1
|
Yelisyeyeva O, Kaminskyy D, Semen M, Chelpanova I, Semen KO. Redox Metabolism and Autonomic Regulation During Aging: Can Heart Rate Variability Be Used to Monitor Healthy Longevity? Biomedicines 2025; 13:161. [PMID: 39857745 PMCID: PMC11761282 DOI: 10.3390/biomedicines13010161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/28/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
The functionality of redox metabolism is frequently named as an important contributor to the processes of aging and anti-aging. Excessive activation of free radical reactions accompanied by the inability of the antioxidant defense (AOD) mechanisms to control the flow of the reactive oxygen species (ROS) leads to the persistence of oxidative stress, hypoxia, impaired mitochondrial energy function and reduced ATP potential. From a long-term perspective, such changes contribute to the development of chronic diseases and facilitate aging. In turn, preconditioning of a biosystem with small doses of stressful stimuli might cause mobilization of the mechanisms of AOD and control an excessive flow of ROS, which supports optimal functioning of the redox reactions. Those mechanisms are of crucial importance for anti-aging and are also known as a eustress or hormetic response. To ensure continuous support of mild pro-oxidant activity in a metabolic system, close monitoring and timely corrections preventing the development of excessive ROS production are required. The paper introduces the potential of heart rate variability (HRV) as a biomarker of functional and metabolic reserves and a tool to measure stress resilience during aging. The practical approaches to interpretation of HRV are provided based on total power, changes in total power in response to an orthostatic test and activities of all spectral components. It is suggested that the complex of those parameters can reflect the depth of oxidative stress and may be used to guide lifestyle interventions and promote active longevity.
Collapse
Affiliation(s)
- Olha Yelisyeyeva
- Department of Histology, Cytology and Embryology, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine; (O.Y.); (I.C.)
| | - Danylo Kaminskyy
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine;
| | - Marta Semen
- Department of Propaedeutics of Pediatrics and Medical Genetics, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine;
| | - Ilona Chelpanova
- Department of Histology, Cytology and Embryology, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine; (O.Y.); (I.C.)
| | | |
Collapse
|
2
|
Bribiescas RG. Reproductive endocrinology and aging in human males: An evolutionary perspective. Neurosci Biobehav Rev 2024; 167:105898. [PMID: 39293503 DOI: 10.1016/j.neubiorev.2024.105898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/19/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024]
Abstract
Due to its important role in fertility, reproductive endocrine function has been subject to natural selection in all organisms including human males. Moreover, reproductive endocrine function is subject to change as males age. Indeed, the biology of aging is also subject to natural selection. As males age, hormone function such as variation in testosterone can change as the result of general somatic degradation. However these changes are not universal and can differ between human male populations depending on lifestyle and ecological context. The degree to which this variation is adaptive remains an open question but recent evolutionary anthropology research has provided some clarity. While knowledge of evolutionary approaches has limitations, the benefits of understanding the origins and comparative context of reproductive endocrine function in older human males are significant. This paper discusses our present comprehension of reproductive endocrinology and aging in human males, with a focus on human diversity across varied lifestyles, ecologies, and environments. In addition, comparative great ape research is examined. Current research challenges and future directions related to the importance of evolutionary biology and human diversity for understanding human male aging are discussed.
Collapse
Affiliation(s)
- R G Bribiescas
- Yale University, Department of Anthropology, 10 Sachem Street, New Haven, CT 06520, USA.
| |
Collapse
|
3
|
Wang SN, Shi YC, Lin S, He HF. Particulate matter 2.5 accelerates aging: Exploring cellular senescence and age-related diseases. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116920. [PMID: 39208581 DOI: 10.1016/j.ecoenv.2024.116920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Exposure to Particulate matter 2.5 (PM2.5) accelerates aging, causing declines in tissue and organ function, and leading to diseases such as cardiovascular, neurodegenerative, and musculoskeletal disorders. PM2.5 is a major environmental pollutant and an exogenous pathogen in air pollution that is now recognized as an accelerator of human aging and a predisposing factor for several age-related diseases. In this paper, we seek to elucidate the mechanisms by which PM2.5 induces cellular senescence, such as genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, and mitochondrial dysfunction, and age-related diseases. Our goal is to increase awareness among researchers within the field of the toxicity of environmental pollutants and to advocate for personal and public health initiatives to curb their production and enhance population protection. Through these endeavors, we aim to promote longevity and health in older adults.
Collapse
Affiliation(s)
- Sheng-Nan Wang
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Yan-Chuan Shi
- Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China; Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Australia
| | - Shu Lin
- Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China; Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia.
| | - He-Fan He
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.
| |
Collapse
|
4
|
Redl M, Shayegan A, Rollinger JM. Application of 3Rs in Caenorhabditis elegans Research for the Identification of Health-Promoting Natural Products. PLANTA MEDICA 2024; 90:576-587. [PMID: 38843797 DOI: 10.1055/a-2254-0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
The average age of the population is increasing worldwide, which has a profound impact on our society. This leads to an increasing demand for medicines and requires the development of new strategies to promote health during the additional years. In the search for resources and therapeutics for improved health during an extended life span, attention has to be paid to environmental exposure and ecosystem burdens that inevitably emerge with the extended consumption of medicines and drug development, even in the preclinical stage. The hereby introduced sustainable strategy for drug discovery is built on 3Rs, "R: obustness, R: eliability, and saving R: esources", inspired by both the 3Rs used in animal experiments and environmental protection, and centers on the usefulness and the variety of the small model organism Caenorhabditis elegans for detecting health-promoting natural products. A workflow encompassing a multilevel screening approach is presented to maximize the amount of information on health-promoting samples, while considering the 3Rs. A detailed, methodology- and praxis-oriented compilation and discussion of proposed C. elegans health span assays and more disease-specific assays are presented to offer guidance for scientists intending to work with C. elegans, thus facilitating the initial steps towards the integration of C. elegans assays in their laboratories.
Collapse
Affiliation(s)
- Martina Redl
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional, and Sport Sciences, University of Vienna, Vienna, Austria
| | - Anusha Shayegan
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Judith M Rollinger
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Hînganu MV, Cucu RP, Hînganu D. Personalized Research on the Aging Face-A Narrative History. J Pers Med 2024; 14:343. [PMID: 38672970 PMCID: PMC11050910 DOI: 10.3390/jpm14040343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Throughout history, people have struggled to find out the secret of youth. The aim of the manuscript is to review the main achievements regarding the exploration of the aging face phenomenon. It should be very important to know the evolution in this field due to the increase in life expectancy among the population. Our purpose is for the current study to serve as a starting point towards exploring novel research avenues in molecular biology and the confocal immunofluorescence of cervicofacial soft tissues, employing cutting-edge techniques. All changes in the shape of the facial skeleton, soft tissue, retaining ligaments, fat compartments, and the skin envelope contribute to facial aging to varying degrees.
Collapse
Affiliation(s)
- Marius Valeriu Hînganu
- Department of Morpho-Functionall Sciences I, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.V.H.); (D.H.)
| | - Ramona Paula Cucu
- Department of Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Delia Hînganu
- Department of Morpho-Functionall Sciences I, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.V.H.); (D.H.)
| |
Collapse
|
6
|
Navarro C, Salazar J, Díaz MP, Chacin M, Santeliz R, Vera I, D′Marco L, Parra H, Bernal MC, Castro A, Escalona D, García-Pacheco H, Bermúdez V. Intrinsic and environmental basis of aging: A narrative review. Heliyon 2023; 9:e18239. [PMID: 37576279 PMCID: PMC10415626 DOI: 10.1016/j.heliyon.2023.e18239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 06/26/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023] Open
Abstract
Longevity has been a topic of interest since the beginnings of humanity, yet its aetiology and precise mechanisms remain to be elucidated. Aging is currently viewed as a physiological phenomenon characterized by the gradual degeneration of organic physiology and morphology due to the passage of time where both external and internal stimuli intervene. The influence of intrinsic factors, such as progressive telomere shortening, genome instability due to mutation buildup, the direct or indirect actions of age-related genes, and marked changes in epigenetic, metabolic, and mitochondrial patterns constitute a big part of its underlying endogenous mechanisms. On the other hand, several psychosocial and demographic factors, such as diet, physical activity, smoking, and drinking habits, may have an even more significant impact on shaping the aging process. Consequentially, implementing dietary and exercise patterns has been proposed as the most viable alternative strategy for attenuating the most typical degenerative aging changes, thus increasing the likelihood of prolonging lifespan and achieving successful aging.
Collapse
Affiliation(s)
- Carla Navarro
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo 4001, Venezuela
| | - Juan Salazar
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo 4001, Venezuela
| | - María P. Díaz
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo 4001, Venezuela
| | - Maricarmen Chacin
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla 080001, Colombia
| | - Raquel Santeliz
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo 4001, Venezuela
| | - Ivana Vera
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo 4001, Venezuela
| | - Luis D′Marco
- Universidad Cardenal Herrera-CEU Medicine Department, CEU Universities, 46115 Valencia, Spain
| | - Heliana Parra
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo 4001, Venezuela
| | | | - Ana Castro
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo 4001, Venezuela
| | - Daniel Escalona
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo 4001, Venezuela
| | - Henry García-Pacheco
- Universidad del Zulia, Facultad de Medicina, Departamento de Cirugía. Hospital General del Sur “Dr. Pedro Iturbe”. Maracaibo, Venezuela
- Unidad de Cirugía para la Obesidad y Metabolismo (UCOM). Maracaibo, Venezuela
| | - Valmore Bermúdez
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla 080001, Colombia
| |
Collapse
|
7
|
Furrer R, Handschin C. Drugs, clocks and exercise in ageing: hype and hope, fact and fiction. J Physiol 2023; 601:2057-2068. [PMID: 36114675 PMCID: PMC7617581 DOI: 10.1113/jp282887] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/25/2022] [Indexed: 04/13/2025] Open
Abstract
Ageing is a biological process that is linked to a functional decline, ultimately resulting in death. Large interindividual differences exist in terms of life- and healthspan, representing life expectancy and the number of years spent in the absence of major diseases, respectively. The genetic and molecular mechanisms that are involved in the regulation of the ageing process, and those that render age the main risk factor for many diseases are still poorly understood. Nevertheless, a growing number of compounds have been put forward to affect this process. However, for scientists and laypeople alike, it is difficult to separate fact from fiction, and hype from hope. In this review, we discuss the currently pursued pharmacological anti-ageing approaches. These are compared to non-pharmacological interventions, some of which confer powerful effects on health and well-being, in particular an active lifestyle and exercise. Moreover, functional parameters and biological clocks as well as other molecular marks are compared in terms of predictive power of morbidity and mortality. Then, conceptual aspects and roadblocks in the development of anti-ageing drugs are outlined. Finally, an overview on current and future strategies to mitigate age-related pathologies and the extension of life- and healthspan is provided.
Collapse
|
8
|
Ultrasound-driven exercise training ameliorates degeneration of ultrasonic responses in Caenorhabditis elegans. Neurosci Res 2023:S0168-0102(23)00023-8. [PMID: 36731541 DOI: 10.1016/j.neures.2023.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/06/2023] [Accepted: 01/29/2023] [Indexed: 02/01/2023]
Abstract
The inevitability of age-related degeneration makes research on degradation mitigation attractive to humans, while exercise is considered an effective means due to its powerful impact on life and health. Caenorhabditis elegans is a model animal with a short life cycle and is widely used in health and aging studies. In this work, ultrasonic stimuli in the form of surface acoustic waves (SAWs) were used to induce behavioral activities in worms. As the worms grew, ultrasound-elicited behavioral responses started to decrease in the early adulthood stage. However, this situation was significantly ameliorated when ultrasonic training sessions at an effective acoustic pressure of 1.1 MPa were performed four times per day for 5 or 7 days, while ultrasonic responses in trained nematodes were stronger than those in untrained ones. These results suggest that long-term ultrasonic training might positively intervene in aging-related degeneration. Besides, it was found that exercise driven by long-term ultrasonic training had insignificant effects on the lifespan of worms. A preliminary exploration of the neural mechanisms underlying the sensation of SAWs was also conducted. The results show that, apart from touch receptor neurons (TRNs), polymodal nociceptors FLP and PVD neurons may also be involved in the perception of ultrasound in C. elegans. The results of this study may inspire related studies on other animals or humans.
Collapse
|
9
|
Devi A, Dwibedi V, Rath SK, Khan ZA. Theories and Mechanism of Aging and Longevity Through Evolutionary Lens: a Coalition of Plant Anti-oxidants. REVISTA BRASILEIRA DE FARMACOGNOSIA 2022; 32:291-320. [DOI: 10.1007/s43450-022-00254-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/28/2022] [Indexed: 01/03/2025]
|
10
|
Salminen A. Role of indoleamine 2,3-dioxygenase 1 (IDO1) and kynurenine pathway in the regulation of the aging process. Ageing Res Rev 2022; 75:101573. [PMID: 35085834 DOI: 10.1016/j.arr.2022.101573] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/12/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is activated in chronic inflammatory states, e.g., in the aging process and age-related diseases. IDO1 enzyme catabolizes L-tryptophan (L-Trp) into kynurenine (KYN) thus stimulating the KYN pathway. The depletion of L-Trp inhibits the proliferation of immune cells in inflamed tissues and it also reduces serotonin synthesis predisposing to psychiatric disorders. Interestingly, IDO1 protein contains two immunoreceptor tyrosine-based inhibitory motifs (ITIM) which trigger suppressive signaling through the binding of PI3K p110 and SHP-1 proteins. This immunosuppressive activity is not dependent on the catalytic activity of IDO1. KYN and its metabolite, kynurenic acid (KYNA), are potent activators of the aryl hydrocarbon receptor (AhR) which can enhance immunosuppression. IDO1-KYN-AhR signaling counteracts excessive pro-inflammatory responses in acute inflammation but in chronic inflammatory states it has many harmful effects. A chronic low-grade inflammation is associated with the aging process, a state called inflammaging. There is substantial evidence that the activation of the IDO1-KYN-AhR pathway robustly increases with the aging process. The activation of IDO1-KYN-AhR signaling does not only suppress the functions of effector immune cells, probably promoting immunosenescence, but it also impairs autophagy, induces cellular senescence, and remodels the extracellular matrix as well as enhancing the development of osteoporosis and vascular diseases. I will review the function of IDO1-KYN-AhR signaling and discuss its activation with aging as an enhancer of the aging process.
Collapse
|
11
|
Growth of Biological Complexity from Prokaryotes to Hominids Reflected in the Human Genome. Int J Mol Sci 2021; 22:ijms222111640. [PMID: 34769071 PMCID: PMC8583824 DOI: 10.3390/ijms222111640] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
The growth of complexity in evolution is a most intriguing phenomenon. Using gene phylostratigraphy, we showed this growth (as reflected in regulatory mechanisms) in the human genome, tracing the path from prokaryotes to hominids. Generally, the different regulatory gene families expanded at different times, yet only up to the Euteleostomi (bony vertebrates). The only exception was the expansion of transcription factors (TF) in placentals; however, we argue that this was not related to increase in general complexity. Surprisingly, although TF originated in the Prokaryota while chromatin appeared only in the Eukaryota, the expansion of epigenetic factors predated the expansion of TF. Signaling receptors, tumor suppressors, oncogenes, and aging- and disease-associated genes (indicating vulnerabilities in terms of complex organization and strongly enrichment in regulatory genes) also expanded only up to the Euteleostomi. The complexity-related gene properties (protein size, number of alternative splicing mRNA, length of untranslated mRNA, number of biological processes per gene, number of disordered regions in a protein, and density of TF–TF interactions) rose in multicellular organisms and declined after the Euteleostomi, and possibly earlier. At the same time, the speed of protein sequence evolution sharply increased in the genes that originated after the Euteleostomi. Thus, several lines of evidence indicate that molecular mechanisms of complexity growth were changing with time, and in the phyletic lineage leading to humans, the most salient shift occurred after the basic vertebrate body plan was fixed with bony skeleton. The obtained results can be useful for evolutionary medicine.
Collapse
|
12
|
Tsoukalas D, Zlatian O, Mitroi M, Renieri E, Tsatsakis A, Izotov BN, Burada F, Sosoi S, Burada E, Buga AM, Rogoveanu I, Docea AO, Calina D. A Novel Nutraceutical Formulation Can Improve Motor Activity and Decrease the Stress Level in a Murine Model of Middle-Age Animals. J Clin Med 2021; 10:624. [PMID: 33562115 PMCID: PMC7915416 DOI: 10.3390/jcm10040624] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
Ageing is a genetically programmed physiological process that is modulated by numerous environmental factors, associated with decreasing physiological function, decreasing reproductive rate and increasing age-related mortality rate. Maintaining mobility performance and physical function in the elderly is the main objective of the successful ageing concept. In this study, we aimed to evaluate the beneficial effect of a novel nutraceutical formulation containing Centella asiatica L. extract, vitamin C, zinc and vitamin D3 (as cholecalciferol) on motor activity and anxiety with the use of a murine model of old animals, as a means of providing proof for clinical use in the elderly, for enhancing physical strength and improving life quality. Eighteen Sprague Dawley 18 months old male rats were divided into three groups and received corn oil (the control group) or 1 capsule/kg bw Reverse supplement (treatment group 1) or 2 capsules/kg bw Reverse supplement (treatment group 2), for a period of 3 months. The Reverse supplement (Natural Doctor S.A, Athens, Greece) contains 9 mg Centella asiatica L. extract, vitamin C (200 mg as magnesium ascorbate), zinc (5 mg as zinc citrate), vitamin D3 (50 µg as cholecalciferol) per capsule. Before and after the treatment, the motor function and behavioral changes for anxiety and depression were evaluated using the open-field test, elevated plus-maze test and rotarod test. The supplementation with Reverse (Natural Doctor S.A) supplement can improve the locomotor activity in old rats in a dose-dependent manner, as demonstrated by an increase in the latency to leave from the middle square, in the number of rearings in the open field test, in the time spent in the open arms and time spent in the center in the elevated plus-maze test and the latency to all in all three consecutive trials in the rotarod test. Stress also decreased significantly in a dose-dependent manner, following the treatment with Reverse supplement, as was demonstrated by the decrease in the number of groomings at the open field test and time spent in the dark and the number of groomings at the elevated plus-maze test.
Collapse
Affiliation(s)
- Dimitris Tsoukalas
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Metabolomic Medicine, Health Clinic for Autoimmune and Chronic Diseases, 10674 Athens, Greece
- European Institute of Nutritional Medicine (E.I.Nu.M.), 00198 Rome, Italy
| | - Ovidiu Zlatian
- Department of Microbiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Mihaela Mitroi
- ENT Department, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Elisavet Renieri
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, 71003 Heraklion, Greece; (E.R.); (A.T.)
| | - Aristidis Tsatsakis
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, 71003 Heraklion, Greece; (E.R.); (A.T.)
- Department of Analytical and Forensic Medical Toxicology, Sechenov University, 119991 Moscow, Russia;
| | - Boris Nikolaevich Izotov
- Department of Analytical and Forensic Medical Toxicology, Sechenov University, 119991 Moscow, Russia;
| | - Florin Burada
- Human Genomics Laboratory, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (F.B.); (S.S.)
| | - Simona Sosoi
- Human Genomics Laboratory, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (F.B.); (S.S.)
| | - Emilia Burada
- Department of Physiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Ana Maria Buga
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Ion Rogoveanu
- Department of Internal Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
13
|
Abstract
Abstract
Biological ageing can be tentatively defined as an intrinsic and inevitable degradation of biological function that accumulates over time at every level of biological organisation from molecules to populations. Senescence is characterised by a progressive loss of physiological integrity, leading to impaired function and increased vulnerability to death. With advancing age, all components of the human body undergo these cumulative, universal, progressive, intrinsic and deleterious (CUPID) changes. Although ageing is not a disease per se, age is the main risk factor for the development of a panoply of age-related diseases. From a mechanistic perspective, a myriad of molecular processes and components of ageing can be studied. Some of them seem especially important and they are referred to as the hallmarks of ageing. There is compelling evidence that senescence has evolved as an emergent metaphenomenon that originates in the difficulty in maintaining homeodynamics in biological systems. From an evolutionary perspective, senescence is the inevitable outcome of an evolutionarily derived equilibrium between the amount of resources devoted to somatic maintenance and the amount of resources devoted to sexual reproduction. Single-target, single-molecule and disease-oriented approaches to ageing are severely limited because they neglect the dynamic, interactive and networking nature of life. These limitations notwithstanding, many authors promote single-target and disease-oriented approaches to senescence, e.g. repurposed drugs, claiming that these methods can enhance human health and longevity. Senescence is neither a disease nor a monolithic process. In this review, the limitations of these methods are discussed. The current state of biogerontology is also summarised.
Collapse
|
14
|
Vinogradov AE, Anatskaya OV. Systemic evolutionary changes in mammalian gene expression. Biosystems 2020; 198:104256. [PMID: 32976926 DOI: 10.1016/j.biosystems.2020.104256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/16/2022]
Abstract
Changes in gene expression play an important role in evolution and can be relevant to evolutionary medicine. In this work, a strong relationship was found between the statistical significance of evolutionary changes in the expression of orthologous genes in the five or six homologous mammalian tissues and the across-tissues unidirectionality of changes (i.e., they occur in the same direction in different tissues -- all upward or all downward). In the area of highly significant changes, the fraction of unidirectionally changed genes (UCG) was above 0.9 (random expectation is 0.03). This observation indicates that the most pronounced evolutionary changes in mammalian gene expression are systemic (i.e., they operate at the whole-organism level). The UCG are strongly enriched in the housekeeping genes. More specifically, in the human-chimpanzee comparison, the UCG are enriched in the pathways belonging to gene expression (translation is prominent), cell cycle control, ubiquitin-dependent protein degradation (mostly related to cell cycle control), apoptosis, and Parkinson's disease. In the human-macaque comparison, the two other neurodegenerative diseases (Alzheimer's and Huntington's) are added to the enriched pathways. The consolidation of gene expression changes at the level of pathways indicates that they are not neutral but functional. The systemic expression changes probably maintain the across-tissues balance of basic physiological processes in the course of evolution (e.g., during the movement along the fast-slow life axis). These results can be useful for understanding the variation in longevity and susceptibility to cancer and widespread neurodegenerative diseases. This approach can also guide the choice of prospective genes for studies aiming to decipher cis-regulatory code (the gene list is provided).
Collapse
Affiliation(s)
| | - Olga V Anatskaya
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
| |
Collapse
|
15
|
Voskarides K. Editorial: A New Bright Era for Evolutionary Medicine. J Mol Evol 2019; 88:1-2. [PMID: 31828352 DOI: 10.1007/s00239-019-09919-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 11/24/2022]
Abstract
Evolutionary Medicine is a fast-growing research field providing biomedical scientists with valuable information on molecular and pathophysiological mechanisms of disease. Evolutionary theory explains many medical conditions and it can contribute to new innovative treatments. This is the reason that Journal of Molecular Evolution has devoted this issue to Evolutionary Medicine. Nine detailed review papers are included in this issue, analyzing topics that are among the "hottest" subjects of Evolutionary Medicine. All information is up to date and highly valuable for scientists that would like to start their career or get updated on this field.
Collapse
|