1
|
Kachi K, Sato T, Nagasawa M, Cann I, Atomi H. The Lreu_1276 protein from Limosilactobacillus reuteri represents a third family of dihydroneopterin triphosphate pyrophosphohydrolases in bacteria. Appl Environ Microbiol 2024; 90:e0081424. [PMID: 38888337 PMCID: PMC11267939 DOI: 10.1128/aem.00814-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 05/14/2024] [Indexed: 06/20/2024] Open
Abstract
Tetrahydrofolate is a cofactor involved in C1 metabolism including biosynthesis pathways for adenine and serine. In the classical tetrahydrofolate biosynthesis pathway, the steps removing three phosphate groups from the precursor 7,8-dihydroneopterin triphosphate (DHNTP) remain unclear in many bacteria. DHNTP pyrophosphohydrolase hydrolyzes pyrophosphate from DHNTP and produces 7,8-dihydroneopterin monophosphate. Although two structurally distinct DHNTP pyrophosphohydrolases have been identified in the intestinal bacteria Lactococcus lactis and Escherichia coli, the distribution of their homologs is limited. Here, we aimed to identify a third DHNTP pyrophosphohydrolase gene in the intestinal lactic acid bacterium Limosilactobacillus reuteri. In a gene operon including genes involved in dihydrofolate biosynthesis, we focused on the lreu_1276 gene, annotated as Ham1 family protein or XTP/dITP diphosphohydrolase, as a candidate encoding DHNTP pyrophosphohydrolase. The Lreu_1276 recombinant protein was prepared using E. coli and purified. Biochemical analyses of the reaction product revealed that the Lreu_1276 protein displays significant pyrophosphohydrolase activity toward DHNTP. The optimal reaction temperature and pH were 35°C and around 7, respectively. Substrate specificity was relatively strict among 17 tested compounds. Although previously characterized DHNTP pyrophosphohydrolases prefer Mg2+, the Lreu_1276 protein exhibited maximum activity in the presence of Mn2+, with a specific activity of 28.2 ± 2.0 µmol min-1 mg-1 in the presence of 1 mM Mn2+. The three DHNTP pyrophosphohydrolases do not share structural similarity to one another, and the distribution of their homologs does not overlap, implying that the Lreu_1276 protein represents a third structurally novel DHNTP pyrophosphohydrolase in bacteria. IMPORTANCE The identification of a structurally novel DHNTP pyrophosphohydrolase in L. reuteri provides valuable information in understanding tetrahydrofolate biosynthesis in bacteria that possess lreu_1276 homologs. Interestingly, however, even with the identification of a third family of DHNTP pyrophosphohydrolases, there are still a number of bacteria that do not harbor homologs for any of the three genes while possessing other genes involved in the biosynthesis of the pterin ring structure. This suggests the presence of an unrecognized DHNTP pyrophosphohydrolase gene in bacteria. As humans do not harbor DHNTP pyrophosphohydrolase, the high structural diversity of enzymes responsible for a reaction in tetrahydrofolate biosynthesis may provide an advantage in designing inhibitors targeting a specific group of bacteria in the intestinal microbiota.
Collapse
Affiliation(s)
- Kaede Kachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Takaaki Sato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
- Integrated Research Center for Carbon Negative Science, Kyoto University, Kyoto, Japan
| | - Maina Nagasawa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Isaac Cann
- Department of Animal Science, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Haruyuki Atomi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
- Integrated Research Center for Carbon Negative Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
2
|
Gupta RS. Update on the genus Robertmurraya: a bacterial genus honoring Dr. Robert G.E. Murray (with some personal reminiscences). Can J Microbiol 2023; 69:387-392. [PMID: 37555510 DOI: 10.1139/cjm-2023-0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The genus Robertmurraya was created by my group in 2020 to recognize the contributions of Dr. Robert G.E. Murray to the field of prokaryotic taxonomy. This manuscript updates the information regarding this genus. In addition to the seven Robertmurraya species with validly published names, the work presented here shows that two species with effectively published names, "Bacillus yapensis" and "Bacillus dakarensis", and an uncharacterized Bacillus sp. Y1 are also affiliated with this genus. Based on these results, reclassification of "Bacillus yapensis" as a novel species Robertmurraya yapensis sp. nov. is proposed. It is also suggested that "Bacillus dakarensis", for which strains are not available from culture collections, should also be recognized as "Robertmurraya dakarensis". This article also reflects on the serendipitous way I came to know Dr. Murray and his extensive interactions with me and strong support for our work for more than 10 years. Dr. Murray also introduced me and our work to his friend and contemporary Dr. Peter Sneath, who like him also contributed extensively to the field of prokaryotic taxonomy. This introduction led to a fruitful collaboration with Dr. Sneath leading to a joint publication describing the use of the Character Compatibility approach to molecular sequence data.
Collapse
Affiliation(s)
- Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada L8N 3Z5
| |
Collapse
|
3
|
Deryusheva E, Machulin A, Matyunin M, Galzitskaya O. Sequence and evolutionary analysis of bacterial ribosomal S1 proteins. Proteins 2021; 89:1111-1124. [PMID: 33843105 DOI: 10.1002/prot.26084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/17/2021] [Accepted: 04/07/2021] [Indexed: 12/21/2022]
Abstract
The multi-domain bacterial S1 protein is the largest and most functionally important ribosomal protein of the 30S subunit, which interacts with both mRNA and proteins. The family of ribosomal S1 proteins differs in the classical sense from a protein with tandem repeats and has a "bead-on-string" organization, where each repeat is folded into a globular domain. Based on our recent data, the study of evolutionary relationships for the bacterial phyla will provide evidence for one of the proposed theories of the evolutionary development of proteins with structural repeats: from multiple repeats of assembles to single repeats, or vice versa. In this comparative analysis of 1333 S1 sequences that were identified in 24 different phyla, we demonstrate how such phyla can form independently/dependently during evolution. To the best of our knowledge, this work is the first study of the evolutionary history of bacterial ribosomal S1 proteins. The collected and structured data can be useful to computer biologists as a resource for determining percent identity, amino acid composition and logo motifs, as well as dN/dS ratio in bacterial S1 protein. The obtained research data indicate that the evolutionary development of bacterial ribosomal S1 proteins evolved from multiple assemblies to single repeat. The presented data are integrated into the server, which can be accessed at http://oka.protres.ru:4200.
Collapse
Affiliation(s)
- Evgeniya Deryusheva
- Institute for Biological Instrumentation, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Russian Federation
| | - Andrey Machulin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Russian Federation
| | - Maxim Matyunin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russian Federation
| | - Oxana Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russian Federation.,Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russian Federation
| |
Collapse
|
4
|
Das S, Majumder S, Mathur C, Kingston JJ. Molecular characterization and phylogenetic analysis of Clostridium perfringens from animals and their environments by cpn60 UT sequencing analysis. INFECTION GENETICS AND EVOLUTION 2018; 58:209-217. [DOI: 10.1016/j.meegid.2017.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/07/2017] [Accepted: 12/09/2017] [Indexed: 01/17/2023]
|
5
|
Vargas-Albores F, Ortiz-Suárez LE, Villalpando-Canchola E, Martínez-Porchas M. Size-variable zone in V3 region of 16S rRNA. RNA Biol 2017; 14:1514-1521. [PMID: 28440695 DOI: 10.1080/15476286.2017.1317912] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The size distribution of complete 16S-rRNA sequences from the SILVA-database and nucleotide shifts that might interfere with the secondary structure of the molecules were evaluated. Overall, 513,309 sequences recorded in SILVA were used to estimate the size of hypervariable regions of the gene. Redundant sequences were treated as a single sequence to achieve a better representation of the molecular diversity. Nucleotides found in each position in 95% of the sequences were considered the consensus sequences for different size-groups (consensus95). The sizes of different regions ranged from 96.7 to 283.1 nucleotides and had similar distribution patterns, except for the V3 region, which exhibited a bimodal distribution composed of 2 main peaks of 161 and 186 nt. The alignment of Consensuses95 of fractions 161 and 186 showed a high degree of similarity and conservation, except for the central positions (gap zone), where the sequence was highly variable and several deletions were observed. Structurally, the gap zone forms the central part of helix 17 (H17), and its extension was directly reflected in the size of this helix. H17 is part of a multihelix conjunction known as the 5-way junction (5 WJ), which is indispensable for 30 S ribosome assembly. However, because a drastic variation in the sequence size of V3 region occurs at a central position in loop H17 without affecting the base of the loop, it has no apparent effect on 5 WJ. Finally, considering that these differences were detected in non-redundant sequences, it can be concluded that this is not an uncommon or isolated event and that the V3 region is possibly more likely to mutate than are other regions.
Collapse
Affiliation(s)
- Francisco Vargas-Albores
- a Centro de Investigación en Alimentación y Desarrollo , Carretera a La Victoria . Hermosillo , Sonora , México
| | | | | | - Marcel Martínez-Porchas
- a Centro de Investigación en Alimentación y Desarrollo , Carretera a La Victoria . Hermosillo , Sonora , México
| |
Collapse
|
6
|
Cherry JL. A practical exact maximum compatibility algorithm for reconstruction of recent evolutionary history. BMC Bioinformatics 2017; 18:127. [PMID: 28231758 PMCID: PMC5324209 DOI: 10.1186/s12859-017-1520-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/01/2017] [Indexed: 12/02/2022] Open
Abstract
Background Maximum compatibility is a method of phylogenetic reconstruction that is seldom applied to molecular sequences. It may be ideal for certain applications, such as reconstructing phylogenies of closely-related bacteria on the basis of whole-genome sequencing. Results Here I present an algorithm that rapidly computes phylogenies according to a compatibility criterion. Although based on solutions to the maximum clique problem, this algorithm deals properly with ambiguities in the data. The algorithm is applied to bacterial data sets containing up to nearly 2000 genomes with several thousand variable nucleotide sites. Run times are several seconds or less. Computational experiments show that maximum compatibility is less sensitive than maximum parsimony to the inclusion of nucleotide data that, though derived from actual sequence reads, has been identified as likely to be misleading. Conclusions Maximum compatibility is a useful tool for certain phylogenetic problems, such as inferring the relationships among closely-related bacteria from whole-genome sequence data. The algorithm presented here rapidly solves fairly large problems of this type, and provides robustness against misleading characters than can pollute large-scale sequencing data. Electronic supplementary material The online version of this article (doi:10.1186/s12859-017-1520-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joshua L Cherry
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| |
Collapse
|
7
|
Gupta RS. Impact of genomics on the understanding of microbial evolution and classification: the importance of Darwin's views on classification. FEMS Microbiol Rev 2016; 40:520-53. [PMID: 27279642 DOI: 10.1093/femsre/fuw011] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2016] [Indexed: 12/24/2022] Open
Abstract
Analyses of genome sequences, by some approaches, suggest that the widespread occurrence of horizontal gene transfers (HGTs) in prokaryotes disguises their evolutionary relationships and have led to questioning of the Darwinian model of evolution for prokaryotes. These inferences are critically examined in the light of comparative genome analysis, characteristic synapomorphies, phylogenetic trees and Darwin's views on examining evolutionary relationships. Genome sequences are enabling discovery of numerous molecular markers (synapomorphies) such as conserved signature indels (CSIs) and conserved signature proteins (CSPs), which are distinctive characteristics of different prokaryotic taxa. Based on these molecular markers, exhibiting high degree of specificity and predictive ability, numerous prokaryotic taxa of different ranks, currently identified based on the 16S rRNA gene trees, can now be reliably demarcated in molecular terms. Within all studied groups, multiple CSIs and CSPs have been identified for successive nested clades providing reliable information regarding their hierarchical relationships and these inferences are not affected by HGTs. These results strongly support Darwin's views on evolution and classification and supplement the current phylogenetic framework based on 16S rRNA in important respects. The identified molecular markers provide important means for developing novel diagnostics, therapeutics and for functional studies providing important insights regarding prokaryotic taxa.
Collapse
Affiliation(s)
- Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
8
|
Ciordia S, Robertson L, Arcos SC, González MR, Mena MDC, Zamora P, Vieira P, Abrantes I, Mota M, Castagnone-Sereno P, Navas A. Protein markers of Bursaphelenchus xylophilus Steiner & Buhrer, 1934 (Nickle, 1970) populations using quantitative proteomics and character compatibility. Proteomics 2016; 16:1006-14. [PMID: 26718462 DOI: 10.1002/pmic.201500106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 11/06/2015] [Accepted: 12/29/2015] [Indexed: 01/09/2023]
Abstract
The Pine Wood Nematode (PWN) Bursaphelenchus xylophilus is a severe forest pathogen in countries where it has been introduced and is considered a worldwide quarantine organism. In this study, protein markers for differentiating populations of this nematode were identified by studying differences among four selected Iberian and one American population. These populations were compared by quantitative proteomics (iTRAQ). From a total of 2860 proteins identified using the public database from the B. xylophilus genome project, 216 were unambiguous and significantly differentially regulated in the studied populations. Comparisons of their pairwise ratio were statistically treated and supported in order to convert them into discrete character states, suggesting that 141 proteins were not informative as population specific markers. Application of the Character Compatibility methodology on the remaining 75 proteins (belonging to families with different biological functions) excludes 27 which are incompatible among them. Considering only the compatible proteins, the method selects a subset of 30 specific unique protein markers which allowed the compared classification of the Iberian isolates. This approach makes it easier search for diagnostic tools and phylogenetic inference within species and populations of a pathogen exhibiting a high level of genetic diversity.
Collapse
Affiliation(s)
- Sergio Ciordia
- Unidad de Proteomica Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Lee Robertson
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Susana C Arcos
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - María Rosa González
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | | | - Paula Zamora
- Centro de Sanidad Forestal de Calabazanos, Consejería de Fomento y Medio Ambiente, Dirección General del Medio Natural, Junta de Castilla y León, Polígono Industrial de Villamuriel de Cerrato, Palencia, España
| | - Paulo Vieira
- NemaLab/ ICAAM (Instituto de Ciências Agrárias e Ambientais Mediterrânicas), Universidade de Évora, Herdade da Mitra, Évora, Portugal
| | - Isabel Abrantes
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, Coimbra, Portugal
| | - Manuel Mota
- NemaLab/ ICAAM (Instituto de Ciências Agrárias e Ambientais Mediterrânicas), Universidade de Évora, Herdade da Mitra, Évora, Portugal
| | - Philippe Castagnone-Sereno
- INRA UMR1355/Université de Nice-SophiaAntipolis/CNRS UMR7254, Institut Sophia Agrobiotech, Sophia Antipolis, France
| | - Alfonso Navas
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| |
Collapse
|
9
|
A phylogenomic and molecular markers based analysis of the phylum Chlamydiae: proposal to divide the class Chlamydiia into two orders, Chlamydiales and Parachlamydiales ord. nov., and emended description of the class Chlamydiia. Antonie van Leeuwenhoek 2015; 108:765-81. [PMID: 26179278 DOI: 10.1007/s10482-015-0532-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 07/10/2015] [Indexed: 12/27/2022]
Abstract
The phylum Chlamydiae contains nine ecologically and genetically diverse families all placed within a single order. In this work, we have completed a comprehensive comparative analysis of 36 sequenced Chlamydiae genomes in order to identify shared molecular characteristics, namely conserved signature insertions/deletions (CSIs) and conserved signature proteins (CSPs), which can serve as distinguishing characteristics of supra-familial clusters within the phylum Chlamydiae. Our analysis has led to the identification of 32 CSIs which are specific to clusters within the phylum Chlamydiae at various phylogenetic depths. Importantly, 17 CSIs and 98 CSPs were found to be specific for the family Chlamydiaceae while another 3 CSI variants and 15 CSPs were specific for a grouping of the families Criblamydiaceae, Parachlamydiaceae, Simkaniaceae and Waddliaceae. These two clusters were also found to be distinguishable in 16S rRNA based phylogenetic trees, concatenated protein based phylogenetic trees, character compatibility based phylogenetic analyses, and on the basis of 16S rRNA gene sequence identity and average amino acid identity values. On the basis of the identified molecular characteristics, branching in phylogenetic trees, and the genetic distance between the two clusters within the phylum Chlamydiae we propose a division of the class Chlamydiia into two orders: an emended order Chlamydiales, containing the family Chlamydiaceae and the closely related Candidatus family Clavichlamydiaceae, and the novel order Parachlamydiales ord. nov. containing the families Parachlamydiaceae, Simkaniaceae and Waddliaceae and the Candidatus families Criblamydiaceae, Parilichlamydiaceae, Piscichlamydiaceae, and Rhabdochlamydiaceae. We also include a brief discussion of the reunification of the genera Chlamydia and Chlamydophila.
Collapse
|
10
|
Scotland RW, Steel M. Circumstances in which parsimony but not compatibility will be provably misleading. Syst Biol 2015; 64:492-504. [PMID: 25634097 PMCID: PMC4395848 DOI: 10.1093/sysbio/syv008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 01/23/2015] [Indexed: 11/12/2022] Open
Abstract
Phylogenetic methods typically rely on an appropriate model of how data evolved in order to infer an accurate phylogenetic tree. For molecular data, standard statistical methods have provided an effective strategy for extracting phylogenetic information from aligned sequence data when each site (character) is subject to a common process. However, for other types of data (e.g., morphological data), characters can be too ambiguous, homoplastic, or saturated to develop models that are effective at capturing the underlying process of change. To address this, we examine the properties of a classic but neglected method for inferring splits in an underlying tree, namely, maximum compatibility. By adopting a simple and extreme model in which each character either fits perfectly on some tree, or is entirely random (but it is not known which class any character belongs to) we are able to derive exact and explicit formulae regarding the performance of maximum compatibility. We show that this method is able to identify a set of non-trivial homoplasy-free characters, when the number [Formula: see text] of taxa is large, even when the number of random characters is large. In contrast, we show that a method that makes more uniform use of all the data-maximum parsimony-can provably estimate trees in which none of the original homoplasy-free characters support splits.
Collapse
Affiliation(s)
| | - Mike Steel
- Biomathematics Research Centre, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
11
|
New insights into 1-aminocyclopropane-1-carboxylate (ACC) deaminase phylogeny, evolution and ecological significance. PLoS One 2014; 9:e99168. [PMID: 24905353 PMCID: PMC4048297 DOI: 10.1371/journal.pone.0099168] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 05/09/2014] [Indexed: 01/13/2023] Open
Abstract
The main objective of this work is the study of the phylogeny, evolution and ecological importance of the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, the activity of which represents one of the most important and studied mechanisms used by plant growth–promoting microorganisms. The ACC deaminase gene and its regulatory elements presence in completely sequenced organisms was verified by multiple searches in diverse databases, and based on the data obtained a comprehensive analysis was conducted. Strain habitat, origin and ACC deaminase activity were taken into account when analyzing the results. In order to unveil ACC deaminase origin, evolution and relationships with other closely related pyridoxal phosphate (PLP) dependent enzymes a phylogenetic analysis was also performed. The data obtained show that ACC deaminase is mostly prevalent in some Bacteria, Fungi and members of Stramenopiles. Contrary to previous reports, we show that ACC deaminase genes are predominantly vertically inherited in various bacterial and fungal classes. Still, results suggest a considerable degree of horizontal gene transfer events, including interkingdom transfer events. A model for ACC deaminase origin and evolution is also proposed. This study also confirms the previous reports suggesting that the Lrp-like regulatory protein AcdR is a common mechanism regulating ACC deaminase expression in Proteobacteria, however, we also show that other regulatory mechanisms may be present in some Proteobacteria and other bacterial phyla. In this study we provide a more complete view of the role for ACC deaminase than was previously available. The results show that ACC deaminase may not only be related to plant growth promotion abilities, but may also play multiple roles in microorganism's developmental processes. Hence, exploring the origin and functioning of this enzyme may be the key in a variety of important agricultural and biotechnological applications.
Collapse
|
12
|
Gupta RS. Identification of Conserved Indels that are Useful for Classification and Evolutionary Studies. J Microbiol Methods 2014. [DOI: 10.1016/bs.mim.2014.05.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
Bhandari V, Gupta RS. Molecular signatures for the phylum (class) Thermotogae and a proposal for its division into three orders (Thermotogales, Kosmotogales ord. nov. and Petrotogales ord. nov.) containing four families (Thermotogaceae, Fervidobacteriaceae fam. nov., Kosmotogaceae fam. nov. and Petrotogaceae fam. nov.) and a new genus Pseudothermotoga gen. nov. with five new combinations. Antonie van Leeuwenhoek 2013; 105:143-68. [PMID: 24166034 DOI: 10.1007/s10482-013-0062-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/21/2013] [Indexed: 10/26/2022]
Abstract
All species from the phylum Thermotogae, class Thermotogae, are currently part of a single family, Thermotogaceae. Using genomic data from 17 Thermotogae species, detailed phylogenetic and comparative genomic analyses were carried out to understand their evolutionary relationships and identify molecular markers that are indicative of species relationships within the phylum. In the 16S rRNA gene tree and phylogenetic trees based upon two different large sets of proteins, members of the phylum Thermotogae formed a number of well-resolved clades. Character compatibility analysis on the protein sequence data also recovered a single largest clique that exhibited similar topology to the protein trees and where all nodes were supported by multiple compatible characters. Comparative genomic analyses have identified 85 molecular markers, in the form of conserved signature indels (CSIs), which are specific for different observed clades of Thermotogae at multiple phylogenetic depths. Eleven of these CSIs were specific for the phylum Thermotogae whereas nine others supported a clade comprising of the genera Thermotoga, Thermosipho and Fervidobacterium. Ten other CSIs provided evidence that the genera Thermosipho and Fervidobacterium shared a common ancestor exclusive of the other Thermotogae and four and eight CSIs in other proteins were specific for the genera Thermosipho and Fervidobacterium, respectively. Two other deep branching clades, one consisting of the genera Kosmotoga and Mesotoga and the other comprising of the genera Petrotoga and Marinitoga, were also supported by multiple CSIs. Based upon the consistent branching of the Thermotogae species using different phylogenetic approaches, and numerous identified CSIs supporting the distinctness of different clades, it is proposed that the class Thermotogae should be divided into three orders (Thermotogales, Kosmotogales ord. nov. and Petrotogales ord. nov.) containing four families (Thermotogaceae, Fervidobacteriaceae fam. nov., Kosmotogaceae fam. nov. and Petrotogaceae fam. nov.). Additionally, the results of our phylogenetic/compatibility studies along with the species distribution patterns of 22 identified CSIs, provide compelling evidence that the current genus Thermotoga is comprised of two evolutionary distinct groups and that it should be divided into two genera. It is proposed that the emended genus Thermotoga should retain only the species Thermotoga maritima, Tt. neapolitana, Tt. petrophila, Tt. naphthophila, Thermotoga sp. EMP, Thermotoga sp. A7A and Thermotoga sp. RQ2 while the other Thermotoga species (viz. Tt. lettingae, Tt. thermarum, Tt. elfii, Tt. subterranean and Tt. hypogea) be transferred to a new genus, Pseudothermotoga gen. nov.
Collapse
Affiliation(s)
- Vaibhav Bhandari
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | | |
Collapse
|
14
|
Naushad HS, Gupta RS. Phylogenomics and molecular signatures for species from the plant pathogen-containing order xanthomonadales. PLoS One 2013; 8:e55216. [PMID: 23408961 PMCID: PMC3568101 DOI: 10.1371/journal.pone.0055216] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 12/19/2012] [Indexed: 01/31/2023] Open
Abstract
The species from the order Xanthomonadales, which harbors many important plant pathogens and some human pathogens, are currently distinguished primarily on the basis of their branching in the 16S rRNA tree. No molecular or biochemical characteristic is known that is specific for these bacteria. Phylogenetic and comparative analyses were conducted on 26 sequenced Xanthomonadales genomes to delineate their branching order and to identify molecular signatures consisting of conserved signature indels (CSIs) in protein sequences that are specific for these bacteria. In a phylogenetic tree based upon sequences for 28 proteins, Xanthomonadales species formed a strongly supported clade with Rhodanobacter sp. 2APBS1 as its deepest branch. Comparative analyses of protein sequences have identified 13 CSIs in widely distributed proteins such as GlnRS, TypA, MscL, LysRS, LipA, Tgt, LpxA, TolQ, ParE, PolA and TyrB that are unique to all species/strains from this order, but not found in any other bacteria. Fifteen additional CSIs in proteins (viz. CoxD, DnaE, PolA, SucA, AsnB, RecA, PyrG, LigA, MutS and TrmD) are uniquely shared by different Xanthomonadales except Rhodanobacter and in a few cases by Pseudoxanthomonas species, providing further support for the deep branching of these two genera. Five other CSIs are commonly shared by Xanthomonadales and 1–3 species from the orders Chromatiales, Methylococcales and Cardiobacteriales suggesting that these deep branching orders of Gammaproteobacteria might be specifically related. Lastly, 7 CSIs in ValRS, CarB, PyrE, GlyS, RnhB, MinD and X001065 are commonly shared by Xanthomonadales and a limited number of Beta- or Gamma-proteobacteria. Our analysis indicates that these CSIs have likely originated independently and they are not due to lateral gene transfers. The Xanthomonadales-specific CSIs reported here provide novel molecular markers for the identification of these important plant and human pathogens and also as potential targets for development of drugs/agents that specifically target these bacteria.
Collapse
Affiliation(s)
- Hafiz Sohail Naushad
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Radhey S. Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
15
|
Gao B, Gupta RS. Phylogenetic framework and molecular signatures for the main clades of the phylum Actinobacteria. Microbiol Mol Biol Rev 2012; 76:66-112. [PMID: 22390973 PMCID: PMC3294427 DOI: 10.1128/mmbr.05011-11] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The phylum Actinobacteria harbors many important human pathogens and also provides one of the richest sources of natural products, including numerous antibiotics and other compounds of biotechnological interest. Thus, a reliable phylogeny of this large phylum and the means to accurately identify its different constituent groups are of much interest. Detailed phylogenetic and comparative analyses of >150 actinobacterial genomes reported here form the basis for achieving these objectives. In phylogenetic trees based upon 35 conserved proteins, most of the main groups of Actinobacteria as well as a number of their superageneric clades are resolved. We also describe large numbers of molecular markers consisting of conserved signature indels in protein sequences and whole proteins that are specific for either all Actinobacteria or their different clades (viz., orders, families, genera, and subgenera) at various taxonomic levels. These signatures independently support the existence of different phylogenetic clades, and based upon them, it is now possible to delimit the phylum Actinobacteria (excluding Coriobacteriia) and most of its major groups in clear molecular terms. The species distribution patterns of these markers also provide important information regarding the interrelationships among different main orders of Actinobacteria. The identified molecular markers, in addition to enabling the development of a stable and reliable phylogenetic framework for this phylum, also provide novel and powerful means for the identification of different groups of Actinobacteria in diverse environments. Genetic and biochemical studies on these Actinobacteria-specific markers should lead to the discovery of novel biochemical and/or other properties that are unique to different groups of Actinobacteria.
Collapse
Affiliation(s)
- Beile Gao
- Department of Biochemistry and Biomedical Science, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
16
|
Microbial systematics in the post-genomics era. Antonie van Leeuwenhoek 2011; 101:45-54. [DOI: 10.1007/s10482-011-9663-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 10/15/2011] [Indexed: 10/16/2022]
|
17
|
Góes-Neto A, Diniz MV, Santos LB, Pinho ST, Miranda JG, Lobao TP, Borges EP, El-Hani CN, Andrade RF. Comparative protein analysis of the chitin metabolic pathway in extant organisms: A complex network approach. Biosystems 2010; 101:59-66. [DOI: 10.1016/j.biosystems.2010.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 03/25/2010] [Accepted: 04/19/2010] [Indexed: 11/30/2022]
|
18
|
Gupta RS. Molecular signatures for the main phyla of photosynthetic bacteria and their subgroups. PHOTOSYNTHESIS RESEARCH 2010; 104:357-372. [PMID: 20414806 DOI: 10.1007/s11120-010-9553-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Accepted: 04/08/2010] [Indexed: 05/29/2023]
Abstract
The bacterial groups corresponding to different photosynthetic prokaryotes are presently identified mainly on the basis of their branching in phylogenetic trees. The availability of genome sequences is enabling identification of many molecular signatures that are specific for different groups of photosynthetic bacteria. Our recent work has identified large numbers of signatures consisting of conserved inserts or deletions (indels) in widely distributed proteins, as well as whole proteins that are specific for various sequenced species/strains from Cyanobacteria, Chlorobi, and Proteobacteria phyla. Based upon these signatures, it is now possible to identify/distinguish bacteria from these phyla of photosynthetic bacteria as well as their major subclades in clear molecular terms. The use of these signatures in conjunction with phylogenomic analyses, summarized here, is leading to a holistic picture concerning the branching order and evolutionary relationships among the above groups of photosynthetic bacteria. Although detailed studies in this regard have not yet been carried on Chloroflexi and Heliobacteriaceae, we have identified some conserved indels that are specific for these groups. Some of the conserved indels for the photosynthetic bacteria are present in photosynthesis-related proteins. These include a 4 aa insert in the pyruvate flavodoxin/ferridoxin oxidoreductase that is specific for the genus Chloroflexus, a 2 aa insert in magnesium chelatase that is uniquely shared by all Cyanobacteria except the deepest branching Clade A (Gloebacterales), a 6 aa insert in an A-type flavoprotein that is specific for various marine unicellular Cyanobacteria, a 2 aa insert in heme oxygenase that is specific for various Prochlorococcus strains/isolates, and 1 aa deletion in the protein protochlorophyllide oxidoreductase that is commonly shared by various Prochlorococcus strains except the deepest branching isolates MIT 9303 and MIT 9313. The identified CSIs are located in the structures of these proteins in surface loops indicating that they may be important in mediating protein-protein interactions. The cellular functions of these conserved indels, or most of the signature proteins are presently unknown, but they provide valuable means for discovering novel properties that are unique to different groups of photosynthetic bacteria.
Collapse
Affiliation(s)
- Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
19
|
Minana-Galbis D, Urbizu-Serrano A, Farfan M, Fuste MC, Loren JG. Phylogenetic analysis and identification of Aeromonas species based on sequencing of the cpn60 universal target. Int J Syst Evol Microbiol 2009; 59:1976-83. [DOI: 10.1099/ijs.0.005413-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
20
|
Gao B, Mohan R, Gupta RS. Phylogenomics and protein signatures elucidating the evolutionary relationships among the Gammaproteobacteria. Int J Syst Evol Microbiol 2009; 59:234-47. [DOI: 10.1099/ijs.0.002741-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
21
|
Alexandre A, Laranjo M, Young JPW, Oliveira S. dnaJ is a useful phylogenetic marker for alphaproteobacteria. Int J Syst Evol Microbiol 2009; 58:2839-49. [PMID: 19060069 DOI: 10.1099/ijs.0.2008/001636-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the past, bacterial phylogeny relied almost exclusively on 16S rRNA gene sequence analysis. More recently, multilocus sequence analysis has been used to infer organismal phylogenies. In this study, the dnaJ chaperone gene was investigated as a marker for phylogeny studies in alphaproteobacteria. Preliminary analysis of G+C contents and G+C3s contents (the G+C content of the synonymous third codon position) showed no clear evidence of horizontal transfer of this gene in proteobacteria. dnaJ-based phylogenies were then analysed at three taxonomic levels: the Proteobacteria, the Alphaproteobacteria and the genus Mesorhizobium. Dendrograms based on DnaJ and 16S rRNA gene sequences revealed the same topology described previously for the Proteobacteria. These results indicate that the DnaJ phylogenetic signal is able to reproduce the accepted relationships among the five classes of the Proteobacteria. At a lower taxonomic level, using 20 alphaproteobacteria, the 16S rRNA gene-based phylogeny is distinct from the one based on DnaJ sequence analysis. Although the same clusters are generated, only the topology of the DnaJ tree is consistent with broader phylogenies from recent studies based on concatenated alignments of multiple core genes. For example, the DnaJ tree shows the two clusters within the Rhizobiales as closely related, as expected, while the 16S rRNA gene-based phylogeny shows them as distantly related. In order to evaluate the phylogenetic performance of dnaJ at the genus level, a multilocus analysis based on five housekeeping genes (atpD, gapA, gyrB, recA and rplB) was performed for ten Mesorhizobium species. In contrast to the 16S rRNA gene, the DnaJ sequence analysis generated a tree similar to the multilocus dendrogram. For identification of chickpea mesorhizobium isolates, a dnaJ nucleotide sequence-based tree was used. Despite different topologies, 16S rRNA gene- and dnaJ-based trees led to the same species identification. This study suggests that the dnaJ gene is a good phylogenetic marker, particularly for the class Alphaproteobacteria, since its phylogeny is consistent with phylogenies based on multilocus approaches.
Collapse
Affiliation(s)
- Ana Alexandre
- Laboratório de Microbiologia do Solo, Instituto de Ciências Agrárias Mediterrânicas, Universidade de Evora, Evora, Portugal
| | | | | | | |
Collapse
|
22
|
Lu H, Patil P, Van Sluys MA, White FF, Ryan RP, Dow JM, Rabinowicz P, Salzberg SL, Leach JE, Sonti R, Brendel V, Bogdanove AJ. Acquisition and evolution of plant pathogenesis-associated gene clusters and candidate determinants of tissue-specificity in xanthomonas. PLoS One 2008; 3:e3828. [PMID: 19043590 PMCID: PMC2585010 DOI: 10.1371/journal.pone.0003828] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Accepted: 11/03/2008] [Indexed: 01/30/2023] Open
Abstract
Background Xanthomonas is a large genus of plant-associated and plant-pathogenic bacteria. Collectively, members cause diseases on over 392 plant species. Individually, they exhibit marked host- and tissue-specificity. The determinants of this specificity are unknown. Methodology/Principal Findings To assess potential contributions to host- and tissue-specificity, pathogenesis-associated gene clusters were compared across genomes of eight Xanthomonas strains representing vascular or non-vascular pathogens of rice, brassicas, pepper and tomato, and citrus. The gum cluster for extracellular polysaccharide is conserved except for gumN and sequences downstream. The xcs and xps clusters for type II secretion are conserved, except in the rice pathogens, in which xcs is missing. In the otherwise conserved hrp cluster, sequences flanking the core genes for type III secretion vary with respect to insertion sequence element and putative effector gene content. Variation at the rpf (regulation of pathogenicity factors) cluster is more pronounced, though genes with established functional relevance are conserved. A cluster for synthesis of lipopolysaccharide varies highly, suggesting multiple horizontal gene transfers and reassortments, but this variation does not correlate with host- or tissue-specificity. Phylogenetic trees based on amino acid alignments of gum, xps, xcs, hrp, and rpf cluster products generally reflect strain phylogeny. However, amino acid residues at four positions correlate with tissue specificity, revealing hpaA and xpsD as candidate determinants. Examination of genome sequences of xanthomonads Xylella fastidiosa and Stenotrophomonas maltophilia revealed that the hrp, gum, and xcs clusters are recent acquisitions in the Xanthomonas lineage. Conclusions/Significance Our results provide insight into the ancestral Xanthomonas genome and indicate that differentiation with respect to host- and tissue-specificity involved not major modifications or wholesale exchange of clusters, but subtle changes in a small number of genes or in non-coding sequences, and/or differences outside the clusters, potentially among regulatory targets or secretory substrates.
Collapse
Affiliation(s)
- Hong Lu
- Department of Genetics Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Prabhu Patil
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad, India
| | - Marie-Anne Van Sluys
- Departamento de Botânica, IB-USP, Sao Paulo, Sao Paulo, Brazil
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado, United States of America
| | - Frank F. White
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas, United States of America
| | - Robert P. Ryan
- BIOMERIT Research Centre, BioSciences Institute, University College Cork, Cork, Ireland
| | - J. Maxwell Dow
- BIOMERIT Research Centre, BioSciences Institute, University College Cork, Cork, Ireland
| | - Pablo Rabinowicz
- The Institute for Genomic Research, Rockville, Maryland, United States of America
| | - Steven L. Salzberg
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
| | - Jan E. Leach
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado, United States of America
| | - Ramesh Sonti
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad, India
| | - Volker Brendel
- Department of Genetics Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
- Department of Statistics, Iowa State University, Ames, Iowa, United States of America
| | - Adam J. Bogdanove
- Department of Plant Pathology, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
23
|
Cherif-Zahar B, Durand A, Schmidt I, Hamdaoui N, Matic I, Merrick M, Matassi G. Evolution and functional characterization of the RH50 gene from the ammonia-oxidizing bacterium Nitrosomonas europaea. J Bacteriol 2007; 189:9090-100. [PMID: 17921289 PMCID: PMC2168606 DOI: 10.1128/jb.01089-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Accepted: 09/04/2007] [Indexed: 12/31/2022] Open
Abstract
The family of ammonia and ammonium channel proteins comprises the Amt proteins, which are present in all three domains of life with the notable exception of vertebrates, and the homologous Rh proteins (Rh50 and Rh30) that have been described thus far only in eukaryotes. The existence of an RH50 gene in bacteria was first revealed by the genome sequencing of the ammonia-oxidizing bacterium Nitrosomonas europaea. Here we have used a phylogenetic approach to study the evolution of the N. europaea RH50 gene, and we show that this gene, probably as a component of an integron cassette, has been transferred to the N. europaea genome by horizontal gene transfer. In addition, by functionally characterizing the Rh50(Ne) protein and the corresponding knockout mutant, we determined that NeRh50 can mediate ammonium uptake. The RH50(Ne) gene may thus have replaced functionally the AMT gene, which is missing in the genome of N. europaea and may be regarded as a case of nonorthologous gene displacement.
Collapse
|
24
|
Gupta RS, Mok A. Phylogenomics and signature proteins for the alpha proteobacteria and its main groups. BMC Microbiol 2007; 7:106. [PMID: 18045498 PMCID: PMC2241609 DOI: 10.1186/1471-2180-7-106] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Accepted: 11/28/2007] [Indexed: 01/11/2023] Open
Abstract
Background Alpha proteobacteria are one of the largest and most extensively studied groups within bacteria. However, for these bacteria as a whole and for all of its major subgroups (viz. Rhizobiales, Rhodobacterales, Rhodospirillales, Rickettsiales, Sphingomonadales and Caulobacterales), very few or no distinctive molecular or biochemical characteristics are known. Results We have carried out comprehensive phylogenomic analyses by means of Blastp and PSI-Blast searches on the open reading frames in the genomes of several α-proteobacteria (viz. Bradyrhizobium japonicum, Brucella suis, Caulobacter crescentus, Gluconobacter oxydans, Mesorhizobium loti, Nitrobacter winogradskyi, Novosphingobium aromaticivorans, Rhodobacter sphaeroides 2.4.1, Silicibacter sp. TM1040, Rhodospirillum rubrum and Wolbachia (Drosophila) endosymbiont). These studies have identified several proteins that are distinctive characteristics of all α-proteobacteria, as well as numerous proteins that are unique repertoires of all of its main orders (viz. Rhizobiales, Rhodobacterales, Rhodospirillales, Rickettsiales, Sphingomonadales and Caulobacterales) and many families (viz. Rickettsiaceae, Anaplasmataceae, Rhodospirillaceae, Acetobacteraceae, Bradyrhiozobiaceae, Brucellaceae and Bartonellaceae). Many other proteins that are present at different phylogenetic depths in α-proteobacteria provide important information regarding their evolution. The evolutionary relationships among α-proteobacteria as deduced from these studies are in excellent agreement with their branching pattern in the phylogenetic trees and character compatibility cliques based on concatenated sequences for many conserved proteins. These studies provide evidence that the major groups within α-proteobacteria have diverged in the following order: (Rickettsiales(Rhodospirillales (Sphingomonadales (Rhodobacterales (Caulobacterales-Parvularculales (Rhizobiales)))))). We also describe two conserved inserts in DNA Gyrase B and RNA polymerase beta subunit that are distinctive characteristics of the Sphingomonadales and Rhodosprilllales species, respectively. The results presented here also provide support for the grouping of Hyphomonadaceae and Parvularcula species with the Caulobacterales and the placement of Stappia aggregata with the Rhizobiaceae group. Conclusion The α-proteobacteria-specific proteins and indels described here provide novel and powerful means for the taxonomic, biochemical and molecular biological studies on these bacteria. Their functional studies should prove helpful in identifying novel biochemical and physiological characteristics that are unique to these bacteria.
Collapse
Affiliation(s)
- Radhey S Gupta
- Department of Biochemistry and Biomedical Science, McMaster University, Hamilton L8N3Z5, Canada.
| | | |
Collapse
|
25
|
Gupta RS, Lorenzini E. Phylogeny and molecular signatures (conserved proteins and indels) that are specific for the Bacteroidetes and Chlorobi species. BMC Evol Biol 2007; 7:71. [PMID: 17488508 PMCID: PMC1887533 DOI: 10.1186/1471-2148-7-71] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Accepted: 05/08/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Bacteroidetes and Chlorobi species constitute two main groups of the Bacteria that are closely related in phylogenetic trees. The Bacteroidetes species are widely distributed and include many important periodontal pathogens. In contrast, all Chlorobi are anoxygenic obligate photoautotrophs. Very few (or no) biochemical or molecular characteristics are known that are distinctive characteristics of these bacteria, or are commonly shared by them. RESULTS Systematic blast searches were performed on each open reading frame in the genomes of Porphyromonas gingivalis W83, Bacteroides fragilis YCH46, B. thetaiotaomicron VPI-5482, Gramella forsetii KT0803, Chlorobium luteolum (formerly Pelodictyon luteolum) DSM 273 and Chlorobaculum tepidum (formerly Chlorobium tepidum) TLS to search for proteins that are uniquely present in either all or certain subgroups of Bacteroidetes and Chlorobi. These studies have identified > 600 proteins for which homologues are not found in other organisms. This includes 27 and 51 proteins that are specific for most of the sequenced Bacteroidetes and Chlorobi genomes, respectively; 52 and 38 proteins that are limited to species from the Bacteroidales and Flavobacteriales orders, respectively, and 5 proteins that are common to species from these two orders; 185 proteins that are specific for the Bacteroides genus. Additionally, 6 proteins that are uniquely shared by species from the Bacteroidetes and Chlorobi phyla (one of them also present in the Fibrobacteres) have also been identified. This work also describes two large conserved inserts in DNA polymerase III (DnaE) and alanyl-tRNA synthetase that are distinctive characteristics of the Chlorobi species and a 3 aa deletion in ClpB chaperone that is mainly found in various Bacteroidales, Flavobacteriales and Flexebacteraceae, but generally not found in the homologs from other organisms. Phylogenetic analyses of the Bacteroidetes and Chlorobi species is also reported based on concatenated sequences for 12 conserved proteins by different methods including the character compatibility (or clique) approach. The placement of Salinibacter ruber with other Bacteroidetes species was not resolved by other phylogenetic methods, but this affiliation was strongly supported by the character compatibility approach. CONCLUSION The molecular signatures described here provide novel tools for identifying and circumscribing species from the Bacteroidetes and Chlorobi phyla as well as some of their main groups in clear terms. These results also provide strong evidence that species from these two phyla (and also possibly Fibrobacteres) are specifically related to each other and they form a single superphylum. Functional studies on these proteins and indels should aid in the discovery of novel biochemical and physiological characteristics that are unique to these groups of bacteria.
Collapse
Affiliation(s)
- Radhey S Gupta
- Department of Biochemistry and Biomedical Science, McMaster University, Hamilton, L8N3Z5, Canada
| | - Emily Lorenzini
- Department of Biochemistry and Biomedical Science, McMaster University, Hamilton, L8N3Z5, Canada
| |
Collapse
|