1
|
Mitchell PD. Parasites in ancient Egypt and Nubia: Malaria, schistosomiasis and the pharaohs. ADVANCES IN PARASITOLOGY 2023; 123:23-49. [PMID: 38448147 DOI: 10.1016/bs.apar.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The civilizations of ancient Egypt and Nubia played a key role in the cultural development of Africa, the Near East, and the Mediterranean world. This study explores how their location along the River Nile, agricultural practices, the climate, endemic insects and aquatic snails impacted the type of parasites that were most successful in their populations. A meta-analysis approach finds that up to 65% of mummies were positive for schistosomiasis, 40% for headlice, 22% for falciparum malaria, and 10% for visceral leishmaniasis. Such a disease burden must have had major consequences upon the physical stamina and productivity of a large proportion of the workforce. In contrast, the virtual absence of evidence for whipworm and roundworm (so common in adjacent civilizations in the Near East and Europe) may have been a result of the yearly Nile floods fertilising the agricultural land, so that farmers did not have to fertilise their crops with human faeces.
Collapse
Affiliation(s)
- Piers D Mitchell
- Department of Archaeology, University of Cambridge, The Henry Wellcome Building, Fitzwilliam Street, Cambridge, United Kingdom.
| |
Collapse
|
2
|
Escalante AA, Cepeda AS, Pacheco MA. Why Plasmodium vivax and Plasmodium falciparum are so different? A tale of two clades and their species diversities. Malar J 2022; 21:139. [PMID: 35505356 PMCID: PMC9066883 DOI: 10.1186/s12936-022-04130-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/18/2022] [Indexed: 11/29/2022] Open
Abstract
The global malaria burden sometimes obscures that the genus Plasmodium comprises diverse clades with lineages that independently gave origin to the extant human parasites. Indeed, the differences between the human malaria parasites were highlighted in the classical taxonomy by dividing them into two subgenera, the subgenus Plasmodium, which included all the human parasites but Plasmodium falciparum that was placed in its separate subgenus, Laverania. Here, the evolution of Plasmodium in primates will be discussed in terms of their species diversity and some of their distinct phenotypes, putative molecular adaptations, and host–parasite biocenosis. Thus, in addition to a current phylogeny using genome-level data, some specific molecular features will be discussed as examples of how these parasites have diverged. The two subgenera of malaria parasites found in primates, Plasmodium and Laverania, reflect extant monophyletic groups that originated in Africa. However, the subgenus Plasmodium involves species in Southeast Asia that were likely the result of adaptive radiation. Such events led to the Plasmodium vivax lineage. Although the Laverania species, including P. falciparum, has been considered to share “avian characteristics,” molecular traits that were likely in the common ancestor of primate and avian parasites are sometimes kept in the Plasmodium subgenus while being lost in Laverania. Assessing how molecular traits in the primate malaria clades originated is a fundamental science problem that will likely provide new targets for interventions. However, given that the genus Plasmodium is paraphyletic (some descendant groups are in other genera), understanding the evolution of malaria parasites will benefit from studying “non-Plasmodium” Haemosporida.
Collapse
Affiliation(s)
- Ananias A Escalante
- Biology Department/Institute of Genomics and Evolutionary Medicine [iGEM], Temple University, Philadelphia, PA, 19122-1801, USA.
| | - Axl S Cepeda
- Biology Department/Institute of Genomics and Evolutionary Medicine [iGEM], Temple University, Philadelphia, PA, 19122-1801, USA
| | - M Andreína Pacheco
- Biology Department/Institute of Genomics and Evolutionary Medicine [iGEM], Temple University, Philadelphia, PA, 19122-1801, USA
| |
Collapse
|
3
|
Rougeron V, Boundenga L, Arnathau C, Durand P, Renaud F, Prugnolle F. A population genetic perspective on the origin, spread and adaptation of the human malaria agents Plasmodium falciparum and Plasmodium vivax. FEMS Microbiol Rev 2021; 46:6373923. [PMID: 34550355 DOI: 10.1093/femsre/fuab047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 09/06/2021] [Indexed: 01/20/2023] Open
Abstract
Malaria is considered one of the most important scourges that humanity has faced during its history, being responsible every year for numerous deaths worldwide. The disease is caused by protozoan parasites, among which two species are responsible of the majority of the burden, Plasmodium falciparum and Plasmodium vivax. For these two parasite species, the questions of their origin (how and when they appeared in humans), of their spread throughout the world, as well as how they have adapted to humans have long been of interest to the scientific community. Here, we review the current knowledge that has accumulated on these different questions, thanks in particular to the analysis of the genetic and genomic variability of these parasites and comparison with related Plasmodium species infecting other host species (like non-human primates). In this paper we review the existing body of knowledge, including current research dealing with these questions, focusing particularly on genetic analysis and genomic variability of these parasites and comparison with related Plasmodium species infecting other species of host (such as non-human primates).
Collapse
Affiliation(s)
- Virginie Rougeron
- Laboratory MIVEGEC, University of Montpellier, CNRS, IRD, 900 rue Jean François Breton, 34090 Montpellier, France.,CREES, Centre de Recherches en Écologie et Évolution de la Santé, Montpellier, France
| | - Larson Boundenga
- CIRMF, Centre Interdisciplinaire de Recherches Médicales de Franceville, Franceville, Gabon
| | - Céline Arnathau
- Laboratory MIVEGEC, University of Montpellier, CNRS, IRD, 900 rue Jean François Breton, 34090 Montpellier, France.,CREES, Centre de Recherches en Écologie et Évolution de la Santé, Montpellier, France
| | - Patrick Durand
- Laboratory MIVEGEC, University of Montpellier, CNRS, IRD, 900 rue Jean François Breton, 34090 Montpellier, France.,CREES, Centre de Recherches en Écologie et Évolution de la Santé, Montpellier, France
| | - François Renaud
- Laboratory MIVEGEC, University of Montpellier, CNRS, IRD, 900 rue Jean François Breton, 34090 Montpellier, France.,CREES, Centre de Recherches en Écologie et Évolution de la Santé, Montpellier, France
| | - Franck Prugnolle
- Laboratory MIVEGEC, University of Montpellier, CNRS, IRD, 900 rue Jean François Breton, 34090 Montpellier, France.,CREES, Centre de Recherches en Écologie et Évolution de la Santé, Montpellier, France
| |
Collapse
|
4
|
Hedrick SM. Understanding Immunity through the Lens of Disease Ecology. Trends Immunol 2017; 38:888-903. [PMID: 28882454 DOI: 10.1016/j.it.2017.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/26/2017] [Accepted: 08/01/2017] [Indexed: 10/25/2022]
Abstract
As we describe the immune system in ever more exquisite detail, we might find that no matter how successful, this approach will not be sufficient to understand the spread of infectious agents, their susceptibility to vaccine therapy, and human disease resistance. Compared with the strict reductionism practiced as a means of characterizing most biological processes, I propose that the progression and outcome of disease-causing host-parasite interactions will be more clearly understood through a focus on disease ecology.
Collapse
Affiliation(s)
- Stephen M Hedrick
- Departments of Molecular Biology and Cellular and Molecular Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
5
|
Palanisamy B, Ekambaram R, Heese K. Thymine distribution in genes provides novel insight into the functional significance of the proteome of the malaria parasite Plasmodium falciparum 3D7. Bioinformatics 2013; 30:597-600. [DOI: 10.1093/bioinformatics/btt587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
6
|
Perkins SL. Malaria's many mates: past, present, and future of the systematics of the order Haemosporida. J Parasitol 2013; 100:11-25. [PMID: 24059436 DOI: 10.1645/13-362.1] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Malaria has been one of the most important diseases of humans throughout history and continues to be a major public health concern. The 5 species of Plasmodium that cause the disease in humans are part of the order Haemosporida, a diverse group of parasites that all have heteroxenous life cycles, alternating between a vertebrate host and a free-flying, blood-feeding dipteran vector. Traditionally, the identification and taxonomy of these parasites relied heavily on life-history characteristics, basic morphological features, and the host species infected. However, molecular approaches to resolving the phylogeny of the group have sometimes challenged many of these traditional hypotheses. One of the greatest debates has concerned the origin of the most virulent of the human-infecting parasites, Plasmodium falciparum, with early results suggesting a close relationship with an avian parasite. Subsequent phylogenetic studies placed it firmly within the mammalian clade instead, but the avian origin hypothesis has been revived with recent genome-based analyses. The rooting of the tree of Haemosporida has also been inconsistent, and the various topologies that result certainly affect our interpretation of the history of the group. There is clearly a pressing need to obtain a much more complete degree of taxon sampling of haemosporidians, as well as a greater number of characters before confidence can be placed in any hypothesis regarding the evolutionary history of the order. There are numerous challenges moving forward, particularly for generating complete genome sequences of avian and saurian parasites.
Collapse
Affiliation(s)
- Susan L Perkins
- Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West at 79th Street, New York, New York 10024
| |
Collapse
|
7
|
Hecht D, Fogel GB. Modeling the evolution of drug resistance in malaria. J Comput Aided Mol Des 2012; 26:1343-53. [PMID: 23179493 PMCID: PMC3535480 DOI: 10.1007/s10822-012-9618-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 11/08/2012] [Indexed: 01/12/2023]
Abstract
Plasmodium falciparum, the causal agent of malaria, continues to evolve resistance to frontline therapeutics such as chloroquine and sulfadoxine-pyrimethamine. Here we study the amino acid replacements in dihydrofolate reductase (DHFR) that confer resistance to pyrimethamine while still binding the natural DHFR substrate, 7,8-dihydrofolate, and cofactor, NADPH. The chain of amino acid replacements that has led to resistance can be inferred in a computer, leading to a broader understanding of the coevolution between the drug and target. This in silico approach suggests that only a small set of specific active site replacements in the proper order could have led to the resistant strains in the wild today. A similar approach can be used on any target of interest to anticipate likely pathways of future resistance for more effective drug development.
Collapse
Affiliation(s)
- David Hecht
- Southwestern College, 900 Otay Lakes Rd., Chula Vista, CA 91910, USA
| | - Gary B. Fogel
- Natural Selection, Inc., 9330 Scranton Rd., San Diego, CA 92121, USA
| |
Collapse
|
8
|
Hedrick PW. Resistance to malaria in humans: the impact of strong, recent selection. Malar J 2012; 11:349. [PMID: 23088866 PMCID: PMC3502258 DOI: 10.1186/1475-2875-11-349] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 10/18/2012] [Indexed: 11/10/2022] Open
Abstract
Malaria is one of the leading causes of death worldwide and has been suggested as the most potent type of selection in humans in recent millennia. As a result, genes involved in malaria resistance are excellent examples of recent, strong selection. In 1949, Haldane initially suggested that infectious disease could be a strong selective force in human populations. Evidence for the strong selective effect of malaria resistance includes the high frequency of a number of detrimental genetic diseases caused by the pleiotropic effects of these malaria resistance variants, many of which are "loss of function" mutants. Evidence that this selection is recent comes from the genetic dating of the age of a number of these malaria resistant alleles to less than 5,000 years before the present, generally much more recent than other human genetic variants. An approach to estimate selection coefficients from contemporary case-control data is presented. In the situations described here, selection is much greater than 1%, significantly higher than generally observed for other human genetic variation. With these selection coefficients, predictions are generated about the joint change of alleles S and C at the β-globin locus, and for α-thalassaemia haplotypes and S, variants that are unlinked but exhibit epistasis. Population genetics can be used to determine the amount and pattern of selection in the past and predict selection in the future for other malaria resistance variants as they are discovered.
Collapse
Affiliation(s)
- Philip W Hedrick
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.
| |
Collapse
|
9
|
Preuss J, Maloney P, Peddibhotla S, Hedrick MP, Hershberger P, Gosalia P, Milewski M, Li YL, Sugarman E, Hood B, Suyama E, Nguyen K, Vasile S, Sergienko E, Mangravita-Novo A, Vicchiarelli M, McAnally D, Smith LH, Roth GP, Diwan J, Chung TDY, Jortzik E, Rahlfs S, Becker K, Pinkerton AB, Bode L. Discovery of a Plasmodium falciparum glucose-6-phosphate dehydrogenase 6-phosphogluconolactonase inhibitor (R,Z)-N-((1-ethylpyrrolidin-2-yl)methyl)-2-(2-fluorobenzylidene)-3-oxo-3,4-dihydro-2H-benzo[b][1,4]thiazine-6-carboxamide (ML276) that reduces parasite growth in vitro. J Med Chem 2012; 55:7262-72. [PMID: 22813531 DOI: 10.1021/jm300833h] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A high-throughput screen of the NIH's MLSMR collection of ∼340000 compounds was undertaken to identify compounds that inhibit Plasmodium falciparum glucose-6-phosphate dehydrogenase (PfG6PD). PfG6PD is important for proliferating and propagating P. falciparum and differs structurally and mechanistically from the human orthologue. The reaction catalyzed by glucose-6-phosphate dehydrogenase (G6PD) is the first, rate-limiting step in the pentose phosphate pathway (PPP), a key metabolic pathway sustaining anabolic needs in reductive equivalents and synthetic materials in fast-growing cells. In P. falciparum , the bifunctional enzyme glucose-6-phosphate dehydrogenase-6-phosphogluconolactonase (PfGluPho) catalyzes the first two steps of the PPP. Because P. falciparum and infected host red blood cells rely on accelerated glucose flux, they depend on the G6PD activity of PfGluPho. The lead compound identified from this effort, (R,Z)-N-((1-ethylpyrrolidin-2-yl)methyl)-2-(2-fluorobenzylidene)-3-oxo-3,4-dihydro-2H-benzo[b][1,4]thiazine-6-carboxamide, 11 (ML276), is a submicromolar inhibitor of PfG6PD (IC(50) = 889 nM). It is completely selective for the enzyme's human isoform, displays micromolar potency (IC(50) = 2.6 μM) against P. falciparum in culture, and has good drug-like properties, including high solubility and moderate microsomal stability. Studies testing the potential advantage of inhibiting PfG6PD in vivo are in progress.
Collapse
Affiliation(s)
- Janina Preuss
- Department of Pediatrics, University of California, San Diego, La Jolla, California 92037, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Chang HH, Park DJ, Galinsky KJ, Schaffner SF, Ndiaye D, Ndir O, Mboup S, Wiegand RC, Volkman SK, Sabeti PC, Wirth DF, Neafsey DE, Hartl DL. Genomic sequencing of Plasmodium falciparum malaria parasites from Senegal reveals the demographic history of the population. Mol Biol Evol 2012; 29:3427-39. [PMID: 22734050 DOI: 10.1093/molbev/mss161] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Malaria is a deadly disease that causes nearly one million deaths each year. To develop methods to control and eradicate malaria, it is important to understand the genetic basis of Plasmodium falciparum adaptations to antimalarial treatments and the human immune system while taking into account its demographic history. To study the demographic history and identify genes under selection more efficiently, we sequenced the complete genomes of 25 culture-adapted P. falciparum isolates from three sites in Senegal. We show that there is no significant population structure among these Senegal sampling sites. By fitting demographic models to the synonymous allele-frequency spectrum, we also estimated a major 60-fold population expansion of this parasite population ∼20,000-40,000 years ago. Using inferred demographic history as a null model for coalescent simulation, we identified candidate genes under selection, including genes identified before, such as pfcrt and PfAMA1, as well as new candidate genes. Interestingly, we also found selection against G/C to A/T changes that offsets the large mutational bias toward A/T, and two unusual patterns: similar synonymous and nonsynonymous allele-frequency spectra, and 18% of genes having a nonsynonymous-to-synonymous polymorphism ratio >1.
Collapse
Affiliation(s)
- Hsiao-Han Chang
- Department of Organismic and Evolutionary Biology, Harvard University.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Verhulst NO, Smallegange RC, Takken W. Mosquitoes as potential bridge vectors of malaria parasites from non-human primates to humans. Front Physiol 2012; 3:197. [PMID: 22701434 PMCID: PMC3371676 DOI: 10.3389/fphys.2012.00197] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 05/22/2012] [Indexed: 01/05/2023] Open
Abstract
Malaria is caused by Plasmodium parasites which are transmitted by mosquitoes. Until recently, human malaria was considered to be caused by human-specific Plasmodium species. Studies on Plasmodium parasites in non-human primates (NHPs), however, have identified parasite species in gorillas and chimpanzees that are closely related to human Plasmodium species. Moreover, P. knowlesi, long known as a parasite of monkeys, frequently infects humans. The requirements for such a cross-species exchange and especially the role of mosquitoes in this process are discussed, as the latter may act as bridge vectors of Plasmodium species between different primates. Little is known about the mosquito species that would bite both humans and NHPs and if so, whether humans and NHPs share the same Plasmodium vectors. To understand the vector-host interactions that can lead to an increased Plasmodium transmission between species, studies are required that reveal the nature of these interactions. Studying the potential role of NHPs as a Plasmodium reservoir for humans will contribute to the ongoing efforts of human malaria elimination, and will help to focus on critical areas that should be considered in achieving this goal.
Collapse
Affiliation(s)
- Niels O Verhulst
- Laboratory of Entomology, Wageningen University and Research Centre Wageningen, Netherlands
| | | | | |
Collapse
|
12
|
Abstract
Recent studies have revealed a remarkable molecular diversity of Plasmodium parasites in great apes in Africa, as well as parasite exchange events between these primates and humans. We review the different points of view proposed on the origin of human malaria, and discuss ape Plasmodium parasites as a source of human outbreaks.
Collapse
Affiliation(s)
- L Duval
- Maladies Infectieuses et Vecteurs, Écologie, Génétique, Évolution et Contrôle, Institut de Recherche pour le Développement, Montpellier, France.
| | | |
Collapse
|