-110 kDa belonging to 8 different toxin families (disintegrin, DC-fragment, phospholipase A(2), cysteine-rich secretory protein, serine proteinase, C-type lectin, l-amino acid oxidase, and Zn(2+)-dependent metalloprotease). Comparison of the toxin composition of E. ocellatus venom determined using a proteomic approach, with the predicted proteome derived from assembly of 1000 EST sequences from a E. ocellatus venom gland cDNA library, shows some differences. Most notably, peptides derived from 26% of the venom proteins could not be ascribed an exact match in the transcriptome. Similarly, 64 (67%) out of the 95 putative toxin clusters reported in the transcriptome did not match to peptides detected in the venom proteome. These data suggest that the final composition of venom is influenced by transcriptional and post-translational mechanisms that may be more complex than previously appreciated. This, in turn, emphasises the value of combining proteomic and transcriptomic approaches to acquire a more complete understanding of the precise composition of snake venom, than would be gleaned from using one analysis alone. From a clinical perspective, the large amount of SVMPs (66.5% of the total venom proteins) is consistent with the haemorrhagic pathology associated with E. ocellatus envenoming. More significantly, whilst the proteomic analysis confirms the majority of these metalloproteinases (58%) belong to the SVMP PIII class, MS/MS derived peptide sequencing also demonstrates a major constituent (32%) of E. ocellatus venom is a PIV-SVMP with a quaternary structure comprising a 48 kDa (Q2UXQ4 or Q2UXQ5) PIII-SVMP subunit, and two 14-16 kDa C-type lectin-like domains [EOC_00087 and EOC_00124] which display similarity to echicetin alpha [P81017] and beta [P81996] subunits.
Collapse
|
11
|
Juarez P, Comas I, Gonzalez-Candelas F, Calvete JJ. Evolution of Snake Venom Disintegrins by Positive Darwinian Selection. Mol Biol Evol 2008; 25:2391-407. [DOI: 10.1093/molbev/msn179] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
12
|
Fox JW, Serrano SMT. Exploring snake venom proteomes: multifaceted analyses for complex toxin mixtures. Proteomics 2008; 8:909-20. [PMID: 18203266 DOI: 10.1002/pmic.200700777] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Snake venom proteomes are complex mixtures of a large number of distinct proteins. In a sense, the field of snake venom proteomics has been under investigation since the very earliest biochemical studies on venoms where peptides and proteins were isolated and structurally and biologically characterized. With the recent developments in mass spectrometry for the identification of proteins, coupled with venom gland transcriptomes, has the field of snake venom proteomics began to flourish. These developments have led to exciting insights into the protein composition of venoms and subsequently their pathological activities. In this review, we will discuss the state of art of snake venom proteomics. Although we have not reached the ultimate goal of characterizing and quantifying all unique proteins in a venom proteome, current technologies have opened many opportunities for high-throughput proteomic studies that have gone beyond simple protein identification to analyzing various functional aspects, such as post-translational modifications, proteolytic processing and toxin-target interactions. In this review, we will discuss the technological approaches used in the study of venom proteomics highlighting the advances made and future directions.
Collapse
Affiliation(s)
- Jay W Fox
- Department of Microbiology, Health Sciences Center, University of Virginia, Charlottesville, VA, USA
| | | |
Collapse
|
13
|
Bazaa A, Juárez P, Marrakchi N, Bel Lasfer Z, El Ayeb M, Harrison RA, Calvete JJ, Sanz L. Loss of introns along the evolutionary diversification pathway of snake venom disintegrins evidenced by sequence analysis of genomic DNA from Macrovipera lebetina transmediterranea and Echis ocellatus. J Mol Evol 2006; 64:261-71. [PMID: 17177090 DOI: 10.1007/s00239-006-0161-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Accepted: 10/09/2006] [Indexed: 10/23/2022]
Abstract
Analysis of cDNAs from Macrovipera lebetina transmediterranea (Mlt) and Echis ocellatus (Eo) venom gland libraries encoding disintegrins argued strongly for a common ancestry of the messengers of short disintegrins and those for precursors of dimeric disintegrin chains. We now report the sequence analysis of disintegrin-coding genes from these two vipers. Genomic DNAs for dimeric disintegrin subunits Ml_G1 and Ml_G2 (Mlt) and Eo_D3 (Eo) contain single 1-kb introns exhibiting the 5'-GTAAG (donor)/3'-AG (acceptor) consensus intron splicing signature. On the other hand, the short RTS-disintegrins Ml_G3 (Mlt) and Eo_RTS (Eo) and the short RGD-disintegrin ocellatusin (Eo) are transcribed from intronless genomic DNA sequences, indicating that the evolutionary pathway leading to the emergence of short disintegrins involved the removal of all intronic sequences. The insertion position of the intron within Ml_G1, Ml_G2, and Eo_D3 is conserved in the genes for vertebrate ADAM (A disintegrin and metalloproteinase) protein disintegrin-like domains and within the gene for the medium-size snake disintegrins halystatins 2 and 3. However, a comparative analysis of currently available disintegrin(-like) genes outlines the view that a minimization of both the gene organization and the protein structure underlies the evolution of the snake venom disintegrin family.
Collapse
Affiliation(s)
- Amine Bazaa
- Laboratoire des Venins et Toxines, Institut Pasteur de Tunis, B.P. 74, 1002, Tunis-Belvédère, Tunisia
| | | | | | | | | | | | | | | |
Collapse
|