1
|
Interplay between Two-Component Regulatory Systems Is Involved in Control of Cupriavidus metallidurans Metal Resistance Genes. J Bacteriol 2023; 205:e0034322. [PMID: 36892288 PMCID: PMC10127602 DOI: 10.1128/jb.00343-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
Metal resistance of Cupriavidus metallidurans is based on determinants that were acquired in the past by horizontal gene transfer during evolution. Some of these determinants encode transmembrane metal efflux systems. Expression of most of the respective genes is controlled by two-component regulatory systems composed of a membrane-bound sensor/sensory histidine kinase (HK) and a cytoplasmic, DNA-binding response regulator (RR). Here, we investigated the interplay between the three closely related two-component regulatory systems CzcRS, CzcR2S2, and AgrRS. All three systems regulate the response regulator CzcR, while the RRs AgrR and CzcR2 were not involved in czc regulation. Target promoters were czcNp and czcPp for genes upstream and downstream of the central czc gene region. The two systems together repressed CzcRS-dependent upregulation of czcP-lacZ at low zinc concentrations in the presence of CzcS but activated this signal transmission at higher zinc concentrations. AgrRS and CzcR2S2 interacted to quench CzcRS-mediated expression of czcNp-lacZ and czcPp-lacZ. Together, cross talk between the three two-component regulatory systems enhanced the capabilities of the Czc systems by controlling expression of the additional genes czcN and czcP. IMPORTANCE Bacteria are able to acquire genes encoding resistance to metals and antibiotics by horizontal gene transfer. To bestow an evolutionary advantage on their host cell, new genes must be expressed, and their expression should be regulated so that resistance-mediating proteins are produced only when needed. Newly acquired regulators may interfere with those already present in a host cell. Such an event was studied here in the metal-resistant bacterium Cupriavidus metallidurans. The results demonstrate how regulation by the acquired genes interacts with the host's extant regulatory network. This leads to emergence of a new system level of complexity that optimizes the response of the cell to periplasmic signals.
Collapse
|
2
|
Zhu Z, Wu Y, Hu W, Zheng X, Chen Y. Valorization of food waste fermentation liquid into single cell protein by photosynthetic bacteria via stimulating carbon metabolic pathway and environmental behaviour. BIORESOURCE TECHNOLOGY 2022; 361:127704. [PMID: 35908636 DOI: 10.1016/j.biortech.2022.127704] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Single cell protein (SCP) production by photosynthetic bacteria (PSB) is dependent on the bioavailability of carbon source, while sufficient volatile fatty acids (VFAs) in food waste fermentation liquid might be a potential alternative. It is unclear how the fermentation liquid affects the SCP biosynthesis and the related metabolic mechanism. This work demonstrated that the SCP production could be improved effectively (2088.4 mg/L) with high conversion capacity of carbon source (0.99 mg-biomass/mg-COD) by regulating carbon source level. PSB preferred to utilize the VFAs in food waste fermentation liquid. The carbon metabolic pathways (e.g., the transformation of VFAs to acetyl-CoA, and tricarboxylic acid cycle) involved in the SCP production were enhanced under optimal condition. Moreover, optimal carbon source regulation could significantly stimulate the environmental behaviour of PSB (e.g., two-component system, quorum sensing, and ATP-binding cassette transporter) involved in adaptation to external stimulus and maintaining high bacterial activity, resulting in SCP yield promotion.
Collapse
Affiliation(s)
- Zizeng Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Wanying Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xiong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
3
|
Wang F, Luo J, Fang S, Huang W, Zhang Y, Zhang L, Cheng X, Du W, Fang F, Cao J, Wu Y. Mechanisms of allicin exposure for the sludge fermentation enhancement: Focusing on the fermentation processes and microbial metabolic traits. J Environ Sci (China) 2022; 115:253-264. [PMID: 34969453 DOI: 10.1016/j.jes.2021.07.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/18/2021] [Accepted: 07/22/2021] [Indexed: 06/14/2023]
Abstract
As a frequently used product with antimicrobial activity, consumed allicin might be discharged and concentrated in waste-activated sludge (WAS). However, the influence of allicin (as an exogenous pollutant) on WAS fermentation has not been clearly revealed. This study aimed to disclose the impacts of allicin on volatile fatty acid (VFA) generation during WAS fermentation. The results showed that the appropriate presence of allicin (10 mg/g TSS) significantly enhanced the VFA yield (1894 versus 575 mg COD/L in the control) with increased acetate proportion (24.3%). Further exploration found that allicin promoted WAS solubilization, hydrolysis and acidification simultaneously. Metagenomic analysis revealed that the key genes involved in extracellular hydrolysis metabolism (i.e., CAZymes), membrane transport (i.e., gtsA and ytfT), substrate metabolism (i.e., yhdR and pfkC) and fatty acid synthesis (i.e., accA and accD) were all highly expressed. Allicin also induced the bacteria to produce more signalling molecules and regulate cellular functions, thereby enhancing the microbial adaptive and regulatory capacity to the unfavourable environment. Moreover, the variations in fermentative microbes and their contributions to the upregulation of functional genes (i.e., ytfR, gltL, INV, iolD and pflD) for VFA generation were disclosed. Overall, the simultaneous stimulation of functional microbial abundances and metabolic activities contributed to VFA production in allicin-conditioned reactors.
Collapse
Affiliation(s)
- Feng Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Shiyu Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Wenxuan Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yunqi Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Le Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Xiaoshi Cheng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Wei Du
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
4
|
Feng G, Huang H, Chen Y. Effects of emerging pollutants on the occurrence and transfer of antibiotic resistance genes: A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126602. [PMID: 34273886 DOI: 10.1016/j.jhazmat.2021.126602] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
The emergence and spread of antibiotic resistance genes (ARGs) have become major concerns for both public health and environmental ecosystems. Emerging pollutants (EPs) that accumulate in environmental compartments also pose a potential risk for the enrichment of ARGs in indigenous microorganisms. This paper presents a comprehensive review of the effects and intrinsic mechanisms of EPs, including microplastics, engineered nanomaterials, disinfection byproducts, pharmaceuticals, and personal care products, on the occurrence and dissemination of ARGs. State-of-the-art methods for identifying culture-independent ARG-host interactions and monitoring horizontal gene transfer (HGT) processes in real-time are first reviewed. The contributions of EPs to the abundance and diversity of ARGs are then summarized. Finally, we discussed the underlying mechanisms related to the regulation of HGT, increased mutagenesis, and the evolution of microbial communities. Further details of three HGT (i.e., conjugation, transformation, and transduction) frequency patterns in response to various EPs are also examined. This review contemplates and reassesses the risks of ARG evolution posed by the manufacture and application of EPs.
Collapse
Affiliation(s)
- Guanqun Feng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Haining Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
5
|
Wang Y, Ma F, Yang J, Guo H, Su D, Yu L. Adaption and Degradation Strategies of Methylotrophic 1,4-Dioxane Degrading Strain Xanthobacter sp. YN2 Revealed by Transcriptome-Scale Analysis. Int J Mol Sci 2021; 22:ijms221910435. [PMID: 34638775 PMCID: PMC8508750 DOI: 10.3390/ijms221910435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 12/21/2022] Open
Abstract
Biodegradation of 1,4-dioxane (dioxane) contamination has gained much attention for decades. In our previous work, we isolated a highly efficient dioxane degrader, Xanthobacter sp. YN2, but the underlying mechanisms of its extraordinary degradation performance remained unresolved. In this study, we performed a comparative transcriptome analysis of YN2 grown on dioxane and citrate to elucidate its genetic degradation mechanism and investigated the transcriptomes of different dioxane degradation stages (T0, T24, T48). We also analyzed the transcriptional response of YN2 over time during which the carbon source switched from citrate to dioxane. The results indicate that strain YN2 was a methylotroph, which provides YN2 a major advantage as a pollutant degrader. A large number of genes involved in dioxane metabolism were constitutively expressed prior to dioxane exposure. Multiple genes related to the catabolism of each intermediate were upregulated by treatment in response to dioxane. Glyoxylate metabolism was essential during dioxane degradation by YN2, and the key intermediate glyoxylate was metabolized through three routes: glyoxylate carboligase pathway, malate synthase pathway, and anaplerotic ethylmalonyl-CoA pathway. Genes related to quorum sensing and transporters were significantly upregulated during the early stages of degradation (T0, T24) prior to dioxane depletion, while the expression of genes encoding two-component systems was significantly increased at late degradation stages (T48) when total organic carbon in the culture was exhausted. This study is the first to report the participation of genes encoding glyoxalase, as well as methylotrophic genes xoxF and mox, in dioxane metabolism. The present study reveals multiple genetic and transcriptional strategies used by YN2 to rapidly increase biomass during growth on dioxane, achieve high degradation efficiency and tolerance, and adapt to dioxane exposure quickly, which provides useful information regarding the molecular basis for efficient dioxane biodegradation.
Collapse
Affiliation(s)
- Yingning Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; (Y.W.); (J.Y.); (D.S.); (L.Y.)
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; (Y.W.); (J.Y.); (D.S.); (L.Y.)
- Correspondence:
| | - Jixian Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; (Y.W.); (J.Y.); (D.S.); (L.Y.)
| | - Haijuan Guo
- College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056107, China;
| | - Delin Su
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; (Y.W.); (J.Y.); (D.S.); (L.Y.)
| | - Lan Yu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; (Y.W.); (J.Y.); (D.S.); (L.Y.)
| |
Collapse
|
6
|
Hu W, Wu Y, Bian Y, Zheng X, Chen Y, Dong L, Chen Y. Joint effects of carbon nanotubes and copper oxide nanoparticles on fermentation metabolism towards Saccharofermentans acetigenes: Enhancing environmental adaptability and transcriptional expression. BIORESOURCE TECHNOLOGY 2021; 336:125318. [PMID: 34049169 DOI: 10.1016/j.biortech.2021.125318] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
In this study, the joint effects of widely used copper oxide nanoparticles (CuO NPs) and multi-walled carbon nanotubes (MWCNTs) on the fermentation metabolism of a model acetogenic bacterium Saccharofermentans acetigenes were investigated and the underlying mechanisms were further explored. The presence of sole CuO NPs or MWCNTs severely inhibited the acetate generation, while their co-existences did not further decrease the acetate yield as expected. Further analysis indicated the joint effects facilitated the enhancement of bacterial stimulus response to the environment and interspecies communication, which improved adaptive capacity to the adverse environment involved in nanomaterials. Meanwhile, the co-existence reduced inhibitory effects of sole nanomaterial on the gene expressions and catalytic activities of key enzymes involved in glycolysis and pyruvate metabolism. Therefore, the joint effects could enhance environmental adaptation of S. acetigenes and transcriptional expressions of key enzymes for acetic acid production-related processes, alleviating the inhibition of CuO NPs to acetate production.
Collapse
Affiliation(s)
- Wanying Hu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yaozhi Bian
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xiong Zheng
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Yuexi Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Lei Dong
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
7
|
Sung HL, Nesbitt DJ. Sequential Folding of the Nickel/Cobalt Riboswitch Is Facilitated by a Conformational Intermediate: Insights from Single-Molecule Kinetics and Thermodynamics. J Phys Chem B 2020; 124:7348-7360. [DOI: 10.1021/acs.jpcb.0c05625] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Hsuan-Lei Sung
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309, United States,
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - David J. Nesbitt
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309, United States,
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
- Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
8
|
Guo R, Liu X, Hu Y, Li J, Chen J, Pang L, Yang P. Stronger Stimulation of Waste Activated Sludge Anaerobic Fermentation by a Particular Amount of Micron-Sized Zero Valent Iron. Appl Biochem Biotechnol 2020; 192:313-324. [PMID: 32378079 DOI: 10.1007/s12010-020-03339-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 04/23/2020] [Indexed: 01/22/2023]
Abstract
An emerging contaminant, micron-sized zero valent iron (mZVI) has been reported to be accumulated in waste activated sludge (WAS). In the present study, the potential effects of mZVI on WAS anaerobic fermentation performance, as well as the shift of the microbial community composition and function, were assessed. Results from batch experiments indicated that a particular concentration of mZVI (1.5 g/L, in the range of 0.0 to 5.0 g/L) improved volatile fatty acids (VFA) accumulation by 4.84 times that in the control group, the ability (dosage dependent) to remove phosphorus, and the dewaterability of fermented WAS from 126 ± 5 s (control group) to 104 ± 3 s (group with 1.5 g/L mZVI). Furthermore, high-throughput sequencing revealed that mZVI had no significant impact on the shift of microbial community structure, but directly stimulated the functional performance related to anaerobic fermentation. This study will provide new insights into the mZVI application and its effect on WAS utilization.
Collapse
Affiliation(s)
- Ruyue Guo
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Xuna Liu
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Yutian Hu
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Junjie Li
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
- Melbourne School of Engineering, The University of Melbourne, Grattan Street, Parkville Victoria, Melbourne, 3010, Australia
| | - Jiahao Chen
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Lina Pang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| | - Ping Yang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
9
|
Liu JL, Yao J, Wang F, Min N, Gu JH, Li ZF, Sunahara G, Duran R, Solevic-Knudsen T, Hudson-Edwards KA, Alakangas L. Bacterial diversity in typical abandoned multi-contaminated nonferrous metal(loid) tailings during natural attenuation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 247:98-107. [PMID: 30669085 DOI: 10.1016/j.envpol.2018.12.045] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 12/08/2018] [Accepted: 12/15/2018] [Indexed: 06/09/2023]
Abstract
Abandoned nonferrous metal(loid) tailings sites are anthropogenic, and represent unique and extreme ecological niches for microbial communities. Tailings contain elevated and toxic content of metal(loid)s that had negative effects on local human health and regional ecosystems. Microbial communities in these typical tailings undergoing natural attenuation are often very poorly examined. The diversity and inferred functions of bacterial communities were examined at seven nonferrous metal(loid) tailings sites in Guangxi (China), which were abandoned between 3 and 31 years ago. The acidity of the tailings sites rose over 31 years of site inactivity. Desulfurivibrio, which were always coupled with sulfur/sulfide oxidation to dissimilate the reduction of nitrate/nitrite, were specific in tailings with 3 years abandonment. However, genus beneficial to plant growth (Rhizobium), and iron/sulfur-oxidizing bacteria and metal(loid)-related genera (Acidiferrobacter and Acidithiobacillus) were specific within tailings abandoned for 23 years or more. The increased abundance of acid-generating iron/sulfur-oxidizing and metal(loid)-related bacteria and specific bacterial communities during the natural attenuation could provide new insights for understanding microbial ecosystem functioning in mine tailings. OTUs related to Sulfuriferula, Bacillus, Sulfurifustis, Gaiella, and Thiobacillus genera were the main contributors differentiating the bacterial communities between the different tailing sites. Multiple correlation analyses between bacterial communities and geochemical parameters indicated that pH, TOC, TN, As, Pb, and Cu were the main drivers influencing the bacterial community structures. PICRUSt functional exploration revealed that the main functions were related to DNA repair and recombination, important functions for bacterial adaptation to cope with the multi-contamination of tailings. Such information provides new insights to guide future metagenomic studies for the identification of key functions beyond metal-transformation/resistance. As well, our results offers novel outlooks for the management of bacterial communities during natural attenuation of multi-contaminated nonferrous metal(loid) tailings sites.
Collapse
Affiliation(s)
- Jian-Li Liu
- School of Energy and Environment Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jun Yao
- School of Water Resource and Environment Engineering, China University of Geosciences (Beijing), 100083, China.
| | - Fei Wang
- School of Energy and Environment Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Ning Min
- School of Water Resource and Environment Engineering, China University of Geosciences (Beijing), 100083, China
| | - Ji-Hai Gu
- School of Water Resource and Environment Engineering, China University of Geosciences (Beijing), 100083, China
| | - Zi-Fu Li
- School of Energy and Environment Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Geoffrey Sunahara
- School of Water Resource and Environment Engineering, China University of Geosciences (Beijing), 100083, China; Department of Natural Resource Sciences, McGill University, Montreal, Quebec, H9X3V9, Canada
| | - Robert Duran
- School of Water Resource and Environment Engineering, China University of Geosciences (Beijing), 100083, China; Equipe Environnement et Microbiologie, MELODY Group, Université de Pau et des Pays de l'Adour, E2S-UPPA, IPREM UMR CNRS 5254, BP 1155, 64013, Pau Cedex, France
| | - Tatjana Solevic-Knudsen
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoseva 12, PO Box 473, 11001, Belgrade, Serbia
| | - Karen A Hudson-Edwards
- Environment & Sustainability Institute and Camborne School of Mines, University of Exeter, Penryn, Cornwall, TR10 9DF, UK
| | - Lena Alakangas
- Department of Chemical Engineering and Geosciences, Luleå University of Technology, SE-97187 Luleå, Sweden
| |
Collapse
|
10
|
Song W, Wang S, Shen J, Zhu B. Complete Genome Sequence of Massilia oculi sp. nov. CCUG 43427 T (=DSM 26321 T), the Type Strain of M. oculi, and Comparison with Genome Sequences of Other Massilia Strains. Curr Microbiol 2018; 76:1082-1086. [PMID: 30443686 DOI: 10.1007/s00284-018-1597-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/08/2018] [Indexed: 11/26/2022]
Abstract
Massilia oculi sp. nov. of type strain CCUG 43427T is a Gram-negative, rod-shaped, nonspore-forming bacterium, which was recently isolated from the eye of a patient suffering from endophthalmitis and was described as novel species in Massilia genus. In this study, we present the complete genome sequence of this strain by using Pacbio SMRT cell platform and compare this sequence with the genomes of 30 Massilia representative strains. Also, a comprehensive search was conducted for genes and proteins involved in antibiotic resistance and pathogenicity. The genome of CCUG 43427T is 5,844,653 bp with 65.55% GC content. This genome contains four prophages and four genomic islands (GIs). The cobalt/zinc/cadmium transporter locus CzcABCD is included in these GIs. This GI was predicted to play important role in bacterial heavy-metal tolerance. The in silico genome analysis also revealed that this strain contains a lot of antibiotic resistance and pathogenicity related genes. This result suggested that this strain may has evolved a wide arsenal of weapons for pathogenicity and survival. Genome comparison among CCUG 43427T and other 30 Massilia strains revealed that more than 400 genes are unique in CCUG 43427T. Among these, one gene cluster, which was annotated to be important for LOS biosynthesis, catalytic mechanism and the substrate specificity of the enzyme, was predicted to be horizontally transferred by using phylogenies and biased GC content.
Collapse
Affiliation(s)
- WeiJie Song
- Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Sai Wang
- Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- College of Life Sciences, Zhejiang Sci-Tech University, Road 2, Hangzhou, 310018, Zhejiang, China
| | - Jian Shen
- Blood Transfusion Department of Zhejiang Province People's Hospital, Hangzhou, 310014, Zhejiang, China.
| | - Bo Zhu
- Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing, China.
| |
Collapse
|
11
|
Urano H, Yoshida M, Ogawa A, Yamamoto K, Ishihama A, Ogasawara H. Cross-regulation between two common ancestral response regulators, HprR and CusR, in Escherichia coli. MICROBIOLOGY-SGM 2017; 163:243-252. [PMID: 27983483 DOI: 10.1099/mic.0.000410] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The uncharacterized two-component system YedVW of Escherichia coli is involved in stress response to hydrogen peroxide. To identify the H2O2-sensing role of YedV, a set of single Cys-to-Ala substitution mutants were constructed. One particular mutant with C165A substitution in the membrane domain rendered YedV inactive in H2O2-dependent transcription of its regulatory target hiuH. We then proposed to rename YedVW to HprSR (hydrogen peroxide response sensor/regulator). One unique characteristic of HprR is the overlapping of its recognition sequence with that of the Cu(II)-response two-component system regulator CusR. Towards understanding this unique regulation system, in this study we analysed the interplay between HprR and CusR with respect to transcription of hiuH, a regulatory target of HprR, and cusC, a target of CusR. Under low protein concentrations in vitro and in vivo, two regulators recognize and transcribe both hiuH and cusC promoters, albeit at different efficiency, apparently in a collaborative fashion. This is a new type of transcription regulation of the common target genes in response to different external signals. Upon increase in protein concentrations, however, HprR and CusR compete with each other in transcription of the common targets, thereby exhibiting a competitive interplay.
Collapse
Affiliation(s)
- Hiroyuki Urano
- Research Center for Supports to Advanced Science, Division of Gene Research, Shinshu University, Ueda, Nagano 386-8567, Japan
| | - Myu Yoshida
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 184-8584, Japan
| | - Ayano Ogawa
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 184-8584, Japan
| | - Kaneyoshi Yamamoto
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 184-8584, Japan
| | - Akira Ishihama
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo 184-8584, Japan
| | - Hiroshi Ogasawara
- Research Center for Supports to Advanced Science, Division of Gene Research, Shinshu University, Ueda, Nagano 386-8567, Japan.,Research Center for Fungal and Microbial Dynamism, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598, Japan
| |
Collapse
|
12
|
MacGregor BJ. Visualizing Evolutionary Relationships of Multidomain Proteins: An Example from Receiver (REC) Domains of Sensor Histidine Kinases in the Candidatus Maribeggiatoa str. Orange Guaymas Draft Genome. Front Microbiol 2016; 7:1780. [PMID: 27895624 PMCID: PMC5108060 DOI: 10.3389/fmicb.2016.01780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 10/24/2016] [Indexed: 11/20/2022] Open
Abstract
For multidomain proteins, evolutionary changes may occur at the domain as well as the whole-protein level. An example is presented here, with suggestions for how such complicated relationships might be visualized. Earlier analysis of the Candidatus Maribeggiatoa str. Orange Guaymas (BOGUAY; Gammaproteobacteria) single-filament draft genome found evidence of gene exchange with the phylogenetically distant Cyanobacteria, particularly for sensory and signal transduction proteins. Because these are modular proteins, known to undergo frequent duplication, domain swapping, and horizontal gene transfer, a single domain was chosen for analysis. Recognition (REC) domains are short (~125 amino acids) and well conserved, simplifying sequence alignments and phylogenetic calculations. Over 100 of these were identified in the BOGUAY genome and found to have a wide range of inferred phylogenetic relationships. Two sets were chosen here for detailed study. One set of four BOGUAY ORFs has closest relatives among other Beggiatoaceae and Cyanobacteria. A second set of four has REC domains with more mixed affiliations, including other Beggiatoaceae, several sulfate-reducing Deltaproteobacteria and Firmicutes, magnetotactic Nitrospirae, one Shewanella and one Ferrimonas strain (both Gammaproteobacteria), and numerous Vibrio vulnificus and V. navarrensis strains (also Gammaproteobacteria). For an overview of the possible origins of the whole proteins and the surrounding genomic regions, color-coded BLASTP results were produced and displayed against cartoons showing protein domain structure of predicted genes. This is suggested as a visualization method for investigation of possible horizontally transferred regions, giving more detail than scans of DNA composition and codon usage but much faster than carrying out full phylogenetic analyses for multiple proteins. As expected, most of the predicted sensor histidine kinases investigated have two or more segments with distinct BLASTP affiliations. For the first set of BOGUAY ORFs, the flanking regions were also examined, and the results suggest they are embedded in genomic stretches with complex histories. An automated method of creating such visualizations could be generally useful; a wish list for its features is given.
Collapse
Affiliation(s)
- Barbara J MacGregor
- Department of Marine Sciences, University of North Carolina-Chapel Hill Chapel Hill, NC, USA
| |
Collapse
|
13
|
Furukawa K, Ramesh A, Zhou Z, Weinberg Z, Vallery T, Winkler WC, Breaker RR. Bacterial riboswitches cooperatively bind Ni(2+) or Co(2+) ions and control expression of heavy metal transporters. Mol Cell 2016; 57:1088-1098. [PMID: 25794617 DOI: 10.1016/j.molcel.2015.02.009] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/17/2014] [Accepted: 02/03/2015] [Indexed: 11/19/2022]
Abstract
Bacteria regularly encounter widely varying metal concentrations in their surrounding environment. As metals become depleted or, conversely, accrue to toxicity, microbes will activate cellular responses that act to maintain metal homeostasis. A suite of metal-sensing regulatory ("metalloregulatory") proteins orchestrate these responses by allosterically coupling the selective binding of target metals to the activity of DNA-binding domains. However, we report here the discovery, validation, and structural details of a widespread class of riboswitch RNAs, whose members selectively and tightly bind the low-abundance transition metals, Ni(2+) and Co(2+). These riboswitches bind metal cooperatively, and with affinities in the low micromolar range. The structure of a Co(2+)-bound RNA reveals a network of molecular contacts that explains how it achieves cooperative binding between adjacent sites. These findings reveal that bacteria have evolved to utilize highly selective metalloregulatory riboswitches, in addition to metalloregulatory proteins, for detecting and responding to toxic levels of heavy metals.
Collapse
Affiliation(s)
- Kazuhiro Furukawa
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Arati Ramesh
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Zhiyuan Zhou
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Zasha Weinberg
- Howard Hughes Medical Institute, New Haven, CT 06520, USA
| | - Tenaya Vallery
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Wade C Winkler
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA.
| | - Ronald R Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
14
|
Abstract
Unraveling the drivers controlling the response and adaptation of biological communities to environmental change, especially anthropogenic activities, is a central but poorly understood issue in ecology and evolution. Comparative genomics studies suggest that lateral gene transfer (LGT) is a major force driving microbial genome evolution, but its role in the evolution of microbial communities remains elusive. To delineate the importance of LGT in mediating the response of a groundwater microbial community to heavy metal contamination, representative Rhodanobacter reference genomes were sequenced and compared to shotgun metagenome sequences. 16S rRNA gene-based amplicon sequence analysis indicated that Rhodanobacter populations were highly abundant in contaminated wells with low pHs and high levels of nitrate and heavy metals but remained rare in the uncontaminated wells. Sequence comparisons revealed that multiple geochemically important genes, including genes encoding Fe2+/Pb2+ permeases, most denitrification enzymes, and cytochrome c553, were native to Rhodanobacter and not subjected to LGT. In contrast, the Rhodanobacter pangenome contained a recombinational hot spot in which numerous metal resistance genes were subjected to LGT and/or duplication. In particular, Co2+/Zn2+/Cd2+ efflux and mercuric resistance operon genes appeared to be highly mobile within Rhodanobacter populations. Evidence of multiple duplications of a mercuric resistance operon common to most Rhodanobacter strains was also observed. Collectively, our analyses indicated the importance of LGT during the evolution of groundwater microbial communities in response to heavy metal contamination, and a conceptual model was developed to display such adaptive evolutionary processes for explaining the extreme dominance of Rhodanobacter populations in the contaminated groundwater microbiome. Lateral gene transfer (LGT), along with positive selection and gene duplication, are the three main mechanisms that drive adaptive evolution of microbial genomes and communities, but their relative importance is unclear. Some recent studies suggested that LGT is a major adaptive mechanism for microbial populations in response to changing environments, and hence, it could also be critical in shaping microbial community structure. However, direct evidence of LGT and its rates in extant natural microbial communities in response to changing environments is still lacking. Our results presented in this study provide explicit evidence that LGT played a crucial role in driving the evolution of a groundwater microbial community in response to extreme heavy metal contamination. It appears that acquisition of genes critical for survival, growth, and reproduction via LGT is the most rapid and effective way to enable microorganisms and associated microbial communities to quickly adapt to abrupt harsh environmental stresses.
Collapse
|
15
|
Fadeev E, De Pascale F, Vezzi A, Hübner S, Aharonovich D, Sher D. Why Close a Bacterial Genome? The Plasmid of Alteromonas Macleodii HOT1A3 is a Vector for Inter-Specific Transfer of a Flexible Genomic Island. Front Microbiol 2016; 7:248. [PMID: 27014193 PMCID: PMC4781885 DOI: 10.3389/fmicb.2016.00248] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/15/2016] [Indexed: 12/20/2022] Open
Abstract
Genome sequencing is rapidly becoming a staple technique in environmental and clinical microbiology, yet computational challenges still remain, leading to many draft genomes which are typically fragmented into many contigs. We sequenced and completely assembled the genome of a marine heterotrophic bacterium, Alteromonas macleodii HOT1A3, and compared its full genome to several draft genomes obtained using different reference-based and de novo methods. In general, the de novo assemblies clearly outperformed the reference-based or hybrid ones, covering >99% of the genes and representing essentially all of the gene functions. However, only the fully closed genome (∼4.5 Mbp) allowed us to identify the presence of a large, 148 kbp plasmid, pAM1A3. While HOT1A3 belongs to A. macleodii, typically found in surface waters (“surface ecotype”), this plasmid consists of an almost complete flexible genomic island (fGI), containing many genes involved in metal resistance previously identified in the genomes of Alteromonas mediterranea (“deep ecotype”). Indeed, similar to A. mediterranea, A. macleodii HOT1A3 grows at concentrations of zinc, mercury, and copper that are inhibitory for other A. macleodii strains. The presence of a plasmid encoding almost an entire fGI suggests that wholesale genomic exchange between heterotrophic marine bacteria belonging to related but ecologically different populations is not uncommon.
Collapse
Affiliation(s)
- Eduard Fadeev
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa Haifa, Israel
| | - Fabio De Pascale
- Department of Biology and CRIBI Biotechnology Centre, University of Padua Padova, Italy
| | - Alessandro Vezzi
- Department of Biology and CRIBI Biotechnology Centre, University of Padua Padova, Italy
| | - Sariel Hübner
- Department of Botany and Biodiversity Research Centre, University of British ColumbiaVancouver, Canada; The Department of Evolutionary and Environmental Biology, University of HaifaHaifa, Israel
| | - Dikla Aharonovich
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa Haifa, Israel
| | - Daniel Sher
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa Haifa, Israel
| |
Collapse
|
16
|
Singh K, Senadheera DB, Cvitkovitch DG. An intimate link: two-component signal transduction systems and metal transport systems in bacteria. Future Microbiol 2015; 9:1283-93. [PMID: 25437189 DOI: 10.2217/fmb.14.87] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bacteria have evolved various strategies to contend with high concentrations of environmental heavy metal ions for rapid, adaptive responses to maintain cell viability. Evidence gathered in the past two decades suggests that bacterial two-component signal transduction systems (TCSTSs) are intimately involved in monitoring cation accumulation, and can regulate the expression of related metabolic and virulence genes to elicit adaptive responses to changes in the concentration of these ions. Using examples garnered from recent studies, we summarize the cross-regulatory relationships between metal ions and TCSTSs. We present evidence of how bacterial TCSTSs modulate metal ion homeostasis and also how metal ions, in turn, function to control the activities of these signaling systems linked with bacterial survival and virulence.
Collapse
Affiliation(s)
- Kamna Singh
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
17
|
Urano H, Umezawa Y, Yamamoto K, Ishihama A, Ogasawara H. Cooperative regulation of the common target genes between H₂O₂-sensing YedVW and Cu²⁺-sensing CusSR in Escherichia coli. MICROBIOLOGY-SGM 2015; 161:729-38. [PMID: 25568260 DOI: 10.1099/mic.0.000026] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 01/01/2015] [Indexed: 11/18/2022]
Abstract
YedVW is one of the uncharacterized two-component systems (TCSs) of Escherichia coli. In order to identify the regulation targets of YedVW, we performed genomic SELEX (systematic evolution of ligands by exponential enrichment) screening using phosphorylated YedW and an E. coli DNA library, and identified YedW-binding sites within three intergenic spacers, yedW-hiuH, cyoA-ampG and cusR-cusC, along the E. coli genome. Using a reporter assay system, we found that transcription of hiuH, encoding 5-hydroxyisourate hydrolase, was induced at high concentrations of either Cu(2+) or H₂O₂. Cu(2+)-dependent expression of hiuH was observed in the yedWV knockout mutant, but was reduced markedly in the cusRS-null mutant. However, H₂O₂-induced hiuH expression was observed in the cusRS-null mutant, but not in the yedWV-null mutant. Gel mobility shift and DNase I footprinting analyses showed binding of both YedW and CusR to essentially the same sequence within the hiuH promoter region. Taken together, we concluded that YedVW and CusSR formed a unique cooperative TCS pair by recognizing and regulating the same targets, but under different environmental conditions - YedVW played a role in H₂O₂ response regulation, whilst CusSR played a role in Cu(2+) response regulation.
Collapse
Affiliation(s)
- Hiroyuki Urano
- Research Center for Human and Environmental Sciences, Shinshu University, Ueda, Nagano 386-8567, Japan
| | - Yoshimasa Umezawa
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 184-8584, Japan
| | - Kaneyoshi Yamamoto
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 184-8584, Japan Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo 184-8584, Japan
| | - Akira Ishihama
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 184-8584, Japan Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo 184-8584, Japan
| | - Hiroshi Ogasawara
- Research Center for Human and Environmental Sciences, Shinshu University, Ueda, Nagano 386-8567, Japan
| |
Collapse
|
18
|
Response of bacterioplankton communities to cadmium exposure in coastal water microcosms with high temporal variability. Appl Environ Microbiol 2014; 81:231-40. [PMID: 25326310 DOI: 10.1128/aem.02562-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Multiple anthropogenic disturbances to bacterial diversity have been investigated in coastal ecosystems, in which temporal variability in the bacterioplankton community has been considered a ubiquitous process. However, far less is known about the temporal dynamics of a bacterioplankton community responding to pollution disturbances such as toxic metals. We used coastal water microcosms perturbed with 0, 10, 100, and 1,000 μg liter(-1) of cadmium (Cd) for 2 weeks to investigate temporal variability, Cd-induced patterns, and their interaction in the coastal bacterioplankton community and to reveal whether the bacterial community structure would reflect the Cd gradient in a temporally varying system. Our results showed that the bacterioplankton community structure shifted along the Cd gradient consistently after a 4-day incubation, although it exhibited some resistance to Cd at low concentration (10 μg liter(-1)). A process akin to an arms race between temporal variability and Cd exposure was observed, and the temporal variability overwhelmed Cd-induced patterns in the bacterial community. The temporal succession of the bacterial community was correlated with pH, dissolved oxygen, NO3 (-)-N, NO2 (-)-N, PO4 (3-)-P, dissolved organic carbon, and chlorophyll a, and each of these parameters contributed more to community variance than Cd did. However, elevated Cd levels did decrease the temporal turnover rate of community. Furthermore, key taxa, affiliated to the families Flavobacteriaceae, Rhodobacteraceae, Erythrobacteraceae, Piscirickettsiaceae, and Alteromonadaceae, showed a high frequency of being associated with Cd levels during 2 weeks. This study provides direct evidence that specific Cd-induced patterns in bacterioplankton communities exist in highly varying manipulated coastal systems. Future investigations on an ecosystem scale across longer temporal scales are needed to validate the observed pattern.
Collapse
|
19
|
The TetR-type MfsR protein of the integrative and conjugative element (ICE) ICEclc controls both a putative efflux system and initiation of ICE transfer. J Bacteriol 2014; 196:3971-9. [PMID: 25182498 DOI: 10.1128/jb.02129-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Integrative and conjugating elements (ICE) are self-transferable DNAs widely present in bacterial genomes, which often carry a variety of auxiliary genes of potential adaptive benefit. One of the model ICE is ICEclc, an element originally found in Pseudomonas knackmussii B13 and known for its propensity to provide its host with the capacity to metabolize chlorocatechols and 2-aminophenol. In this work, we studied the mechanism and target of regulation of MfsR, a TetR-type repressor previously found to exert global control on ICEclc horizontal transfer. By using a combination of ICEclc mutant and transcriptome analysis, gene reporter fusions, and DNA binding assays, we found that MfsR is a repressor of both its own expression and that of a gene cluster putatively coding for a major facilitator superfamily efflux system on ICEclc (named mfsABC). Phylogenetic analysis suggests that mfsR was originally located immediately adjacent to the efflux pump genes but became displaced from its original cis target DNA by a gene insertion. This resulted in divergence of the original bidirectional promoters into two separated individual regulatory units. Deletion of mfsABC did not result in a strong phenotype, and despite screening a large number of compounds and conditions, we were unable to define the precise current function or target of the putative efflux pump. Our data reconstruct how the separation of an ancestor mfsR-mfsABC system led to global control of ICEclc transfer by MfsR.
Collapse
|
20
|
Flores C, Catita JAM, Lage OM. Assessment of planctomycetes cell viability after pollutants exposure. Antonie van Leeuwenhoek 2014; 106:399-411. [PMID: 24903954 DOI: 10.1007/s10482-014-0206-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 05/23/2014] [Indexed: 12/13/2022]
Abstract
In this study, the growth of six different planctomycetes, a particular ubiquitous bacterial phylum, was assessed after exposure to pollutants. In addition and for comparative purposes, Pseudomonas putida, Escherichia coli and Vibrio anguillarum were tested. Each microorganism was exposed to several concentrations of 21 different pollutants. After exposure, bacteria were cultivated using the drop plate method. In general, the strains exhibited a great variation of sensitivity to pollutants in the order: V. anguillarum > planctomycetes > P. putida > E. coli. E. coli showed resistance to all pollutants tested, with the exception of phenol and sodium azide. Copper, Ridomil® (fungicide), hydrazine and phenol were the most toxic pollutants. Planctomycetes were resistant to extremely high concentrations of nitrate, nitrite and ammonium but they were the only bacteria sensitive to Previcur N® (fungicide). Sodium azide affected the growth on plates of E. coli, P. putida and V. anguillarum, but not of planctomycetes. However, this compound affected planctomycetes cell respiration but with less impact than in the aforementioned bacteria. Our results provide evidence for a diverse response of bacteria towards pollutants, which may influence the structuring of microbial communities in ecosystems under stress, and provide new insights on the ecophysiology of planctomycetes.
Collapse
Affiliation(s)
- Carlos Flores
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, FC4 Rua do Campo Alegre s/nº, 4169-007, Porto, Portugal
| | | | | |
Collapse
|
21
|
Chen L, Zhu Y, Song Z, Wang J, Zhang W. An orphan response regulator Sll0649 involved in cadmium tolerance and metal homeostasis in photosynthetic Synechocystis sp. PCC 6803. J Proteomics 2014; 103:87-102. [DOI: 10.1016/j.jprot.2014.03.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/07/2014] [Accepted: 03/23/2014] [Indexed: 10/25/2022]
|