1
|
Lukáčová A, Lihanová D, Beck T, Alberty R, Vešelényiová D, Krajčovič J, Vesteg M. The Influence of Phenol on the Growth, Morphology and Cell Division of Euglena gracilis. Life (Basel) 2023; 13:1734. [PMID: 37629591 PMCID: PMC10455851 DOI: 10.3390/life13081734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/28/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Phenol, a monocyclic aromatic hydrocarbon with various commercial uses, is a major pollutant in industrial wastewater. Euglena gracilis is a unicellular freshwater flagellate possessing secondary chloroplasts of green algal origin. This protist has been widely used for monitoring the biological effect of various inorganic and organic environmental pollutants, including aromatic hydrocarbons. In this study, we evaluate the influence of different phenol concentrations (3.39 mM, 3.81 mM, 4.23 mM, 4.65 mM, 5.07 mM, 5.49 mM and 5.91 mM) on the growth, morphology and cell division of E. gracilis. The cell count continually decreases (p < 0.05-0.001) over time with increasing phenol concentration. While phenol treatment does not induce bleaching (permanent loss of photosynthesis), the morphological changes caused by phenol include the formation of spherical (p < 0.01-0.001), hypertrophied (p < 0.05) and monster cells (p < 0.01) and lipofuscin bodies. Phenol also induces an atypical form of cell division of E. gracilis, simultaneously producing more than 2 (3-12) viable cells from a single cell. Such atypically dividing cells have a symmetric "star"-like shape. The percentage of atypically dividing cells increases (p < 0.05) with increasing phenol concentration. Our findings suggest that E. gracilis can be used as bioindicator of phenol contamination in freshwater habitats and wastewater.
Collapse
Affiliation(s)
- Alexandra Lukáčová
- Department of Biology, Ecology and Environment, Faculty of Natural Sciences, Matej Bel University, 974 01 Banská Bystrica, Slovakia (T.B.)
| | - Diana Lihanová
- Department of Biology, Ecology and Environment, Faculty of Natural Sciences, Matej Bel University, 974 01 Banská Bystrica, Slovakia (T.B.)
| | - Terézia Beck
- Department of Biology, Ecology and Environment, Faculty of Natural Sciences, Matej Bel University, 974 01 Banská Bystrica, Slovakia (T.B.)
| | - Roman Alberty
- Department of Biology, Ecology and Environment, Faculty of Natural Sciences, Matej Bel University, 974 01 Banská Bystrica, Slovakia (T.B.)
| | - Dominika Vešelényiová
- Institute of Biology and Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, 917 01 Trnava, Slovakia
| | - Juraj Krajčovič
- Institute of Biology and Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, 917 01 Trnava, Slovakia
| | - Matej Vesteg
- Department of Biology, Ecology and Environment, Faculty of Natural Sciences, Matej Bel University, 974 01 Banská Bystrica, Slovakia (T.B.)
| |
Collapse
|
2
|
Lihanová D, Lukáčová A, Beck T, Jedlička A, Vešelényiová D, Krajčovič J, Vesteg M. Versatile biotechnological applications of Euglena gracilis. World J Microbiol Biotechnol 2023; 39:133. [PMID: 36959517 DOI: 10.1007/s11274-023-03585-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
Euglena gracilis is a freshwater protist possessing secondary chloroplasts of green algal origin. Various physical factors (e.g. UV) and chemical compounds (e.g. antibiotics) cause the bleaching of E. gracilis cells-the loss of plastid genes leading to the permanent inability to photosynthesize. Bleaching can be prevented by antimutagens (i.e. lignin, vitamin C and selenium). Besides screening the mutagenic and antimutagenic activity of chemicals, E. gracilis is also a suitable model for studying the biological effects of many organic pollutants. Due to its capability of heavy metal sequestration, it can be used for bioremediation. E. gracilis has been successfully transformed, offering the possibility of genetic modifications for synthesizing compounds of biotechnological interest. The novel design of the "next generation" transgenic expression cassettes with respect to the specificities of euglenid gene expression is proposed. Moreover, E. gracilis is a natural source of commercially relevant bioproducts such as (pro)vitamins, wax esters, polyunsaturated fatty acids and paramylon (β-1,3-glucan). One of the highest limitations of large-scale cultivation of E. gracilis is its disability to synthesize essential vitamins B1 and B12. This disadvantage can be overcome by co-cultivation of E. gracilis with other microorganisms, which can synthesize sufficient amounts of these vitamins. Such co-cultures can be used for the effective accumulation and harvesting of Euglena biomass by bioflocculation.
Collapse
Grants
- VEGA 1/0694/2021 Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic, and the Academy of Sciences
- VEGA 1/0694/2021 Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic, and the Academy of Sciences
- VEGA 1/0694/2021 Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic, and the Academy of Sciences
- VEGA 1/0694/2021 Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic, and the Academy of Sciences
- VEGA 1/0694/2021 Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic, and the Academy of Sciences
- VEGA 1/0694/2021 Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic, and the Academy of Sciences
- VEGA 1/0694/2021 Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic, and the Academy of Sciences
- ITMS 26210120024 European Regional Development Fund
- ITMS 26210120024 European Regional Development Fund
- ITMS 26210120024 European Regional Development Fund
- ITMS 26210120024 European Regional Development Fund
Collapse
Affiliation(s)
- Diana Lihanová
- Department of Biology and Ecology, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01, Banská Bystrica, Slovakia
| | - Alexandra Lukáčová
- Department of Biology and Ecology, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01, Banská Bystrica, Slovakia
| | - Terézia Beck
- Department of Biology and Ecology, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01, Banská Bystrica, Slovakia
| | - Andrej Jedlička
- Department of Biology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, 917 01, Trnava, Slovakia
| | - Dominika Vešelényiová
- Department of Biology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, 917 01, Trnava, Slovakia
| | - Juraj Krajčovič
- Department of Biology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, 917 01, Trnava, Slovakia
| | - Matej Vesteg
- Department of Biology and Ecology, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01, Banská Bystrica, Slovakia.
| |
Collapse
|
3
|
Calpains in cyanobacteria and the origin of calpains. Sci Rep 2022; 12:13872. [PMID: 35974045 PMCID: PMC9380684 DOI: 10.1038/s41598-022-18228-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Calpains are cysteine proteases involved in many cellular processes. They are an ancient and large superfamily of enzymes responsible for the cleavage and irreversible modification of a large variety of substrates. They have been intensively studied in humans and other mammals, but information about calpains in bacteria is scarce. Calpains have not been found among Archaea to date. In this study, we have investigated the presence of calpains in selected cyanobacterial species using in silico analyses. We show that calpains defined by possessing CysPC core domain are present in cyanobacterial genera Anabaena, Aphanizomenon, Calothrix, Chamaesiphon, Fischerella, Microcystis, Scytonema and Trichormus. Based on in silico protein interaction analysis, we have predicted putative interaction partners for identified cyanobacterial calpains. The phylogenetic analysis including cyanobacterial, other bacterial and eukaryotic calpains divided bacterial and eukaryotic calpains into two separate monophyletic clusters. We propose two possible evolutionary scenarios to explain this tree topology: (1) the eukaryotic ancestor or an archaeal ancestor of eukaryotes obtained calpain gene from an unknown bacterial donor, or alternatively (2) calpain gene had been already present in the last common universal ancestor and subsequently lost by the ancestor of Archaea, but retained by the ancestor of Bacteria and by the ancestor of Eukarya. Both scenarios would require multiple independent losses of calpain genes in various bacteria and eukaryotes.
Collapse
|
4
|
Vesteg M, Hadariová L, Horváth A, Estraño CE, Schwartzbach SD, Krajčovič J. Comparative molecular cell biology of phototrophic euglenids and parasitic trypanosomatids sheds light on the ancestor of Euglenozoa. Biol Rev Camb Philos Soc 2019; 94:1701-1721. [PMID: 31095885 DOI: 10.1111/brv.12523] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 01/23/2023]
Abstract
Parasitic trypanosomatids and phototrophic euglenids are among the most extensively studied euglenozoans. The phototrophic euglenid lineage arose relatively recently through secondary endosymbiosis between a phagotrophic euglenid and a prasinophyte green alga that evolved into the euglenid secondary chloroplast. The parasitic trypanosomatids (i.e. Trypanosoma spp. and Leishmania spp.) and the freshwater phototrophic euglenids (i.e. Euglena gracilis) are the most evolutionary distant lineages in the Euglenozoa phylogenetic tree. The molecular and cell biological traits they share can thus be considered as ancestral traits originating in the common euglenozoan ancestor. These euglenozoan ancestral traits include common mitochondrial presequence motifs, respiratory chain complexes containing various unique subunits, a unique ATP synthase structure, the absence of mitochondria-encoded transfer RNAs (tRNAs), a nucleus with a centrally positioned nucleolus, closed mitosis without dissolution of the nuclear membrane and nucleoli, a nuclear genome containing the unusual 'J' base (β-D-glucosyl-hydroxymethyluracil), processing of nucleus-encoded precursor messenger RNAs (pre-mRNAs) via spliced-leader RNA (SL-RNA) trans-splicing, post-transcriptional gene silencing by the RNA interference (RNAi) pathway and the absence of transcriptional regulation of nuclear gene expression. Mitochondrial uridine insertion/deletion RNA editing directed by guide RNAs (gRNAs) evolved in the ancestor of the kinetoplastid lineage. The evolutionary origin of other molecular features known to be present only in either kinetoplastids (i.e. polycistronic transcripts, compaction of nuclear genomes) or euglenids (i.e. monocistronic transcripts, huge genomes, many nuclear cis-spliced introns, polyproteins) is unclear.
Collapse
Affiliation(s)
- Matej Vesteg
- Department of Biology and Ecology, Faculty of Natural Sciences, Matej Bel University, 974 01, Banská Bystrica, Slovakia
| | - Lucia Hadariová
- Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), 252 50, Vestec, Czech Republic.,Department of Parasitology, Faculty of Science, Charles University in Prague, 128 44, Prague, Czech Republic
| | - Anton Horváth
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, 842 15, Bratislava, Slovakia
| | - Carlos E Estraño
- Department of Biological Sciences, University of Memphis, Memphis, TN, 38152-3560, USA
| | - Steven D Schwartzbach
- Department of Biological Sciences, University of Memphis, Memphis, TN, 38152-3560, USA
| | - Juraj Krajčovič
- Department of Biology, Faculty of Natural Sciences, University of ss. Cyril and Methodius, 917 01, Trnava, Slovakia
| |
Collapse
|
5
|
Vosseberg J, Snel B. Domestication of self-splicing introns during eukaryogenesis: the rise of the complex spliceosomal machinery. Biol Direct 2017; 12:30. [PMID: 29191215 PMCID: PMC5709842 DOI: 10.1186/s13062-017-0201-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/20/2017] [Indexed: 12/31/2022] Open
Abstract
ᅟ The spliceosome is a eukaryote-specific complex that is essential for the removal of introns from pre-mRNA. It consists of five small nuclear RNAs (snRNAs) and over a hundred proteins, making it one of the most complex molecular machineries. Most of this complexity has emerged during eukaryogenesis, a period that is characterised by a drastic increase in cellular and genomic complexity. Although not fully resolved, recent findings have started to shed some light on how and why the spliceosome originated. In this paper we review how the spliceosome has evolved and discuss its origin and subsequent evolution in light of different general hypotheses on the evolution of complexity. Comparative analyses have established that the catalytic core of this ribonucleoprotein (RNP) complex, as well as the spliceosomal introns, evolved from self-splicing group II introns. Most snRNAs evolved from intron fragments and the essential Prp8 protein originated from the protein that is encoded by group II introns. Proteins that functioned in other RNA processes were added to this core and extensive duplications of these proteins substantially increased the complexity of the spliceosome prior to the eukaryotic diversification. The splicing machinery became even more complex in animals and plants, yet was simplified in eukaryotes with streamlined genomes. Apparently, the spliceosome did not evolve its complexity gradually, but in rapid bursts, followed by stagnation or even simplification. We argue that although both adaptive and neutral evolution have been involved in the evolution of the spliceosome, especially the latter was responsible for the emergence of an enormously complex eukaryotic splicing machinery from simple self-splicing sequences. Reviewers This article was reviewed by W. Ford Doolittle, Eugene V. Koonin and Vivek Anantharaman.
Collapse
Affiliation(s)
- Julian Vosseberg
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands.
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| |
Collapse
|
6
|
On the Possibility of an Early Evolutionary Origin for the Spliced Leader Trans-Splicing. J Mol Evol 2017; 85:37-45. [DOI: 10.1007/s00239-017-9803-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/17/2017] [Indexed: 01/12/2023]
|
7
|
The relative ages of eukaryotes and akaryotes. J Mol Evol 2014; 79:228-39. [PMID: 25179144 DOI: 10.1007/s00239-014-9643-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 08/18/2014] [Indexed: 12/22/2022]
Abstract
The Last Eukaryote Common Ancestor (LECA) appears to have the genetics required for meiosis, mitosis, nucleus and nuclear substructures, an exon/intron gene structure, spliceosomes, many centres of DNA replication, etc. (and including mitochondria). Most of these features are not generally explained by models for the origin of the Eukaryotic cell based on the fusion of an Archeon and a Bacterium. We find that the term 'prokaryote' is ambiguous and the non-phylogenetic term akaryote should be used in its place because we do not yet know the direction of evolution between eukaryotes and akaryotes. We use the term 'protoeukaryote' for the hypothetical stem group ancestral eukaryote that took up a bacterium as an endosymbiont that formed the mitochondrion. It is easier to make detailed models with a eukaryote to an akaryote transition, rather than vice versa. So we really are at a phylogenetic impasse in not being confident about the direction of change between eukaryotes and akaryotes.
Collapse
|
8
|
Abstract
In this work we review the current knowledge on the prehistory, origins, and evolution of spliceosomal introns. First, we briefly outline the major features of the different types of introns, with particular emphasis on the nonspliceosomal self-splicing group II introns, which are widely thought to be the ancestors of spliceosomal introns. Next, we discuss the main scenarios proposed for the origin and proliferation of spliceosomal introns, an event intimately linked to eukaryogenesis. We then summarize the evidence that suggests that the last eukaryotic common ancestor (LECA) had remarkably high intron densities and many associated characteristics resembling modern intron-rich genomes. From this intron-rich LECA, the different eukaryotic lineages have taken very distinct evolutionary paths leading to profoundly diverged modern genome structures. Finally, we discuss the origins of alternative splicing and the qualitative differences in alternative splicing forms and functions across lineages.
Collapse
Affiliation(s)
- Manuel Irimia
- The Donnelly Centre, University of Toronto, Toronto, Ontario M5S3E1, Canada
| | - Scott William Roy
- Department of Biology, San Francisco State University, San Francisco, California 94132
| |
Collapse
|
9
|
Milanowski R, Karnkowska A, Ishikawa T, Zakryś B. Distribution of conventional and nonconventional introns in tubulin (α and β) genes of euglenids. Mol Biol Evol 2013; 31:584-93. [PMID: 24296662 PMCID: PMC3935182 DOI: 10.1093/molbev/mst227] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The nuclear genomes of euglenids contain three types of introns: conventional spliceosomal introns, nonconventional introns for which a splicing mechanism is unknown (variable noncanonical borders, RNA secondary structure bringing together intron ends), and so-called intermediate introns, which combine features of conventional and nonconventional introns. Analysis of two genes, tubA and tubB, from 20 species of euglenids reveals contrasting distribution patterns of conventional and nonconventional introns--positions of conventional introns are conserved, whereas those of the nonconventional ones are unique to individual species or small groups of closely related taxa. Moreover, in the group of phototrophic euglenids, 11 events of conventional intron loss versus 15 events of nonconventional intron gain were identified. A comparison of all nonconventional intron sequences highlighted the most conserved elements in their sequence and secondary structure. Our results led us to put forward two hypotheses. 1) The first one posits that mutational changes in intron sequence could lead to a change in their excision mechanism--intermediate introns would then be a transitional form between the conventional and nonconventional introns. 2) The second hypothesis concerns the origin of nonconventional introns--because of the presence of inverted repeats near their ends, insertion of MITE-like transposon elements is proposed as a possible source of new introns.
Collapse
Affiliation(s)
- Rafał Milanowski
- Department of Plant Systematics and Geography, Institute of Botany, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | | | | |
Collapse
|
10
|
Fixation and accumulation of thermotolerant catalytic competence of a pair of ligase ribozymes through complex formation and cross ligation. J Mol Evol 2013; 76:48-58. [PMID: 23288433 DOI: 10.1007/s00239-012-9536-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 12/05/2012] [Indexed: 12/11/2022]
Abstract
In the early stages of the hypothetical RNA world, some primitive RNA catalysts (ribozymes) may have emerged through self-assembly of short RNA oligomers. Although they may be unstable against temperature fluctuations and other environmental changes, ligase ribozymes (ribozymes with RNA strand-joining activity) may resolve structural instability of self-assembling RNAs by converting them to the corresponding unimolecular formats. To investigate this possibility, we constructed a model system using a cross-ligation system composed of a pair of self-assembling ligase ribozymes. Their abilities to act as catalysts, substrates, and a cross-ligation system were analyzed with or without thermal pretreatment before the reactions. A pair of self-assembling ligase ribozymes, each of which can form multiple conformations, demonstrated that thermotolerance was acquired and accumulated through complex-formation that stabilized the active forms of the bimolecular ribozymes and also cross-ligation that produced the unimolecular ribozymes.
Collapse
|
11
|
Stoltzfus A. Constructive neutral evolution: exploring evolutionary theory's curious disconnect. Biol Direct 2012; 7:35. [PMID: 23062217 PMCID: PMC3534586 DOI: 10.1186/1745-6150-7-35] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 10/11/2012] [Indexed: 11/20/2022] Open
Abstract
Abstract Constructive neutral evolution (CNE) suggests that neutral evolution may follow a stepwise path to extravagance. Whether or not CNE is common, the mere possibility raises provocative questions about causation: in classical neo-Darwinian thinking, selection is the sole source of creativity and direction, the only force that can cause trends or build complex features. However, much of contemporary evolutionary genetics departs from the conception of evolution underlying neo-Darwinism, resulting in a widening gap between what formal models allow, and what the prevailing view of the causes of evolution suggests. In particular, a mutationist conception of evolution as a 2-step origin-fixation process has been a source of theoretical innovation for 40 years, appearing not only in the Neutral Theory, but also in recent breakthroughs in modeling adaptation (the “mutational landscape” model), and in practical software for sequence analysis. In this conception, mutation is not a source of raw materials, but an agent that introduces novelty, while selection is not an agent that shapes features, but a stochastic sieve. This view, which now lays claim to important theoretical, experimental, and practical results, demands our attention. CNE provides a way to explore its most significant implications about the role of variation in evolution. Reviewers Alex Kondrashov, Eugene Koonin and Johann Peter Gogarten reviewed this article.
Collapse
Affiliation(s)
- Arlin Stoltzfus
- Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA.
| |
Collapse
|