1
|
Li Y, Yang B, Wang H, Hu W, Liu T, Lu X, Gao B. CAV1 unveils a novel therapeutic target for nephrolithiasis by modulating CaSR and ER stress. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167751. [PMID: 40024448 DOI: 10.1016/j.bbadis.2025.167751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
Nephrolithiasis is a complex disease resulted from abnormal crystal deposition in renal tissues. The crystal-cell interaction represents a critical step in kidney stone formation, involving numerous genes and proteins. We previously identified endoplasmic reticulum (ER) stress as a key biological process in the crystal-cell interactions, the precise mechanism of which has remained unclear. In the present study, we found that calcium oxalate monohydrate (COM) crystals induced an overload of intracellular Ca2+ and an upregulation of calcium-sensing receptor (CaSR) expression in the renal tubular epithelial cells HK-2, both of which were reversed by the CaSR inhibitor NPS2390 that also mitigated the COM-induced ER stress. The protein-protein interaction (PPI) network analysis of the genome-wide association studies (GWAS) data and the microarray data from kidney stone patients revealed that caveolin-1 (CAV1), epidermal growth factor receptor (EGFR), and the focal adhesion pathway formed a crucial intersection within the interactional networks. COM exposure induced HK-2 apoptosis, accompanied by a decrease in CAV1 protein levels and damage to EGFR-AKT signaling pathway, which was reversed by CAV1 overexpression. COM did not significantly affect CAV1 mRNA levels. Treatment with the proteasome inhibitor MG-132 prevented the downregulation of CAV1. CAV1 overexpression also inhibited ER stress and the upregulation of CaSR induced by COM. Similar results were observed in in vivo experiments. In conclusion, the present study suggests that CAV1 may be a promising target for nephrolithiasis therapy by modulating CaSR and ER stress.
Collapse
Affiliation(s)
- Yang Li
- Department of Cell Biology and Genetics, Shenyang Medical College, 146 Huanghe North Street, Shenyang 110034, China; Key Laboratory of Renal Calcification Disease Prevention and Treatment, 146 Huanghe North Street, Shenyang 110034, China
| | - Baoyu Yang
- Department of Biochemistry and Cell Biology, School of Life Science, Liaoning University, Shenyang 110036, China
| | - Haozhen Wang
- Department of Biochemistry and Cell Biology, School of Life Science, Liaoning University, Shenyang 110036, China
| | - Wenqi Hu
- Department of Cell Biology and Genetics, Shenyang Medical College, 146 Huanghe North Street, Shenyang 110034, China; Key Laboratory of Renal Calcification Disease Prevention and Treatment, 146 Huanghe North Street, Shenyang 110034, China
| | - Ting Liu
- Department of Biochemistry and Cell Biology, School of Life Science, Liaoning University, Shenyang 110036, China
| | - Xiuli Lu
- Department of Biochemistry and Cell Biology, School of Life Science, Liaoning University, Shenyang 110036, China.
| | - Bing Gao
- Department of Cell Biology and Genetics, Shenyang Medical College, 146 Huanghe North Street, Shenyang 110034, China; Key Laboratory of Renal Calcification Disease Prevention and Treatment, 146 Huanghe North Street, Shenyang 110034, China.
| |
Collapse
|
2
|
Dong C, Yang Y, Cheng B, Yang S, Wang Y. Environmental determinants in the development of kidney stone. Urolithiasis 2025; 53:43. [PMID: 40029430 DOI: 10.1007/s00240-025-01717-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 02/21/2025] [Indexed: 03/05/2025]
Abstract
The increase with years of kidney stone prevalence has become a serious public health problem worldwide. The geographical distribution pattern of kidney stone (known as "stone belt") clearly indicates the critical role of environmental exposure in its formation, which has long been an underestimated risk factor in studying the development of kidney stone. Based on our previous studies and bibliometric analysis, we discerned four environmental determinants and elaborated their impacts on human internal exposure related to kidney stone formation. The importance of climatic factor lies in that the relatively high temperature and low humidity environment may contribute greater prevalence of kidney stone, since it promotes elevating the concentration of relatively insoluble stone-forming salts. Geological factors including water quality, hydrogeology, and soil environment is involved in kidney stone formation via the food chain. Additionally, air pollution and heavy metal pollutants also act as potential risk factors by directly or indirectly affecting the normal renal function and urinary metabolism. This review thus provides insights into the specific mechanisms affecting metabolic changes in the human body which result in kidney stone formation under environmental exposure, and shed light on the pathogenesis of nephrolithiasis from an interdisciplinary perspective.
Collapse
Affiliation(s)
- Caitao Dong
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, People's Republic of China
| | - Yijun Yang
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei Province, 430078, People's Republic of China
| | - Bobo Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, People's Republic of China
| | - Sixing Yang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, People's Republic of China.
| | - Yanxin Wang
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei Province, 430078, People's Republic of China
| |
Collapse
|
3
|
Li J, Ke K, Zhang B, Liu Y, Bai J, Wang M, Li H. Association of single nucleotide genetic polymorphisms of vitamin D receptor and calcium-sensitive receptor with calcium-containing kidney stones in Chinese Dai populations: a prospective multi-center study. Int Urol Nephrol 2024; 56:3647-3655. [PMID: 38886300 DOI: 10.1007/s11255-024-04109-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/30/2024] [Indexed: 06/20/2024]
Abstract
PURPOSE To evaluate the association between vitamin D receptor (VDRs) and calcium-sensitive receptor (CaSR) gene polymorphisms and calcium-containing kidney stones (CCKS) in Dai populations. METHODS A total of 160 CCKS patients and 87 healthy controls were included in this study. CCKS was confirmed using urological computed tomography (CT), plain abdominal radiograph, or surgical lithotomy. Stone samples obtained during surgery were analyzed using infrared spectroscopy. Venous blood and 24-h urine samples were collected and analyzed using Sanger sequencing and high-performance liquid chromatography, respectively. Genetic variants in the VDR gene (rs7975232, rs2228570, rs731236, and rs1544410) and CaSR gene (rs7652589, rs1801725, and rs1042636) were identified through sequence analysis. RESULTS Analysis of genotype and allele frequencies revealed that the rs7975232 polymorphism in the VDR gene and the rs7652589 allele in the CaSR gene were significantly associated with CCKS. Furthermore, patients carrying the AC and AA genotypes of rs7975232 showed a higher incidence of hypocitraturia compared to those with other genotypes (p < 0.05). The AA and GG genotypes of rs1042636 and the AA genotype of rs7652589 were significantly associated with hypercalciuria (p < 0.05). CONCLUSION CCKS in this study population may be closely related to hypocitraturia caused by the VDR locus rs7975232 polymorphism and hypercalciuria caused by the CaSR locus rs1042636 and rs7652589 polymorphism.
Collapse
Affiliation(s)
- Ji Li
- Department of Urinary Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
- Department of Urinary Surgery, Yunnan Dehong People's Hospital, Dehong, 678400, Yunnan, China
| | - Kunbin Ke
- Department of Urinary Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Baiyu Zhang
- Department of Urinary Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Yidao Liu
- Department of Urinary Surgery, Yunnan Dehong People's Hospital, Dehong, 678400, Yunnan, China
| | - Jing Bai
- Department of Urinary Surgery, Yunnan Dehong People's Hospital, Dehong, 678400, Yunnan, China
| | - Mengyue Wang
- Department of Urinary Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Hao Li
- Department of Urinary Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China.
| |
Collapse
|
4
|
Zhou Z, Gao P, Zhang T, Yang Y, Ding Q, Wu Z, Wang L. Functional analysis reveals calcium-sensing receptor gene regulating cell-cell junction in renal tubular epithelial cells. Int Urol Nephrol 2024; 56:2165-2177. [PMID: 38372840 DOI: 10.1007/s11255-024-03948-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/04/2024] [Indexed: 02/20/2024]
Abstract
PURPOSE Calcium-sensing receptor (CASR) influences the expression pattern of multiple genes in renal tubular epithelial cells. The objective of this inquiry was to explore the molecular mechanisms of CASR in renal tubular epithelial cells and nephrolithiasis. METHODS HK-2 cells were transfected with lentiviruses carrying either CASR (named CASR) or an empty vector negative control (named NC), as well as shRNA intended to target CASR (named shCASR) or its corresponding negative control (named shNC). CCK-8 assay was used to detect the effect of CASR on the proliferation of HK-2 cells. RNA-Sequencing was applied to explore potential pathways regulated by CASR in HK-2 cells. RESULTS PCR and western blot results showed that CASR expression was significantly increased in CASR cells and was decreased in shCASR cells when compared to their corresponding negative control, respectively. CCK-8 assay revealed that CASR inhibited the proliferation of HK-2 cells. RNA-Sequencing results suggested that the shCASR HK-2 cells exhibited a significant up-regulation of 345 genes and a down-regulation of 366 genes. These differentially expressed genes (DEGs) were related to cell apoptosis and cell development. In CASR HK-2 cells, 1103 DEGs primarily functioned in mitochondrial energy metabolism, and amino acid metabolism. With the Venn diagram, 4 DEGs (Clorf116, ENPP3, IL20RB, and CLDN2) were selected as the hub genes regulated by CASR. Enrichment analysis revealed that these hub genes were involved in cell-cell junction, and epithelial cell development. CONCLUSIONS In summary, our investigation has the potential to offer novel perspectives on CASR regulating cell-cell junction in HK-2 cells.
Collapse
Affiliation(s)
- Zijian Zhou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
- Clinical Research Center of Urolithiasis, Shanghai Medical College, Fudan University, Shanghai, 200040, People's Republic of China
| | - Peng Gao
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
- Clinical Research Center of Urolithiasis, Shanghai Medical College, Fudan University, Shanghai, 200040, People's Republic of China
| | - Tongtong Zhang
- Urology Centre, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200040, People's Republic of China
| | - Yuanyuan Yang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
- Clinical Research Center of Urolithiasis, Shanghai Medical College, Fudan University, Shanghai, 200040, People's Republic of China
| | - Qiang Ding
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
- Clinical Research Center of Urolithiasis, Shanghai Medical College, Fudan University, Shanghai, 200040, People's Republic of China
| | - Zhong Wu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China.
- Clinical Research Center of Urolithiasis, Shanghai Medical College, Fudan University, Shanghai, 200040, People's Republic of China.
| | - Lujia Wang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China.
- Clinical Research Center of Urolithiasis, Shanghai Medical College, Fudan University, Shanghai, 200040, People's Republic of China.
| |
Collapse
|
5
|
Dong C, Zhou J, Su X, He Z, Song Q, Song C, Ke H, Wang C, Liao W, Yang S. Understanding formation processes of calcareous nephrolithiasis in renal interstitium and tubule lumen. J Cell Mol Med 2024; 28:e18235. [PMID: 38509735 PMCID: PMC10955165 DOI: 10.1111/jcmm.18235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/07/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
Kidney stone, one of the oldest known diseases, has plagued humans for centuries, consistently imposing a heavy burden on patients and healthcare systems worldwide due to their high incidence and recurrence rates. Advancements in endoscopy, imaging, genetics, molecular biology and bioinformatics have led to a deeper and more comprehensive understanding of the mechanism behind nephrolithiasis. Kidney stone formation is a complex, multi-step and long-term process involving the transformation of stone-forming salts from free ions into asymptomatic or symptomatic stones influenced by physical, chemical and biological factors. Among the various types of kidney stones observed in clinical practice, calcareous nephrolithiasis is currently the most common and exhibits the most intricate formation mechanism. Extensive research suggests that calcareous nephrolithiasis primarily originates from interstitial subepithelial calcified plaques and/or calcified blockages in the openings of collecting ducts. These calcified plaques and blockages eventually come into contact with urine in the renal pelvis, serving as a nidus for crystal formation and subsequent stone growth. Both pathways of stone formation share similar mechanisms, such as the drive of abnormal urine composition, involvement of oxidative stress and inflammation, and an imbalance of stone inhibitors and promoters. However, they also possess unique characteristics. Hence, this review aims to provide detailed description and present recent discoveries regarding the formation processes of calcareous nephrolithiasis from two distinct birthplaces: renal interstitium and tubule lumen.
Collapse
Affiliation(s)
- Caitao Dong
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Jiawei Zhou
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Xiaozhe Su
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Ziqi He
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Qianlin Song
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Chao Song
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Hu Ke
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Chuan Wang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Wenbiao Liao
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Sixing Yang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| |
Collapse
|
6
|
Faiq S, Lavelle K, Hu T, Shoback D, Ku G. Cinacalcet increases renal calcium excretion in PTHrP-mediated hypercalcemia: a case report. BMC Endocr Disord 2023; 23:133. [PMID: 37328745 PMCID: PMC10273565 DOI: 10.1186/s12902-023-01386-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 06/08/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND In the acute setting, PTH-independent hypercalcemia is typically treated with anti-resorptive agents such as zoledronic acid or denosumab. When these agents are no longer able to control hypercalcemia, several case reports have shown the utility of cinacalcet. However, it is not known if cinacalcet can be effective in patients naïve to anti-resorptive therapy or how cinacalcet ameliorates the hypercalcemia. CASE PRESENTATION A 47-year-old male with a history of alcohol-induced cirrhosis was admitted for left cheek bleeding and swelling from an infiltrative squamous cell carcinoma of the oral cavity. On admission, he was found to have an elevated albumin-corrected serum calcium of 13.6 mg/dL, a serum phosphorus of 2.2 mg/dL and an intact PTH of 6 pg/mL (normal 18-90) with a PTHrP of 8.1 pmol/L (normal < 4.3), consistent with PTHrP-dependent hypercalcemia. Aggressive intravenous saline hydration and subcutaneous salmon calcitonin were initiated, but his serum calcium remained elevated. Given tooth extractions scheduled for the next day and possible irradiation to the jaw in the near future, alternatives to antiresorptive therapy were sought. Cinacalcet was initiated at 30 mg twice daily then increased to 60 mg twice daily the following day. The albumin-corrected serum calcium level decreased from 13.2 to 10.9 mg/dL within 48 h. The fractional excretion of calcium increased from 3.7 to 7.0%. CONCLUSIONS This case demonstrates the utility of cinacalcet for the treatment of PTHrP-mediated hypercalcemia without prior anti-resorptive therapy via increased renal clearance of calcium.
Collapse
Affiliation(s)
- Samya Faiq
- School of Medicine, University of California Davis, Davis, USA
| | - Kristen Lavelle
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Francisco, 513 Parnassus Ave, HSW 1027, San Francisco, CA, 94143, USA
| | - Tina Hu
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Francisco, 513 Parnassus Ave, HSW 1027, San Francisco, CA, 94143, USA
| | - Dolores Shoback
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Francisco, 513 Parnassus Ave, HSW 1027, San Francisco, CA, 94143, USA
- Department of Veterans Affairs, Endocrine Research Unit, San Francisco, CA, USA
| | - Gregory Ku
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Francisco, 513 Parnassus Ave, HSW 1027, San Francisco, CA, 94143, USA.
| |
Collapse
|
7
|
Rodrat M, Wongdee K, Chankamngoen W, Teerapornpuntakit J, Thongbunchoo J, Tanramluk D, Charoenphandhu N. Modulation of fibroblast growth factor-23 expression and transepithelial calcium absorption in Caco-2 monolayer by calcium-sensing receptor and calcineurin under calcium hyperabsorptive state. Biochem Biophys Res Commun 2023; 659:105-112. [PMID: 37060830 DOI: 10.1016/j.bbrc.2023.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/20/2023] [Accepted: 04/06/2023] [Indexed: 04/17/2023]
Abstract
Fibroblast growth factor (FGF)-23 and calcium-sensing receptor (CaSR) have previously been postulated to be parts of a negative feedback regulation of the intestinal calcium absorption to prevent excessive calcium uptake and its toxicity. However, the underlying mechanism of this feedback regulation remained elusive, especially whether it required transcription of FGF-23. Herein, we induced calcium hyperabsorptive state (CHS) by exposing intestinal epithelium-like Caco-2 monolayer to 30 mM CaCl2 and 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] after which FGF-23 mRNA levels and transepithelial calcium flux were determined. We found that CHS upregulated FGF-23 transcription, which was reverted by CaSR inhibitors (Calhex-231 and NPS2143) but without effect on CaSR transcription. Although 10 nM 1,25(OH)2D3 was capable of enhancing transepithelial calcium flux, the higher-than-normal calcium inundation as in CHS led to a decrease in calcium flux, consistent with an increase in FGF-23 protein expression. Administration of inhibitors (≤10 μM CN585 and cyclosporin A) of calcineurin, a mediator of CaSR action to control transcription and production of its target proteins, was found to partially prevent FGF-23 protein production and the negative effect of CHS on calcium transport, while having no effect on FGF-23 mRNA expression. Direct exposure to FGF-23, but not FGF-23 + PD173074 (FGFR1/3 inhibitor), also completely abolished the 1,25(OH)2D3-enhanced calcium transport in Caco-2 monolayer. Nevertheless, CHS and CaSR inhibitors had no effect on the mRNA levels of calcineurin (PPP3CB) or its targets (i.e., NFATc1-4). In conclusion, exposure to CHS induced by high apical calcium and 1,25(OH)2D3 triggered a negative feedback mechanism to prevent further calcium uptake. CaSR and its downstream mediator, calcineurin, possibly contributed to the regulatory process, in part by enhancing FGF-23 production to inhibit calcium transport. Our study, therefore, corroborated the physiological significance of CaSR-autocrine FGF-23 axis as a local feedback loop for prevention of excessive calcium uptake.
Collapse
Affiliation(s)
- Mayuree Rodrat
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand; Center of Research and Development for Biomedical Instrumentation, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Kannikar Wongdee
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand; Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand
| | - Wasutorn Chankamngoen
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand; Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Jarinthorn Teerapornpuntakit
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Jirawan Thongbunchoo
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Duangrudee Tanramluk
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand; Integrative Computational BioScience (ICBS) Center, Mahidol University, Nakhon Pathom, Thailand
| | - Narattaphol Charoenphandhu
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand; Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand; The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand.
| |
Collapse
|
8
|
Xu Z, Yao X, Duan C, Liu H, Xu H. Metabolic changes in kidney stone disease. Front Immunol 2023; 14:1142207. [PMID: 37228601 PMCID: PMC10203412 DOI: 10.3389/fimmu.2023.1142207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/06/2023] [Indexed: 05/27/2023] Open
Abstract
Kidney stone disease (KSD) is one of the earliest medical diseases known, but the mechanism of its formation and metabolic changes remain unclear. The formation of kidney stones is a extensive and complicated process, which is regulated by metabolic changes in various substances. In this manuscript, we summarized the progress of research on metabolic changes in kidney stone disease and discuss the valuable role of some new potential targets. We reviewed the influence of metabolism of some common substances on stone formation, such as the regulation of oxalate, the release of reactive oxygen species (ROS), macrophage polarization, the levels of hormones, and the alternation of other substances. New insights into changes in substance metabolism changes in kidney stone disease, as well as emerging research techniques, will provide new directions in the treatment of stones. Reviewing the great progress that has been made in this field will help to improve the understanding by urologists, nephrologists, and health care providers of the metabolic changes in kidney stone disease, and contribute to explore new metabolic targets for clinical therapy.
Collapse
Affiliation(s)
- Zhenzhen Xu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiangyang Yao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chen Duan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoran Liu
- Stanford Bio-X, Stanford University, San Francisco, CA, United States
| | - Hua Xu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Noonin C, Itsaranawet T, Thongboonkerd V. Calcium oxalate crystal-induced secretome derived from proximal tubular cells, not that from distal tubular cells, induces renal fibroblast activation. Eur J Med Res 2023; 28:150. [PMID: 37031165 PMCID: PMC10082508 DOI: 10.1186/s40001-023-01109-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/24/2023] [Indexed: 04/10/2023] Open
Abstract
BACKGROUND Kidney stone disease (KSD) is commonly accompanied with renal fibrosis, characterized by accumulation and reorganization of extracellular matrix (ECM). During fibrogenesis, resident renal fibroblasts are activated to become myofibroblasts that actively produce ECM. However, such fibroblast-myofibroblast differentiation in KSD remained unclear. Our present study thus examined effects of secreted products (secretome) derived from proximal (HK-2) vs. distal (MDCK) renal tubular cells exposed to calcium oxalate monohydrate (COM) crystals on activation of renal fibroblasts (BHK-21). METHODS HK-2 and MDCK cells were treated with 100 µg/ml COM crystals under serum-free condition for 16 h. In parallel, the cells maintained in serum-free medium without COM treatment served as the control. Secretome derived from culture supernatant of each sample was mixed (1:1) with fresh serum-free medium and then used for BHK-21 culture for another 24 h. RESULTS Analyses revealed that COM-treated-HK-2 secretome significantly induced proliferation, caused morphological changes, increased spindle index, and upregulated fibroblast-activation markers (F-actin, α-SMA and fibronectin) in BHK-21 cells. However, COM-treated-MDCK secretome had no significant effects on these BHK-21 parameters. Moreover, level of transforming growth factor-β1 (TGF-β1), a profibrotic factor, significantly increased in the COM-treated-HK-2 secretome but not in the COM-treated-MDCK secretome. CONCLUSIONS These data indicate, for the first time, that proximal and distal tubular epithelial cells exposed to COM crystals send different messages to resident renal fibroblasts. Only the secretome derived from proximal tubular cells, not that from the distal cells, induces renal fibroblast activation after their exposure to COM crystals. Such differential effects are partly due to TGF-β1 secretion, which is induced by COM crystals only in proximal tubular cells.
Collapse
Affiliation(s)
- Chadanat Noonin
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor - SiMR Building, 2 Wanglang Road, Bangkoknoi, 10700, Bangkok, Thailand
| | - Tanakorn Itsaranawet
- Biological Sciences Program, Mahidol University International College, Nakhon Pathom, 73170, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor - SiMR Building, 2 Wanglang Road, Bangkoknoi, 10700, Bangkok, Thailand.
| |
Collapse
|
10
|
Astragaloside IV: A promising natural neuroprotective agent for neurological disorders. Biomed Pharmacother 2023; 159:114229. [PMID: 36652731 DOI: 10.1016/j.biopha.2023.114229] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/18/2023] Open
Abstract
Neurological disorders are characterized by high morbidity, disability, and mortality rates, which seriously threaten human health. However, clinically satisfactory agents for treatment are still currently lacking. Therefore, finding neuroprotective agents with minimum side effects and better efficacy is a challenge. Chinese herbal medicine, particularly natural preparations extracted from herbs or plants, has become an unparalleled resource for discovering new agent candidates. Astragali Radix is an important Qi tonic drug in traditional Chinese medicine and has a long medicinal history. As a natural medicine, it has a good prevention and treatment effect on neurological disorders. Here, the role and mechanism of astragaloside IV in the treatment of neurological disorders were evaluated and discussed through previous research results. Related information from major scientific databases, such as PubMed, MEDLINE, Web of Science, ScienceDirect, Embase, BIOSIS Previews, and the Cochrane Central Register of Controlled Trials and Cochrane Library, covering between 2001 and 2021 was compiled, using "Astragaloside IV" and "Neurological disorders," "Astragaloside IV," and "Neurodegenerative diseases" as reference terms. By summarizing previous research results, we found that astragaloside IV may play a neuroprotective role through various mechanisms: anti-inflammatory, anti-oxidative, anti-apoptotic protection of nerve cells and regulation of nerve growth factor, as well as by inhibiting neurodegeneration and promoting nerve regeneration. Astragaloside IV is a promising natural neuroprotective agent. By determining its pharmacological mechanism, astragaloside IV may be a new candidate drug for the treatment of neurological disorders.
Collapse
|
11
|
Iamartino L, Brandi ML. The calcium-sensing receptor in inflammation: Recent updates. Front Physiol 2022; 13:1059369. [PMID: 36467702 PMCID: PMC9716066 DOI: 10.3389/fphys.2022.1059369] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/07/2022] [Indexed: 07/30/2023] Open
Abstract
The Calcium-Sensing Receptor (CaSR) is a member of the class C of G-proteins coupled receptors (GPCRs), it plays a pivotal role in calcium homeostasis by directly controlling calcium excretion in the kidneys and indirectly by regulating parathyroid hormone (PTH) release from the parathyroid glands. The CaSR is found to be ubiquitously expressed in the body, playing a plethora of additional functions spanning from fluid secretion, insulin release, neuronal development, vessel tone to cell proliferation and apoptosis, to name but a few. The present review aims to elucidate and clarify the emerging regulatory effects that the CaSR plays in inflammation in several tissues, where it mostly promotes pro-inflammatory responses, with the exception of the large intestine, where contradictory roles have been recently reported. The CaSR has been found to be expressed even in immune cells, where it stimulates immune response and chemokinesis. On the other hand, CaSR expression seems to be boosted under inflammatory stimulus, in particular, by pro-inflammatory cytokines. Because of this, the CaSR has been addressed as a key factor responsible for hypocalcemia and low levels of PTH that are commonly found in critically ill patients under sepsis or after burn injury. Moreover, the CaSR has been found to be implicated in autoimmune-hypoparathyroidism, recently found also in patients treated with immune-checkpoint inhibitors. Given the tight bound between the CaSR, calcium and vitamin D metabolism, we also speculate about their roles in the pathogenesis of severe acute respiratory syndrome coronavirus-19 (SARS-COVID-19) infection and their impact on patients' prognosis. We will further explore the therapeutic potential of pharmacological targeting of the CaSR for the treatment and management of aberrant inflammatory responses.
Collapse
Affiliation(s)
- Luca Iamartino
- Department of Experimental Clinical and Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Maria Luisa Brandi
- F.I.R.M.O. (Italian Foundation for the Research on Bone Diseases), Florence, Italy
| |
Collapse
|
12
|
Victor F, Pereira Lemos AL, de Holanda Ribas AM, Bandeira L, Pimentel JH, de Andrade Damázio LO, Bandeira F. Occult Renal Calcifications in Patients with Normocalcemic Primary Hyperparathyroidism and Their Association with the Parathyroid Hormone-Vitamin D Axis. Int J Endocrinol 2022; 2022:4558236. [PMID: 35437440 PMCID: PMC9012976 DOI: 10.1155/2022/4558236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/15/2022] [Indexed: 11/17/2022] Open
Abstract
Normocalcemic primary hyperparathyroidism (NPHPT) is characterized by elevated serum levels of parathyroid hormone (PTH) with persistently normal serum calcium concentrations after excluding secondary causes of hyperparathyroidism. Urolithiasis and/or nephrocalcinosis may occur in hypercalcemic PHPT, but little is known about these complications in NPHPT. Objectives. To identify occult urolithiasis and nephrocalcinosis in asymptomatic patients with NPHPT and evaluate biochemical markers as risk predictors for the development of renal calcification (RC). Methods. Cross-sectional analysis of 34 patients with no history of urolithiasis and/or nephrocalcinosis. The diagnosis of NPHPT was as follows: elevated serum PTH (reference range: 15-65 pg/mL), normal albumin-corrected serum calcium, normal urinary calcium excretion, serum 25(OH)D >30 ng/mL, eGFR (CKD-EPI) > 60 mL/min/1.73 m2, without intestinal disease, and not on medications such as thiazide diuretics, lithium, bisphosphonates, or denosumab. Patients were categorized according to the presence or absence of RC identified by renal imaging. Their clinical and biochemical characteristics were then compared. Results. The patients had a mean age of 67.97 ± 10.45 years, predominantly postmenopausal women (88.2%); serum PTH, 119.67 ± 64.44 pg/mL; 25(OH)D, 39.00 ± 8.88 ng/dL; 1.25(OH))2D, 74.53 ± 26.37 pg/mL; corrected serum calcium, 9.34 ± 0.62 mg/dL; and 24-hour urinary calcium, 134.87 ± 79.68 mg/day. RC was identified in 26.5% of the patients. There was no difference in anthropometric and clinical parameters, renal function, 25(OH)D, and urinary pH in patients with or without RC. Patients with RC had higher PTH values (176.22 vs. 99.32 pg/mL, P = 0.001), 1.25(OH) 2D (96.83 vs. 62.36 pg/mL, P = 0.005), and 24-hour urinary calcium (181.9 vs. 117.94 mg/day, P = 0.037). Conclusion. Occult renal calcifications are common in NPHPT and are associated with increased serum PTH, 1.25(OH))2D, and 24 h urinary calcium.
Collapse
Affiliation(s)
- Fernanda Victor
- Division of Endocrinology & Diabetes, and Division of Radiology, University of Pernambuco Medical School, Recife, Brazil
| | - Alyne Layane Pereira Lemos
- Division of Endocrinology & Diabetes, and Division of Radiology, University of Pernambuco Medical School, Recife, Brazil
| | - Anna Mirella de Holanda Ribas
- Division of Endocrinology & Diabetes, and Division of Radiology, University of Pernambuco Medical School, Recife, Brazil
| | - Leonardo Bandeira
- FBandeira Endocrine Institute, Recife, Brazil
- Grupo Fleury, Recife, Brazil
| | - José Henrique Pimentel
- Division of Endocrinology & Diabetes, and Division of Radiology, University of Pernambuco Medical School, Recife, Brazil
| | | | - Francisco Bandeira
- Division of Endocrinology & Diabetes, and Division of Radiology, University of Pernambuco Medical School, Recife, Brazil
- FBandeira Endocrine Institute, Recife, Brazil
| |
Collapse
|
13
|
Nicoli F, Dito G, Guabello G, Longhi M, Corbetta S. Hypercalciuria in Postmenopausal Women With Reduced Bone Mineral Density Is Associated With Different Mineral Metabolic Profiles: Effects of Treatment With Thiazides and Anti-resorptives. Front Med (Lausanne) 2021; 8:780087. [PMID: 34977081 PMCID: PMC8714925 DOI: 10.3389/fmed.2021.780087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/15/2021] [Indexed: 11/21/2022] Open
Abstract
Hypercalciuria may represent a challenge during the workup for osteoporosis management. The present study aimed: (1) to describe the phenotype associated with hypercalciuria in vitamin D-sufficient (serum 25 hydroxyvitamin D (25OHD) > 20 ng/ml) patients with osteopenia/osteoporosis; (2) to analyze the effects of thiazides and anti-resorptive drugs on urine calcium excretion (UCa), mineral metabolic markers, and bone mineral density. Seventy-seven postmenopausal women with hypercalciuria (Uca > 4.0 mg/kg body weight/24 h on two determinations) were retrospectively evaluated in a real-life setting. Median UCa was 5.39 (4.75–6.70) mg/kg/24 h. Kidney stones occurred in 32.9% of patients, who had median UCa similar to that of patients without kidney stones. Clustering analysis considering the three variables, such as serum calcium, phosphate, and parathormone (PTH), identified two main clusters of hypercalciuric patients. Cluster 1 (n = 13) included patients with a primary hyperparathyroidism-like profile, suggesting a certain degree of autonomous PTH secretion from parathyroid glands. Within cluster 2 (n = 61), two subgroups were recognized, cluster 2A (n = 18) that included patients with relatively increased PTH and normophosphatemia, and cluster 2B (n = 43) that included patients with the normal mineral profile. After a follow-up of 33.4 ± 19.6 months, 49 patients treated with thiazidic diuretics (TZD) were reevaluated; 20 patients were treated with hydrochlorothiazide (HCT; 12.5–37.5 mg/day), 29 with indapamide (IND; 1.50–3.75 mg/day). Any significant difference could be detected in all the parameters both basal and treated conditions between patients treated with HCT or IND. TZD induced a mean 39% reduction in UCa and 63.3% of patients obtained Uca < 4.0 mg/kg/24 h, independent of their mineral metabolic profile. Moreover, TZD induced a significant decrease in PTH levels. TZD-treated patients normalizing UCa experienced an increase in bone mineral densities when concomitantly treated with anti-resorptives, while any gain could be observed in TZD-treated patients with persistent hypercalciuria. Finally, multiple regression analysis showed that UCa reduction was at least in part related to denosumab treatment. In conclusion, in postmenopausal osteoporotic women, hypercalciuria is associated with kidney stones in about one-third of patients and with a wide range of impaired PTH secretion, determining a diagnostic challenge. TZD efficiently reduces UCa and normalization contributes to increasing anti-resorptives positive effect on bone mineral density.
Collapse
Affiliation(s)
- Federico Nicoli
- Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Endocrinology and Diabetology Service, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Giorgia Dito
- Endocrinology and Diabetology Service, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | | | - Matteo Longhi
- Rheumatology Unit, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Sabrina Corbetta
- Endocrinology and Diabetology Service, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- *Correspondence: Sabrina Corbetta ; orcid.org/0000-0001-8140-3175
| |
Collapse
|
14
|
Huang JL, Mo ZY, Li ZY, Liang GY, Liu HL, Aschner M, Ou SY, Zhou B, Chen ZM, Jiang YM. Association of lead and cadmium exposure with kidney stone incidence: A study on the non-occupational population in Nandan of China. J Trace Elem Med Biol 2021; 68:126852. [PMID: 34508950 DOI: 10.1016/j.jtemb.2021.126852] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Environmental lead (Pb) and cadmium (Cd) pollution has been considered a risk factor in the etiology of kidney stones. However, the association between Pb and Cd exposure and kidney stone incidence has yet to be determined. OBJECTIVES This study aimed to determine a possible the association between kidney stones with Pb and Cd exposure (alone or combined) in a non-occupational population. METHODS Pb and Cd contaminations in soil-plant system were determined by flame atomic absorption spectrophotometry. Health risk assessment of dietary Pb or Cd intake from rice and vegetables were calculated. Kidney stones were diagnosed with urinary tract ultrasonography. Urinary cadmium (UCd) and blood lead (BPb) levels were determined by graphite-furnace atomic absorption spectrometry. Multivariate logistic regression models were constructed. RESULTS The hazard indexes (HI) of Pb and Cd were 7.91 and 7.31. The odds ratio (OR) was 2.83 (95 %CI:1.38-5.77) in males with high BPb (BPb ≥ 100 μg/L), compared with those with low BPb (BPb<100 μg/L). Compared to those with low BPb and low UCd (BPb<100 μg/L and UCd<2 μg/g creatinine), the ORs were 2.58 (95 % CI:1.17-5.70) and 3.43 (95 % CI:1.21-9.16) in females and males with high BPb and high UCd (BPb ≥100 μg/L and UCd ≥2 μg/g creatinine), respectively. The OR was 3.16 (95 % CI:1.26-7.88) in males with high BPb and low UCd (BPb ≥ 100 μg/L and UCd <2 μg/g creatinine), compared to those with low BPb and low UCd. CONCLUSIONS Kidney stones incidence was increased by high Pb exposure in males, and by Pb and Cd co-exposure in males and females.
Collapse
Affiliation(s)
- Jiong-Li Huang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China; Atmospheric Environment Research Center, Scientific Research Academy of Guangxi Environmental Protection, Nanning, 530022, China
| | - Zhao-Yu Mo
- Atmospheric Environment Research Center, Scientific Research Academy of Guangxi Environmental Protection, Nanning, 530022, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Zhong-You Li
- Department of Preventive Medicine, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Gui-Yun Liang
- Atmospheric Environment Research Center, Scientific Research Academy of Guangxi Environmental Protection, Nanning, 530022, China
| | - Hui-Lin Liu
- Atmospheric Environment Research Center, Scientific Research Academy of Guangxi Environmental Protection, Nanning, 530022, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, United States
| | - Shi-Yan Ou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China
| | - Bin Zhou
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Zhi-Ming Chen
- Atmospheric Environment Research Center, Scientific Research Academy of Guangxi Environmental Protection, Nanning, 530022, China.
| | - Yue-Ming Jiang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
15
|
Liu G, Zheng J, Gu K, Wu C, Jia G, Zhao H, Chen X, Wang J. Calcium-sensing receptor protects intestinal integrity and alleviates the inflammatory response via the Rac1/PLCγ1 signaling pathway. Anim Biotechnol 2021:1-14. [PMID: 34762003 DOI: 10.1080/10495398.2021.1998090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This study aimed to test the hypothesis that the calcium-sensing receptor (CaSR) can protect intestinal epithelial barrier integrity and decrease inflammatory response mediated by the Ras-related C3 botulinum toxin substrate 1 (Rac1)/phospholipase Cγ1 (PLC-γ1) signaling pathway. IPEC-J2 monolayers were treated without or with TNF-α in the absence or presence of CaSR antagonist (NPS 2143), CaSR overexpression, and Rac1 silencing, PLCγ1 silencing or spermine. Results showed that spermine increased transepithelial electrical resistance (TER), tight junction protein levels, the protein concentration of Rac1/PLC-γ1 signaling pathway, and decreased paracellular permeability in the presence of TNF-α. NPS2143 inhibited spermine-induced change in above-mentioned parameters. CaSR overexpression increased TER, the levels of tight junction proteins and the protein concentration of CaSR, phosphorylated PLCγ1, Rac1, and IP3, and decreased paracellular permeability and contents of interleukin-8 (IL-8) and TNF-α after TNF-α challenge. Rac1 and PLCγ1 silencing inhibited CaSR-induced increase in barrier function and the protein concentration of phosphorylated PLCγ1, Rac1, and IP3, and decrease in contents of IL-8 and TNF-α after TNF-α challenge. These results suggest that CaSR activation protects intestinal integrity and alleviates the inflammatory response by activating Rac1 and PLCγ1 signaling after TNF-α challenge, and spermine can maintain barrier function via CaSR/Rac1/PLC-γ1 pathway.
Collapse
Affiliation(s)
- Guangmang Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China.,Key laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Jie Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China.,Key laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Ke Gu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China.,Key laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Caimei Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China.,Key laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Gang Jia
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China.,Key laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Hua Zhao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China.,Key laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Xiaoling Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China.,Key laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Jing Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
16
|
Di Mise A, Wang X, Ye H, Pellegrini L, Torres VE, Valenti G. Pre-clinical evaluation of dual targeting of the GPCRs CaSR and V2R as therapeutic strategy for autosomal dominant polycystic kidney disease. FASEB J 2021; 35:e21874. [PMID: 34486176 PMCID: PMC9290345 DOI: 10.1096/fj.202100774r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/30/2021] [Accepted: 08/09/2021] [Indexed: 11/30/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD), caused by mutations of PKD1 or PKD2 genes, is characterized by development and growth of cysts causing progressive kidney enlargement. Reduced resting cytosolic calcium and increased cAMP levels associated with the tonic action of vasopressin are two central biochemical defects in ADPKD. Here we show that co‐targeting two GPCRs, the vasopressin V2 receptor (V2R) and the calcium sensing receptor, using the novel V2R antagonist lixivaptan in combination with the calcimimetic R‐568, reduced cyst progression in two animal models of human PKD. Lixivaptan is expected to have a safer liver profile compared to tolvaptan, the only drug approved to delay PKD progression, based on computational model results and initial clinical evidence. PCK rat and Pkd1RC/RC mouse littermates were fed without or with lixivaptan (0.5%) and R‐568 (0.025% for rats and 0.04% for mice), alone or in combination, for 7 (rats) or 13 (mice) weeks. In PCK rats, the combined treatment strongly decreased kidney weight, cyst and fibrosis volumes by 20%, 49%, and 73%, respectively, compared to untreated animals. In Pkd1RC/RC mice, the same parameters were reduced by 20%, 56%, and 69%, respectively. In both cases the combined treatment appeared nominally more effective than the individual drugs used alone. These data point to an intriguing new application for two existing drugs in PKD treatment. The potential for synergy between these two compounds suggested in these animal studies, if confirmed in appropriate clinical investigations, would represent a welcome advancement in the treatment of ADPKD.
Collapse
Affiliation(s)
- Annarita Di Mise
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Xiaofang Wang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Hong Ye
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Vicente E Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Giovanna Valenti
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
17
|
Wang Z, Zhang Y, Zhang J, Deng Q, Liang H. Recent advances on the mechanisms of kidney stone formation (Review). Int J Mol Med 2021; 48:149. [PMID: 34132361 PMCID: PMC8208620 DOI: 10.3892/ijmm.2021.4982] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/31/2021] [Indexed: 12/14/2022] Open
Abstract
Kidney stone disease is one of the oldest diseases known to medicine; however, the mechanisms of stone formation and development remain largely unclear. Over the past decades, a variety of theories and strategies have been developed and utilized in the surgical management of kidney stones, as a result of recent technological advances. Observations from the authors and other research groups suggest that there are five entirely different main mechanisms for kidney stone formation. Urinary supersaturation and crystallization are the driving force for intrarenal crystal precipitation. Randall's plaques are recognized as the origin of calcium oxalate stone formation. Sex hormones may be key players in the development of nephrolithiasis and may thus be potential targets for new drugs to suppress kidney stone formation. The microbiome, including urease-producing bacteria, nanobacteria and intestinal microbiota, is likely to have a profound effect on urological health, both positive and negative, owing to its metabolic output and other contributions. Lastly, the immune response, and particularly macrophage differentiation, play crucial roles in renal calcium oxalate crystal formation. In the present study, the current knowledge for each of these five aspects of kidney stone formation is reviewed. This knowledge may be used to explore novel research opportunities and improve the understanding of the initiation and development of kidney stones for urologists, nephrologists and primary care.
Collapse
Affiliation(s)
- Zhu Wang
- Department of Urology, People's Hospital of Longhua, Southern Medical University, Shenzhen, Guangdong 518109, P.R. China
| | - Ying Zhang
- Department of Urology, People's Hospital of Longhua, Southern Medical University, Shenzhen, Guangdong 518109, P.R. China
| | - Jianwen Zhang
- Department of Urology, People's Hospital of Longhua, Southern Medical University, Shenzhen, Guangdong 518109, P.R. China
| | - Qiong Deng
- Department of Urology, People's Hospital of Longhua, Southern Medical University, Shenzhen, Guangdong 518109, P.R. China
| | - Hui Liang
- Department of Urology, People's Hospital of Longhua, Southern Medical University, Shenzhen, Guangdong 518109, P.R. China
| |
Collapse
|
18
|
Ritter A, Vargas-Poussou R, Mohebbi N, Seeger H. Recurrent Nephrolithiasis in a Patient With Hypercalcemia and Normal to Mildly Elevated Parathyroid Hormone. Am J Kidney Dis 2021; 77:A13-A15. [PMID: 34024353 DOI: 10.1053/j.ajkd.2020.09.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/02/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Alexander Ritter
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland.
| | - Rosa Vargas-Poussou
- Hôpital Européen Georges Pompidou, Département de Génétique, INSERM UMR 970, Paris, France
| | - Nilufar Mohebbi
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Harald Seeger
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
Liu CJ, Cheng CW, Tsai YS, Huang HS. Crosstalk between Renal and Vascular Calcium Signaling: The Link between Nephrolithiasis and Vascular Calcification. Int J Mol Sci 2021; 22:ijms22073590. [PMID: 33808324 PMCID: PMC8036726 DOI: 10.3390/ijms22073590] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/18/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022] Open
Abstract
Calcium (Ca2+) is an important mediator of multicellular homeostasis and is involved in several diseases. The interplay among the kidney, bone, intestine, and parathyroid gland in Ca2+ homeostasis is strictly modulated by numerous hormones and signaling pathways. The calcium-sensing receptor (CaSR) is a G protein–coupled receptor, that is expressed in calcitropic tissues such as the parathyroid gland and the kidney, plays a pivotal role in Ca2+ regulation. CaSR is important for renal Ca2+, as a mutation in this receptor leads to hypercalciuria and calcium nephrolithiasis. In addition, CaSR is also widely expressed in the vascular system, including vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs) and participates in the process of vascular calcification. Aberrant Ca2+ sensing by the kidney and VSMCs, owing to altered CaSR expression or function, is associated with the formation of nephrolithiasis and vascular calcification. Based on emerging epidemiological evidence, patients with nephrolithiasis have a higher risk of vascular calcification, but the exact mechanism linking the two conditions is unclear. However, a dysregulation in Ca2+ homeostasis and dysfunction in CaSR might be the connection between the two. This review summarizes renal calcium handling and calcium signaling in the vascular system, with a special focus on the link between nephrolithiasis and vascular calcification.
Collapse
Affiliation(s)
- Chan-Jung Liu
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704302, Taiwan; (C.-J.L.); (C.-W.C.)
| | - Chia-Wei Cheng
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704302, Taiwan; (C.-J.L.); (C.-W.C.)
| | - Yau-Sheng Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704302, Taiwan;
- Center for Clinical Medicine Research, National Cheng Kung University Hospital, Tainan 704302, Taiwan
| | - Ho-Shiang Huang
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704302, Taiwan; (C.-J.L.); (C.-W.C.)
- Correspondence: ; Tel.: +886-6-2353535 (ext. 5251); Fax: +886-6-2766179
| |
Collapse
|
20
|
Calcium-Sensing Receptor and Regulation of WNK Kinases in the Kidney. Cells 2020; 9:cells9071644. [PMID: 32659887 PMCID: PMC7407487 DOI: 10.3390/cells9071644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 12/27/2022] Open
Abstract
The kidney is essential for systemic calcium homeostasis. Urinary calcium excretion can be viewed as an integrative renal response to endocrine and local stimuli. The extracellular calcium-sensing receptor (CaSR) elicits a number of adaptive reactions to increased plasma Ca2+ levels including the control of parathyroid hormone release and regulation of the renal calcium handling. Calcium reabsorption in the distal nephron of the kidney is functionally coupled to sodium transport. Apart from Ca2+ transport systems, CaSR signaling affects relevant distal Na+-(K+)-2Cl- cotransporters, NKCC2 and NCC. NKCC2 and NCC are activated by a kinase cascade comprising with-no-lysine [K] kinases (WNKs) and two homologous Ste20-related kinases, SPAK and OSR1. Gain-of-function mutations within the WNK-SPAK/OSR1-NKCC2/NCC pathway lead to renal salt retention and hypertension, whereas loss-of-function mutations have been associated with salt-losing tubulopathies such as Bartter or Gitelman syndromes. A Bartter-like syndrome has been also described in patients carrying gain-of-function mutations in the CaSR gene. Recent work suggested that CaSR signals via the WNK-SPAK/OSR1 cascade to modulate salt reabsorption along the distal nephron. The review presented here summarizes the latest progress in understanding of functional interactions between CaSR and WNKs and their potential impact on the renal salt handling and blood pressure.
Collapse
|
21
|
Liu C, Liu H, Luo Y, Lu T, Fu X, Cui S, Zhu S, Hou Y. The extracellular calcium-sensing receptor promotes porcine egg activation via calcium/calmodulin-dependent protein kinase II. Mol Reprod Dev 2020; 87:598-606. [PMID: 32017318 DOI: 10.1002/mrd.23322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 12/27/2019] [Indexed: 12/24/2022]
Abstract
Extracellular calcium is required for intracellular Ca2+ oscillations needed for egg activation, but the regulatory mechanism is still poorly understood. The present study was designed to demonstrate the function of calcium-sensing receptor (CASR), which could recognize extracellular calcium as first messenger, during porcine egg activation. CASR expression was markedly upregulated following egg activation. Functionally, the addition of CASR agonist NPS R-568 significantly enhanced pronuclear formation rate, while supplementation of CASR antagonist NPS2390 compromised egg activation. There was no change in NPS R-568 group compared with control group when the egg activation was performed without extracellular calcium addition. The addition of NPS2390 precluded the activation-dependent [Ca2+ ]i rise. When egg activation was conducted in intracellular Ca2+ chelator BAPTA-AM and NPS R-568 containing medium, CASR function was abolished. Meanwhile, CASR activation increased the level of the [Ca2+ ]i effector p-CAMKII, and the presence of KN-93, an inhibitor of CAMKII, significantly reduced the CASR-mediated increasement of pronuclear formation rate. Furthermore, the increase of CASR expression following activation was reversed by inhibiting CAMKII activity, supporting a positive feedback loop between CAMKII and CASR. Altogether, these findings provide a new pathway of egg activation about CASR, as the extracellular Ca2+ effector, promotes egg activation via its downstream effector and upstream regulator CAMKII.
Collapse
Affiliation(s)
- Cong Liu
- School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Huage Liu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yan Luo
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tengfei Lu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiangwei Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Sheng Cui
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shien Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yunpeng Hou
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
22
|
Hoorn EJ, Gritter M, Cuevas CA, Fenton RA. Regulation of the Renal NaCl Cotransporter and Its Role in Potassium Homeostasis. Physiol Rev 2020; 100:321-356. [PMID: 31793845 DOI: 10.1152/physrev.00044.2018] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Daily dietary potassium (K+) intake may be as large as the extracellular K+ pool. To avoid acute hyperkalemia, rapid removal of K+ from the extracellular space is essential. This is achieved by translocating K+ into cells and increasing urinary K+ excretion. Emerging data now indicate that the renal thiazide-sensitive NaCl cotransporter (NCC) is critically involved in this homeostatic kaliuretic response. This suggests that the early distal convoluted tubule (DCT) is a K+ sensor that can modify sodium (Na+) delivery to downstream segments to promote or limit K+ secretion. K+ sensing is mediated by the basolateral K+ channels Kir4.1/5.1, a capacity that the DCT likely shares with other nephron segments. Thus, next to K+-induced aldosterone secretion, K+ sensing by renal epithelial cells represents a second feedback mechanism to control K+ balance. NCC’s role in K+ homeostasis has both physiological and pathophysiological implications. During hypovolemia, NCC activation by the renin-angiotensin system stimulates Na+ reabsorption while preventing K+ secretion. Conversely, NCC inactivation by high dietary K+ intake maximizes kaliuresis and limits Na+ retention, despite high aldosterone levels. NCC activation by a low-K+ diet contributes to salt-sensitive hypertension. K+-induced natriuresis through NCC offers a novel explanation for the antihypertensive effects of a high-K+ diet. A possible role for K+ in chronic kidney disease is also emerging, as epidemiological data reveal associations between higher urinary K+ excretion and improved renal outcomes. This comprehensive review will embed these novel insights on NCC regulation into existing concepts of K+ homeostasis in health and disease.
Collapse
Affiliation(s)
- Ewout J. Hoorn
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands; and Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Martin Gritter
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands; and Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Catherina A. Cuevas
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands; and Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Robert A. Fenton
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands; and Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
23
|
Renal Ca 2+ and Water Handling in Response to Calcium Sensing Receptor Signaling: Physiopathological Aspects and Role of CaSR-Regulated microRNAs. Int J Mol Sci 2019; 20:ijms20215341. [PMID: 31717830 PMCID: PMC6862519 DOI: 10.3390/ijms20215341] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/17/2019] [Accepted: 10/23/2019] [Indexed: 12/31/2022] Open
Abstract
Calcium (Ca2+) is a universal and vital intracellular messenger involved in a diverse range of cellular and biological processes. Changes in the concentration of extracellular Ca2+ can disrupt the normal cellular activities and the physiological function of these systems. The calcium sensing receptor (CaSR) is a unique G protein-coupled receptor (GPCR) activated by extracellular Ca2+ and by other physiological cations, aminoacids, and polyamines. CaSR is the main controller of the extracellular Ca2+ homeostatic system by regulating parathyroid hormone (PTH) secretion and, in turn, Ca2+ absorption and resorption. Recent advances highlight novel signaling pathways activated by CaSR signaling involving the regulation of microRNAs (miRNAs). miRNAs are naturally-occurring small non-coding RNAs that regulate post-transcriptional gene expression and are involved in several diseases. We previously described that high luminal Ca2+ in the renal collecting duct attenuates short-term vasopressin-induced aquaporin-2 (AQP2) trafficking through CaSR activation. Moreover, we demonstrated that CaSR signaling reduces AQP2 abundance via AQP2-targeting miRNA-137. This review summarizes the recent data related to CaSR-regulated miRNAs signaling pathways in the kidney.
Collapse
|
24
|
Praus F, Schönthaler M. [Modifiable and non-modifiable risk factors for urolithiasis]. Urologe A 2019; 58:1281-1288. [PMID: 31501986 DOI: 10.1007/s00120-019-01031-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Knowledge of the risk factors for urolithiasis is the key for sufficient metaphylaxis and reduction of recurrence events. Modifiable risk factors include diet, drink quantity, occupation, environmental factors, number of pregnancies and the intestinal microbiome. The treatment of associated diseases, such as the various manifestations of metabolic syndrome can reduce the risk for urolithiasis and recurrences. Knowledge of non-modifiable risk factors, such as gender, ethnicity, positive family history as well as specific genetic defects and polymorphisms of the calcium and phosphate balance enables personalized counselling and follow-up of affected patients.
Collapse
Affiliation(s)
- F Praus
- Klinik für Urologie, Universitätsklinikum Freiburg, Hugstetter Str. 55, 79106, Freiburg, Deutschland.
| | - M Schönthaler
- Klinik für Urologie, Universitätsklinikum Freiburg, Hugstetter Str. 55, 79106, Freiburg, Deutschland
| |
Collapse
|
25
|
Gambaro G. Empirical therapy or precision medicine for kidney stone formers in the '-omics' era? Urolithiasis 2018; 47:1-3. [PMID: 30498937 DOI: 10.1007/s00240-018-1099-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 11/26/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Giovanni Gambaro
- Renal Unit, Division of Nephrology and Dialysis, Department of Medicine, University of Verona, Ospedale Maggiore, Piazzale A. Stefani 1, 37126, Verona, Italy.
| |
Collapse
|