1
|
Rybarczyk-Mydłowska K, Dmowska E, Kowalewska K. Phylogenetic studies on three Helicotylenchus species based on 28S rDNA and mtCOI sequence data. J Nematol 2019; 51:1-17. [PMID: 31169369 PMCID: PMC6929645 DOI: 10.21307/jofnem-2019-033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Indexed: 11/29/2022] Open
Abstract
To facilitate the process of spiral nematode species delineation, populations of Helicotylenchus canadensis, H. pseudorobustus, and H. varicaudatus deriving from various locations and diverse natural and anthropogenic environments from Poland were investigated and characterized. For the first time, 28S rDNA sequences are reported for H. canadensis and H. varicaudatus, whereas new mtCOI sequences were acquired for all three analyzed species. A Bayesian phylogenetic analysis of the 28S rDNA fragments revealed that H. canadensis and H. varicaudatus are members of a clade that is a sister group to all other Helicotylenchus species; however, the closest known sister group to H. canadensis is H. vulgaris type A. Both 28S rDNA- and mtCOI-based phylogenetic results suggest that this clade excludes H. pseudorobustus, whose most recent common ancestor with the former species was inferred to be the ancestor of all Helicotylenchus species. Moreover, within the mtCOI sequences obtained from H. pseudorobustus, unlike from the other two, a simultaneous presence of TAG and TAA codons was identified. This may indicate mitochondrial genetic code alterations or other genomic rearrangements in H. pseudorobustus.
Collapse
Affiliation(s)
| | - E Dmowska
- Museum and Institute of Zoology PAS , Wilcza 64, 00-679, Warsaw , Poland
| | - K Kowalewska
- Museum and Institute of Zoology PAS , Wilcza 64, 00-679, Warsaw , Poland
| |
Collapse
|
2
|
Lavrov DV, Pett W. Animal Mitochondrial DNA as We Do Not Know It: mt-Genome Organization and Evolution in Nonbilaterian Lineages. Genome Biol Evol 2016; 8:2896-2913. [PMID: 27557826 PMCID: PMC5633667 DOI: 10.1093/gbe/evw195] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2016] [Indexed: 12/11/2022] Open
Abstract
Animal mitochondrial DNA (mtDNA) is commonly described as a small, circular molecule that is conserved in size, gene content, and organization. Data collected in the last decade have challenged this view by revealing considerable diversity in animal mitochondrial genome organization. Much of this diversity has been found in nonbilaterian animals (phyla Cnidaria, Ctenophora, Placozoa, and Porifera), which, from a phylogenetic perspective, form the main branches of the animal tree along with Bilateria. Within these groups, mt-genomes are characterized by varying numbers of both linear and circular chromosomes, extra genes (e.g. atp9, polB, tatC), large variation in the number of encoded mitochondrial transfer RNAs (tRNAs) (0-25), at least seven different genetic codes, presence/absence of introns, tRNA and mRNA editing, fragmented ribosomal RNA genes, translational frameshifting, highly variable substitution rates, and a large range of genome sizes. This newly discovered diversity allows a better understanding of the evolutionary plasticity and conservation of animal mtDNA and provides insights into the molecular and evolutionary mechanisms shaping mitochondrial genomes.
Collapse
Affiliation(s)
- Dennis V Lavrov
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University
| | - Walker Pett
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University Laboratoire de Biométrie et Biologie Évolutive, Université Lyon 1, Villeurbanne, France
| |
Collapse
|
3
|
Extensive Mitochondrial mRNA Editing and Unusual Mitochondrial Genome Organization in Calcaronean Sponges. Curr Biol 2015; 26:86-92. [PMID: 26725199 DOI: 10.1016/j.cub.2015.11.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/03/2015] [Accepted: 11/05/2015] [Indexed: 10/22/2022]
Abstract
One of the unusual features of DNA-containing organelles in general and mitochondria in particular is the frequent occurrence of RNA editing [1]. The term "RNA editing" refers to a variety of mechanistically unrelated biochemical processes that alter RNA sequence during or after transcription [2]. The editing can be insertional, deletional, or substitutional and has been found in all major types of RNAs [3, 4]. Although mitochondrial mRNA editing is widespread in some eukaryotic lineages [5-7], it is rare in animals, with reported cases limited both in their scope and in phylogenetic distribution [8-11] (see also [12]). While analyzing genomic data from calcaronean sponges Sycon ciliatum and Leucosolenia complicata, we were perplexed by the lack of recognizable mitochondrial coding sequences. Comparison of genomic and transcriptomic data from these species revealed the presence of mitochondrial cryptogenes whose transcripts undergo extensive editing. This editing consisted of single or double uridylate (U) insertions in pre-existing short poly(U) tracts. Subsequent analysis revealed the presence of similar editing in Sycon coactum and the loss of editing in Petrobiona massiliana, a hypercalcified calcaronean sponge. In addition, mitochondrial genomes of at least some calcaronean sponges were found to have a highly unusual architecture, with nearly all genes located on individual and likely linear chromosomes. Phylogenetic analysis of mitochondrial coding sequences revealed accelerated rates of sequence evolution in this group. The latter observation presents a challenge for the mutational-hazard hypothesis [13], which posits that mRNA editing should not occur in lineages with an elevated mutation rate.
Collapse
|
4
|
Identification, molecular cloning, and analysis of full-length hepatitis C virus transmitted/founder genotypes 1, 3, and 4. mBio 2015; 6:e02518. [PMID: 25714714 PMCID: PMC4358020 DOI: 10.1128/mbio.02518-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hepatitis C virus (HCV) infection is characterized by persistent replication of a complex mixture of viruses termed a “quasispecies.” Transmission is generally associated with a stringent population bottleneck characterized by infection by limited numbers of “transmitted/founder” (T/F) viruses. Characterization of T/F genomes of human immunodeficiency virus type 1 (HIV-1) has been integral to studies of transmission, immunopathogenesis, and vaccine development. Here, we describe the identification of complete T/F genomes of HCV by single-genome sequencing of plasma viral RNA from acutely infected subjects. A total of 2,739 single-genome-derived amplicons comprising 10,966,507 bp from 18 acute-phase and 11 chronically infected subjects were analyzed. Acute-phase sequences diversified essentially randomly, except for the poly(U/UC) tract, which was subject to polymerase slippage. Fourteen acute-phase subjects were productively infected by more than one genetically distinct virus, permitting assessment of recombination between replicating genomes. No evidence of recombination was found among 1,589 sequences analyzed. Envelope sequences of T/F genomes lacked transmission signatures that could distinguish them from chronic infection viruses. Among chronically infected subjects, higher nucleotide substitution rates were observed in the poly(U/UC) tract than in envelope hypervariable region 1. Fourteen full-length molecular clones with variable poly(U/UC) sequences corresponding to seven genotype 1a, 1b, 3a, and 4a T/F viruses were generated. Like most unadapted HCV clones, T/F genomes did not replicate efficiently in Huh 7.5 cells, indicating that additional cellular factors or viral adaptations are necessary for in vitro replication. Full-length T/F HCV genomes and their progeny provide unique insights into virus transmission, virus evolution, and virus-host interactions associated with immunopathogenesis. Hepatitis C virus (HCV) infects 2% to 3% of the world’s population and exhibits extraordinary genetic diversity. This diversity is mirrored by HIV-1, where characterization of transmitted/founder (T/F) genomes has been instrumental in studies of virus transmission, immunopathogenesis, and vaccine development. Here, we show that despite major differences in genome organization, replication strategy, and natural history, HCV (like HIV-1) diversifies essentially randomly early in infection, and as a consequence, sequences of actual T/F viruses can be identified. This allowed us to capture by molecular cloning the full-length HCV genomes that are responsible for infecting the first hepatocytes and eliciting the initial immune responses, weeks before these events could be directly analyzed in human subjects. These findings represent an enabling experimental strategy, not only for HCV and HIV-1 research, but also for other RNA viruses of medical importance, including West Nile, chikungunya, dengue, Venezuelan encephalitis, and Ebola viruses.
Collapse
|
5
|
Verscheure S, Backeljau T, Desmyter S. Length heteroplasmy of the polyC-polyT-polyC stretch in the dog mtDNA control region. Int J Legal Med 2014; 129:927-35. [PMID: 25394743 DOI: 10.1007/s00414-014-1106-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 10/30/2014] [Indexed: 10/24/2022]
Abstract
Previously, the mitochondrial control region of 214 Belgian dogs was sequenced. Analysis of this data indicated length heteroplasmy of the polyT stretch in the polyC-polyT-polyC stretch from positions 16661 to 16674. Nine polyC-polyT-polyC haplotype combinations were observed, consisting of seven major haplotypes (highest signal intensity) combined with minor haplotypes (lower signal intensity) one T shorter than the major haplotype in all but three dogs. The longer the polyT stretch, the smaller was the difference in signal intensity between the major and minor haplotype peaks. Additional sequencing, cloning, and PCR trap experiments were performed to further study the intra-individual variation of this mitochondrial DNA (mtDNA) region. Cloning experiments demonstrated that the proportion of clones displaying the minor haplotypes also increased with the length of the polyT stretch. Clone amplification showed that in vitro polymerase errors might contribute to the length heteroplasmy of polyT stretches with at least 10 Ts. Although major and minor polyC-polyT-polyC haplotypes did not differ intra-individually within and between tissues in this study, interpretation of polyT stretch variation should be handled with care in forensic casework.
Collapse
Affiliation(s)
- Sophie Verscheure
- National Institute of Criminalistics and Criminology, Vilvoordsesteenweg 100, 1120, Brussels, Belgium,
| | | | | |
Collapse
|
6
|
Sun WY, Xu DL, Chen HX, Shi W, Sundberg P, Strand M, Sun SC. Complete mitochondrial genome sequences of two parasitic/commensal nemerteans, Gononemertes parasita and Nemertopsis tetraclitophila (Nemertea: Hoplonemertea). Parasit Vectors 2014; 7:273. [PMID: 24946714 PMCID: PMC4081467 DOI: 10.1186/1756-3305-7-273] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 06/14/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Most nemerteans (phylum Nemertea) are free-living, but about 50 species are known to be firmly associated with other marine invertebrates. For example, Gononemertes parasita is associated with ascidians, and Nemertopsis tetraclitophila with barnacles. There are 12 complete or near-complete mitochondrial genome (mitogenome) sequences of nemerteans available in GenBank, but no mitogenomes of none free-living nemerteans have been determined so far. In the present paper complete mitogenomes of the above two parasitic/commensal nemerteans are reported. METHODS The complete mitochondrial genomes (mitogenome) of G. parasita and N. tetraclitophila were amplified by conventional and long PCR. Phylogenetic analyses of maximum likelihood (ML) and Bayesian inference (BI) were performed with both concatenated nucleotide and amino acid sequences. RESULTS Complete mitogenomes of G. parasita and N. tetraclitophila are 14742 bp and 14597 bp in size, respectively, which are within the range of published Hoplonemertea mitogenomes. Their gene orders are identical to that of published Hoplonemertea mitogenomes, but different from those of Palaeo- and Heteronemertea species. All the coding genes, as well as major non-coding regions (mNCRs), are AT rich, which is especially pronounced at the third codon position. The AT/GC skew pattern of the coding strand is the same among nemertean mitogenomes, but is variable in the mNCRs. Some slight differences are found between mitogenomes of the present species and other hoplonemerteans: in G. parasita the mNCR is biased toward T and C (contrary to other hoplonemerteans) and the rrnS gene has a unique 58-bp insertion at the 5' end; in N. tetraclitophila the nad3 gene starts with the ATT codon (ATG in other hoplonemerteans). Phylogenetic analyses of the nucleotide and amino acid datasets show early divergent positions of G. parasita and N. tetraclitophila within the analyzed Distromatonemertea species, and provide strong support for the close relationship between Hoplonemertea and Heteronemertea. CONCLUSION Gene order is highly conserved within the order Monostilifera, particularly within the Distromatonemertea, and the special lifestyle of G. parasita and N. tetraclitophila does not bring significant variations to the overall structures of their mitogenomes in comparison with free-living hoplonemerteans.
Collapse
Affiliation(s)
- Wen-Yan Sun
- Institute of Evolution & Marine Biodiversity, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Dong-Li Xu
- Institute of Evolution & Marine Biodiversity, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Hai-Xia Chen
- Institute of Evolution & Marine Biodiversity, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, SE-405 30 Gothenburg, Sweden
| | - Wei Shi
- Key Laboratory of Marine Bio-resource Sustainable Utilization (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Per Sundberg
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, SE-405 30 Gothenburg, Sweden
| | - Malin Strand
- Swedish Species Information Centre, Swedish University of Agricultural Sciences, Box 7007, SE 75007 Uppsala, Sweden
| | - Shi-Chun Sun
- Institute of Evolution & Marine Biodiversity, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| |
Collapse
|
7
|
Sun WY, Sun SC. A description of the complete mitochondrial genomes of Amphiporus formidabilis, Prosadenoporus spectaculum and Nipponnemertes punctatula (Nemertea: Hoplonemertea: Monostilifera). Mol Biol Rep 2014; 41:5681-92. [PMID: 24939507 DOI: 10.1007/s11033-014-3438-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/27/2014] [Indexed: 11/30/2022]
Abstract
We sequenced the complete mitochondrial genomes (mitogenomes) of three Hoplonemertea species, Amphiporus formidabilis, Prosadenoporus spectaculum and Nipponnemertes punctatula, which are 14,616, 14,655 and 15,354 bp in length, respectively. Each of the three circular mitogenomes consists of 37 typical genes and some non-coding regions. The nucleotide composition of the coding strand is biased toward T, almost a half of total nucleotides in these mitogenomes. There are many poly-T tracts across these mitogenomes, which exhibit T-number variation within different clones of protein-coding genes, mainly resulting from false PCR amplification. The major non-coding regions have tandem repeat motifs and hairpin-like structures that may be associated with the initiation of replication or transcription. Data published to date for nemerteans show that Palaeonemertea species usually bear the largest mitogenomes, while representatives in the more recently derived Distromatonemertea clade bear the smallest ones; and that the gene arrangement of mitogenomes seems to be variable within the phylum Nemertea, but stable within either of Heteronemertea and Hoplonemertea.
Collapse
Affiliation(s)
- Wen-Yan Sun
- Institute of Evolution & Marine Biodiversity, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | | |
Collapse
|
8
|
Mitochondrial genomes of Meloidogyne chitwoodi and M. incognita (Nematoda: Tylenchina): comparative analysis, gene order and phylogenetic relationships with other nematodes. Mol Biochem Parasitol 2014; 194:20-32. [PMID: 24751670 DOI: 10.1016/j.molbiopara.2014.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/07/2014] [Accepted: 04/09/2014] [Indexed: 11/21/2022]
Abstract
Root-knot nematodes (Meloidogyne spp.) are among the most important plant pathogens. In this study, the mitochondrial (mt) genomes of the root-knot nematodes, M. chitwoodi and M. incognita were sequenced. PCR analyses suggest that both mt genomes are circular, with an estimated size of 19.7 and 18.6-19.1kb, respectively. The mt genomes each contain a large non-coding region with tandem repeats and the control region. The mt gene arrangement of M. chitwoodi and M. incognita is unlike that of other nematodes. Sequence alignments of the two Meloidogyne mt genomes showed three translocations; two in transfer RNAs and one in cox2. Compared with other nematode mt genomes, the gene arrangement of M. chitwoodi and M. incognita was most similar to Pratylenchus vulnus. Phylogenetic analyses (Maximum Likelihood and Bayesian inference) were conducted using 78 complete mt genomes of diverse nematode species. Analyses based on nucleotides and amino acids of the 12 protein-coding mt genes showed strong support for the monophyly of class Chromadorea, but only amino acid-based analyses supported the monophyly of class Enoplea. The suborder Spirurina was not monophyletic in any of the phylogenetic analyses, contradicting the Clade III model, which groups Ascaridomorpha, Spiruromorpha and Oxyuridomorpha based on the small subunit ribosomal RNA gene. Importantly, comparisons of mt gene arrangement and tree-based methods placed Meloidogyne as sister taxa of Pratylenchus, a migratory plant endoparasitic nematode, and not with the sedentary endoparasitic Heterodera. Thus, comparative analyses of mt genomes suggest that sedentary endoparasitism in Meloidogyne and Heterodera is based on convergent evolution.
Collapse
|
9
|
Cohen BL, Kaulfuss A, Lüter C. Craniid brachiopods: aspects of clade structure and distribution reflect continental drift (Brachiopoda: Craniiformea). Zool J Linn Soc 2014. [DOI: 10.1111/zoj.12121] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Bernard L. Cohen
- College of Medical, Veterinary and Life Sciences; University of Glasgow; Urquhart Building, Garscube Estate Glasgow G11 1QH Scotland UK
| | - Anne Kaulfuss
- Museum für Naturkunde; Leibniz-Institut für Evolutions- und Biodiversitätsforschung; Invalidenstrasse 43 10115 Berlin Germany
| | - Carsten Lüter
- Museum für Naturkunde; Leibniz-Institut für Evolutions- und Biodiversitätsforschung; Invalidenstrasse 43 10115 Berlin Germany
| |
Collapse
|
10
|
Lucidarme J, Findlow J, Chan H, Feavers IM, Gray SJ, Kaczmarski EB, Parkhill J, Bai X, Borrow R, Bayliss CD. The distribution and 'in vivo' phase variation status of haemoglobin receptors in invasive meningococcal serogroup B disease: genotypic and phenotypic analysis. PLoS One 2013; 8:e76932. [PMID: 24098814 PMCID: PMC3786947 DOI: 10.1371/journal.pone.0076932] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 09/05/2013] [Indexed: 11/27/2022] Open
Abstract
Two haemoglobin-binding proteins, HmbR and HpuAB, contribute to iron acquisition by Neisseria meningitidis. These receptors are subject to high frequency, reversible switches in gene expression--phase variation (PV)--due to mutations in homopolymeric (poly-G) repeats present in the open reading frame. The distribution and PV state of these receptors was assessed for a representative collection of isolates from invasive meningococcal disease patients of England, Wales and Northern Ireland. Most of the major clonal complexes had only the HmbR receptor whilst the recently expanding ST-275-centred cluster of the ST-269 clonal complex had both receptors. At least one of the receptors was in an 'ON' configuration in 76.3% of the isolates, a finding that was largely consistent with phenotypic analyses. As PV status may change during isolation and culture of meningococci, a PCR-based protocol was utilised to confirm the expression status of the receptors within contemporaneously acquired clinical specimens (blood/cerebrospinal fluid) from the respective patients. The expression state was confirmed for all isolate/specimen pairs with <15 tract repeats indicating that the PV status of these receptors is stable during isolation. This study therefore establishes a protocol for determining in vivo PV status to aid in determining the contributions of phase variable genes to invasive meningococcal disease. Furthermore, the results of the study support a putative but non-essential role of the meningococcal haemoglobin receptors as virulence factors whilst further highlighting their vaccine candidacy.
Collapse
Affiliation(s)
| | | | - Hannah Chan
- National Institute of Biological Standards and Control, Potters Bar, United Kingdom
| | - Ian M. Feavers
- National Institute of Biological Standards and Control, Potters Bar, United Kingdom
| | | | | | - Julian Parkhill
- The Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Xilian Bai
- Public Health England, Manchester, United Kingdom
| | - Ray Borrow
- Public Health England, Manchester, United Kingdom
| | | |
Collapse
|
11
|
Gibson T, Farrugia D, Barrett J, Chitwood DJ, Rowe J, Subbotin S, Dowton M. The mitochondrial genome of the soybean cyst nematode, Heterodera glycines. Genome 2011; 54:565-74. [PMID: 21745140 DOI: 10.1139/g11-024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We sequenced the entire coding region of the mitochondrial genome of Heterodera glycines. The sequence obtained comprised 14.9 kb, with PCR evidence indicating that the entire genome comprised a single, circular molecule of approximately 21-22 kb. The genome is the most T-rich nematode mitochondrial genome reported to date, with T representing over half of all nucleotides on the coding strand. The genome also contains the highest number of poly(T) tracts so far reported (to our knowledge), with 60 poly(T) tracts ≥ 12 Ts. All genes are transcribed from the same mitochondrial strand. The organization of the mitochondrial genome of H. glycines shows a number of similarities compared with Radopholus similis, but fewer similarities when compared with Meloidogyne javanica. Very few gene boundaries are shared with Globodera pallida or Globodera rostochiensis. Partial mitochondrial genome sequences were also obtained for Heterodera cardiolata (5.3 kb) and Punctodera chalcoensis (6.8 kb), and these had identical organizations compared with H. glycines. We found PCR evidence of a minicircular mitochondrial genome in P. chalcoensis, but at low levels and lacking a noncoding region. Such circularised genome fragments may be present at low levels in a range of nematodes, with multipartite mitochondrial genomes representing a shift to a condition in which these subgenomic circles predominate.
Collapse
Affiliation(s)
- Tracey Gibson
- Centre for Medical Bioscience, School of Biological Sciences, Wollongong University, NSW, Australia
| | | | | | | | | | | | | |
Collapse
|