1
|
Prabhu C, Satyaprasad AU, Deekshit VK. Understanding Bacterial Resistance to Heavy Metals and Nanoparticles: Mechanisms, Implications, and Challenges. J Basic Microbiol 2025; 65:e2400596. [PMID: 39696916 DOI: 10.1002/jobm.202400596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/30/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024]
Abstract
Antimicrobial resistance is a global health problem as it contributes to high mortality rates in several infectious diseases. To address this issue, engineered nanoparticles/nano-formulations of antibiotics have emerged as a promising strategy. Nanoparticles are typically defined as materials with dimensions up to 100 nm and are made of different materials such as inorganic particles, lipids, polymers, etc. They are widely dispersed in the environment through various consumer products, and their clinical applications are diverse, ranging from contrast agents in imaging to carriers for gene and drug delivery. Nanoparticles can also act as antimicrobial agents either on their own or in combination with traditional antibiotics to produce synergistic effects, earning them the label of "next-generation therapeutics." They have also shown great effectiveness against multidrug-resistant pathogens responsible for nosocomial infections. However, overexposure or prolonged exposure to sublethal doses of nanoparticles can promote the development of resistance in human pathogens. The resistance can arise from various factors such as genetic mutation, horizontal gene transfer, production of reactive oxygen species, changes in the outer membrane of bacteria, efflux-induced resistance, cross-resistance from intrinsic antibiotic resistance determinants, plasmid-mediated resistance, and many more. Continuous exposure to nanoparticles can also transform an antibiotic-susceptible bacterial pathogen into multidrug resistance. Considering all these, the current review focuses on the mode of action of different heavy metals and nanoparticles and possible mechanisms through which bacteria attain resistance towards these heavy metals and nanoparticles.
Collapse
Affiliation(s)
- Chaitra Prabhu
- Department of Infectious Diseases and Microbial Genomics, NITTE (Deemed to be University), NITTE University Centre for Science Education and Research, Paneer Campus, Deralakatte, Mangaluru, India
| | - Akshath Uchangi Satyaprasad
- Department of Bio and Nano Technology, NITTE (Deemed to be University), NITTE University Centre for Science Education and Research, Paneer Campus, Deralakatte, Mangaluru, India
| | - Vijaya Kumar Deekshit
- Department of Infectious Diseases and Microbial Genomics, NITTE (Deemed to be University), NITTE University Centre for Science Education and Research, Paneer Campus, Deralakatte, Mangaluru, India
| |
Collapse
|
2
|
Garza Elizondo AM, Chappell J. Targeted Transcriptional Activation Using a CRISPR-Associated Transposon System. ACS Synth Biol 2024; 13:328-336. [PMID: 38085703 DOI: 10.1021/acssynbio.3c00563] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Synthetic perturbation of gene expression is central to our ability to reliably uncover genotype-phenotype relationships in microbes. Here, we present a novel transcription activation strategy that uses the Vibrio cholerae CRISPR-Associated Transposon (CAST) system to selectively insert promoter elements upstream of genes of interest. Through this strategy, we show robust activation of both recombinant and endogenous genes across the Escherichia coli chromosome. We then demonstrate the precise tuning of expression levels by exchanging the promoter elements being inserted. Finally, we demonstrate that CAST activation can be used to synthetically induce ampicillin-resistant phenotypes in E. coli.
Collapse
Affiliation(s)
| | - James Chappell
- Department of Biosciences, Rice University, Houston, Texas 77005, United States
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
3
|
Andrade L, P Ryan M, P Burke L, Hynds P, Weatherill J, O'Dwyer J. Assessing antimicrobial and metal resistance genes in Escherichia coli from domestic groundwater supplies in rural Ireland. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:121970. [PMID: 37343911 DOI: 10.1016/j.envpol.2023.121970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/08/2023] [Accepted: 06/06/2023] [Indexed: 06/23/2023]
Abstract
Natural ecosystems can become significant reservoirs and/or pathways for antimicrobial resistance (AMR) dissemination, with the potential to affect nearby microbiological, animal, and ultimately human communities. This is further accentuated in environments that provide direct human exposure, such as drinking water. To date, however, few studies have investigated AMR dissemination potential and the presence of co-selective stressors (e.g., metals/metalloids) in groundwater environments of human health significance. Accordingly, the present study analysed samples from rural (drinking) groundwater supplies (i.e., private wells) in the Republic of Ireland, where land use is dominated by livestock grazing activities. In total, 48 Escherichia coli isolates tested phenotypically for antimicrobial susceptibility in an earlier study were further subject to whole genome sequencing (WGS) and corresponding water samples were further analysed for trace metal/metalloid concentrations. Eight isolates (i.e., 16.7%) were genotypically resistant to antimicrobials, confirming prior phenotypic results through the identification of ten antimicrobial resistance genes (ARGs); namely: aph(3″)-lb (strA; n=7), aph(6)-Id (strA; n = 6), blaTEM (n = 6), sul2 (n = 6), tetA (n = 4), floR (n = 2), dfrA5 (n = 1), tetB (n = 1), and tetY (n = 1). Additional bioinformatic analysis revealed that all ARGs were plasmid-borne, except for two of the six sul2 genes, and that 31.2% of all tested isolates (n = 15) and 37.5% of resistant ones (n = 3) carried virulence genes. Study results also found no significant relationships between metal concentrations and ARG abundance. Additionally, just one genetic linkage was identified between ARGs and a metal resistance gene (MRG), namely merA, a mercury-resistant gene found on the same plasmid as blaTEM, dfrA5, strA, strB, and sul2 in the only isolate of inferred porcine (as opposed to bovine) origin. Overall, findings suggest that ARG (and MRG) acquisition may be occurring prior to groundwater ingress, and are likely a legacy issue arising from agricultural practices.
Collapse
Affiliation(s)
- Luisa Andrade
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland; Irish Centre for Research in Applied Geosciences, University College Dublin, Dublin, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland.
| | - Michael P Ryan
- Department of Applied Sciences, Technological University of the Shannon Midwest, Moylish, Ireland
| | - Liam P Burke
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Paul Hynds
- Irish Centre for Research in Applied Geosciences, University College Dublin, Dublin, Ireland; Environmental Sustainability and Health Institute, Technological University Dublin, Dublin 7, Ireland
| | - John Weatherill
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland; Irish Centre for Research in Applied Geosciences, University College Dublin, Dublin, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland
| | - Jean O'Dwyer
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland; Irish Centre for Research in Applied Geosciences, University College Dublin, Dublin, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland
| |
Collapse
|
4
|
Cao S, Brandis G, Huseby DL, Hughes D. Positive selection during niche adaptation results in large-scale and irreversible rearrangement of chromosomal gene order in bacteria. Mol Biol Evol 2022; 39:6554941. [PMID: 35348727 PMCID: PMC9016547 DOI: 10.1093/molbev/msac069] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Analysis of bacterial genomes shows that, whereas diverse species share many genes in common, their linear order on the chromosome is often not conserved. Whereas rearrangements in gene order could occur by genetic drift, an alternative hypothesis is rearrangement driven by positive selection during niche adaptation (SNAP). Here, we provide the first experimental support for the SNAP hypothesis. We evolved Salmonella to adapt to growth on malate as the sole carbon source and followed the evolutionary trajectories. The initial adaptation to growth in the new environment involved the duplication of 1.66 Mb, corresponding to one-third of the Salmonella chromosome. This duplication is selected to increase the copy number of a single gene, dctA, involved in the uptake of malate. Continuing selection led to the rapid loss or mutation of duplicate genes from either copy of the duplicated region. After 2000 generations, only 31% of the originally duplicated genes remained intact and the gene order within the Salmonella chromosome has been significantly and irreversibly altered. These results experientially validate predictions made by the SNAP hypothesis and show that SNAP can be a strong driving force for rearrangements in chromosomal gene order.
Collapse
Affiliation(s)
- Sha Cao
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,These authors contributed equally: Sha Cao, Gerrit Brandis
| | - Gerrit Brandis
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.,These authors contributed equally: Sha Cao, Gerrit Brandis
| | - Douglas L Huseby
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Diarmaid Hughes
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Johanns VC, Ghazisaeedi F, Epping L, Semmler T, Lübke-Becker A, Pfeifer Y, Bethe A, Eichhorn I, Merle R, Walther B, Wieler LH. Effects of a Four-Week High-Dosage Zinc Oxide Supplemented Diet on Commensal Escherichia coli of Weaned Pigs. Front Microbiol 2019; 10:2734. [PMID: 31849886 PMCID: PMC6892955 DOI: 10.3389/fmicb.2019.02734] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/11/2019] [Indexed: 12/11/2022] Open
Abstract
Strategies to reduce economic losses associated with post-weaning diarrhea in pig farming include high-level dietary zinc oxide supplementation. However, excessive usage of zinc oxide in the pig production sector was found to be associated with accumulation of multidrug resistant bacteria in these animals, presenting an environmental burden through contaminated manure. Here we report on zinc tolerance among a random selection of intestinal Escherichia coli comprising of different antibiotic resistance phenotypes and sampling sites isolated during a controlled feeding trial from 16 weaned piglets: In total, 179 isolates from "pigs fed with high zinc concentrations" (high zinc group, [HZG]: n = 99) and a corresponding "control group" ([CG]: n = 80) were investigated with regard to zinc tolerance, antimicrobial- and biocide susceptibilities by determining minimum inhibitory concentrations (MICs). In addition, in silico whole genome screening (WGSc) for antibiotic resistance genes (ARGs) as well as biocide- and heavy metal tolerance genes was performed using an in-house BLAST-based pipeline. Overall, porcine E. coli isolates showed three different ZnCl2 MICs: 128 μg/ml (HZG, 2%; CG, 6%), 256 μg/ml (HZG, 64%; CG, 91%) and 512 μg/ml ZnCl2 (HZG, 34%, CG, 3%), a unimodal distribution most likely reflecting natural differences in zinc tolerance associated with different genetic lineages. However, a selective impact of the zinc-rich supplemented diet seems to be reasonable, since the linear mixed regression model revealed a statistically significant association between "higher" ZnCl2 MICs and isolates representing the HZG as well as "lower ZnCl2 MICs" with isolates of the CG (p = 0.005). None of the zinc chloride MICs was associated with a particular antibiotic-, heavy metal- or biocide- tolerance/resistance phenotype. Isolates expressing the 512 μg/ml MIC were either positive for ARGs conferring resistance to aminoglycosides, tetracycline and sulfamethoxazole-trimethoprim, or harbored no ARGs at all. Moreover, WGSc revealed a ubiquitous presence of zinc homeostasis and - detoxification genes, including zitB, zntA, and pit. In conclusion, we provide evidence that zinc-rich supplementation of pig feed selects for more zinc tolerant E. coli, including isolates harboring ARGs and biocide- and heavy metal tolerance genes - a putative selective advantage considering substances and antibiotics currently used in industrial pork production systems.
Collapse
Affiliation(s)
- Vanessa C Johanns
- Advanced Light and Electron Microscopy (ZBS-4), Robert Koch Institute, Berlin, Germany
| | - Fereshteh Ghazisaeedi
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Lennard Epping
- Microbial Genomics (NG1), Robert Koch Institute, Berlin, Germany
| | - Torsten Semmler
- Microbial Genomics (NG1), Robert Koch Institute, Berlin, Germany
| | - Antina Lübke-Becker
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Yvonne Pfeifer
- Nosocomial Pathogens and Antibiotic Resistances, Robert Koch Institute, Wernigerode, Germany
| | - Astrid Bethe
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Inga Eichhorn
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Roswitha Merle
- Institute for Veterinary Epidemiology and Biostatistics, Freie Universität Berlin, Berlin, Germany
| | - Birgit Walther
- Advanced Light and Electron Microscopy (ZBS-4), Robert Koch Institute, Berlin, Germany
| | | |
Collapse
|
6
|
Dual-barcoded shotgun expression library sequencing for high-throughput characterization of functional traits in bacteria. Nat Commun 2019; 10:308. [PMID: 30659179 PMCID: PMC6338753 DOI: 10.1038/s41467-018-08177-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 12/19/2018] [Indexed: 12/20/2022] Open
Abstract
A major challenge in genomics is the knowledge gap between sequence and its encoded function. Gain-of-function methods based on gene overexpression are attractive avenues for phenotype-based functional screens, but are not easily applied in high-throughput across many experimental conditions. Here, we present Dual Barcoded Shotgun Expression Library Sequencing (Dub-seq), a method that uses random DNA barcodes to greatly increase experimental throughput. As a demonstration of this approach, we construct a Dub-seq library with Escherichia coli genomic DNA, performed 155 genome-wide fitness assays in 52 experimental conditions, and identified overexpression phenotypes for 813 genes. We show that Dub-seq data is reproducible, accurately recapitulates known biology, and identifies hundreds of novel gain-of-function phenotypes for E. coli genes, a subset of which we verified with assays of individual strains. Dub-seq provides complementary information to loss-of-function approaches and will facilitate rapid and systematic functional characterization of microbial genomes. Gain of function methods based on gene overexpression are not easily applied to high-throughput screening across different experimental conditions. Here, the authors present Dub-seq, which separates overexpression library characterization from functional screening and uses random DNA barcodes to increase the experimental throughput.
Collapse
|