1
|
Ba X, Ye T, He Y, Tong Y, Shang H, Wu J, Deng W, Zhong Z, Yang X, Wang K, Xie Y, Jiang K, Guo X, Tang K. Engineered macrophage membrane-coated nanoparticles attenuate calcium oxalate nephrocalcinosis-induced kidney injury by reducing oxidative stress and pyroptosis. Acta Biomater 2025; 195:479-495. [PMID: 39947306 DOI: 10.1016/j.actbio.2025.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/06/2025] [Accepted: 02/09/2025] [Indexed: 03/17/2025]
Abstract
Kidney stones are characterized by a high incidence and recurrence rate, leading to kidney injury, which in turn accelerates stone formation and deposition. Increasing evidence have demonstrated that oxidative stress and cell pyroptosis play important role in the calcium oxalate (CaOx) stones induced kidney injury. Currently, treatments related to oxidative stress and inflammation associated with kidney stones are still relatively limited. Here, we designed engineered macrophage cell membrane-coated hollow mesoporous manganese dioxide nanoparticles loaded with NLRP3 inhibitors Mcc950 (KM@M@M). KM@M@M NPs were modified with Kim-1 targeting peptides on M2-polarized macrophage membranes to achieve better targeted delivery to injured kidney tubules. Compared with traditional drugs, KM@M@M NPs reduce systemic toxicity through targeted drug delivery to the kidneys. In vivo and in vitro results demonstrate that KM@M@M NPs reduces the activation of the NLRP3 inflammasome in renal tubular epithelial cells by scavenging ROS, thereby downregulating gasdermin D cleavage and the production of inflammatory cytokines, ultimately inhibiting cell pyroptosis. In addition, bioinformatic analysis revealed that KM@M@M NPs protect against CaOx induced kidney injury via suppressing the NLRP3/GSDMD pathway. This article extending the application of engineered cell membrane-based biomimetic nanotechnology, and providing a promising strategy for dual protection in CaOx stones induced kidney injury. STATEMENT OF SIGNIFICANCE: Currently, apart from invasive surgery, there are few pharmacological therapies for CaOx-induced renal injury. This study presents a new strategy using engineered macrophage cell membrane-coated hollow mesoporous manganese dioxide nanoparticles (KM@M@M) to target and treat calcium oxalate (CaOx)-induced kidney injury. The nanoparticles effectively scavenge reactive oxygen species (ROS) and inhibit NLRP3 inflammasome activation, preventing pyroptosis and kidney damage. By delivering NLRP3 inhibitors directly to injured renal tubules, KM@M@M NPs reduce inflammation and stone deposition. This work demonstrates the potential of biomimetic nanotechnology for targeted treatment, offering a promising approach to prevent CaOx-induced renal injury and enhance therapeutic outcomes in kidney stone disease.
Collapse
Affiliation(s)
- Xiaozhuo Ba
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tao Ye
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu He
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yonghua Tong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Haojie Shang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jian Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wen Deng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zichen Zhong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoqi Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kangyang Wang
- Department of Urology, Wenchang People's Hospital, Wenchang 571300, China
| | - Yabin Xie
- Department of Urology, Wenchang People's Hospital, Wenchang 571300, China
| | - Kehua Jiang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Xiaolin Guo
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China.
| |
Collapse
|
2
|
Suttapitugsakul S, Sassanarakkit S, Peerapen P, Thongboonkerd V. Integrated proteomics reveals enrichment of oxidative stress and inflammatory proteins in the urine and stone matrix of calcium oxalate stone formers. Urolithiasis 2025; 53:25. [PMID: 39912926 DOI: 10.1007/s00240-025-01697-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 01/18/2025] [Indexed: 02/07/2025]
Abstract
Nephrolithiasis is a multifactorial disease associated with urinary and matrix proteins that become a focal point of research for diagnostic and preventative strategies. The functional relevance of these proteins in lithogenesis, along with their origins and impacts, remains a major subject of ongoing lithogenic research. Here, an integrated analysis was done on multiple proteome datasets compiled from various studies of normal urine (NU), urine from calcium oxalate stone formers (SFU), and calcium oxalate stone matrix (SM). Functional annotation and network analysis revealed the profound enrichment of proteins associated with oxidative stress and inflammation only in the stone-related samples (both "SFU but not NU" and "SM but not NU" cohorts). The oxidative stress and inflammation-related proteins were most abundant in the "SM but not NU" cohort and had higher proportions in the "SFU but not NU" cohort than the "NU only" cohort. KEGG pathway analysis corroborated such observation and highlighted the inclusion of proteins in the complement and coagulation pathways, particularly in SM. The findings of this study inform some mechanistic insights into the roles of calcium oxalate stone-related proteins and may help develop effective prevention and treatment strategies for nephrolithiasis.
Collapse
Affiliation(s)
- Suttipong Suttapitugsakul
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor-SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Supatcha Sassanarakkit
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor-SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Paleerath Peerapen
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor-SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor-SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand.
| |
Collapse
|
3
|
Hong SY, Qin BL. The Altered Proteomic Landscape in Renal Tubular Epithelial Cells under High Oxalate Stimulation. BIOLOGY 2024; 13:814. [PMID: 39452123 PMCID: PMC11505525 DOI: 10.3390/biology13100814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024]
Abstract
Our study aimed to apply a proteomic approach to investigate the molecular mechanisms underlying the effects of oxalate on rat renal tubular epithelial cells. NRK-52E cells were treated with or without oxalate and subjected to quantitative proteomics to identify key proteins and key pathological changes under high oxalate stimulation. A total of 268 differentially expressed proteins (DEPs) between oxalate-treated and control groups were identified, with 132 up-regulated and 136 down-regulated proteins. Functional enrichment analysis revealed that DEPs are associated with oxidative stress, apoptosis, ferroptosis, pro-inflammatory cytokines, vitamin D, and biomineralization. SPP1, MFGE8, ANKS1A, and NAP1L1 were up-regulated in the oxalate-treated cells and the hyperoxaluric stone-forming rats, while SUB1, RNPS1, and DGLUCY were down-regulated in both cases. This altered proteomic landscape sheds light on the pathological processes involved in oxalate-induced renal damage and identifies potential biomarkers and therapeutic targets to mitigate the effects of hyperoxaluria and reduce the risk of CaOx stone formation.
Collapse
Affiliation(s)
| | - Bao-Long Qin
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
4
|
Qiu Z, Li Y, Fu Y, Yang Y. Research progress of AMP-activated protein kinase and cardiac aging. Open Life Sci 2023; 18:20220710. [PMID: 37671091 PMCID: PMC10476487 DOI: 10.1515/biol-2022-0710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/27/2023] [Accepted: 08/05/2023] [Indexed: 09/07/2023] Open
Abstract
The process of aging is marked by a gradual deterioration in the physiological functions and functional reserves of various tissues and organs, leading to an increased susceptibility to diseases and even death. Aging manifests in a tissue- and organ-specific manner, and is characterized by varying rates and direct and indirect interactions among different tissues and organs. Cardiovascular disease (CVD) is the leading cause of death globally, with older adults (aged >70 years) accounting for approximately two-thirds of CVD-related deaths. The prevalence of CVD increases exponentially with an individual's age. Aging is a critical independent risk factor for the development of CVD. AMP-activated protein kinase (AMPK) activation exerts cardioprotective effects in the heart and restores cellular metabolic functions by modulating gene expression and regulating protein levels through its interaction with multiple target proteins. Additionally, AMPK enhances mitochondrial function and cellular energy status by facilitating the utilization of energy substrates. This review focuses on the role of AMPK in the process of cardiac aging and maintaining normal metabolic levels and redox homeostasis in the heart, particularly in the presence of oxidative stress and the invasion of inflammatory factors.
Collapse
Affiliation(s)
- Zhengqi Qiu
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, China
| | - Yufei Li
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, China
| | - Yancheng Fu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen518060, China
| | - Yanru Yang
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen518060, China
| |
Collapse
|
5
|
Baltazar P, de Melo Junior AF, Fonseca NM, Lança MB, Faria A, Sequeira CO, Teixeira-Santos L, Monteiro EC, Campos Pinheiro L, Calado J, Sousa C, Morello J, Pereira SA. Oxalate (dys)Metabolism: Person-to-Person Variability, Kidney and Cardiometabolic Toxicity. Genes (Basel) 2023; 14:1719. [PMID: 37761859 PMCID: PMC10530622 DOI: 10.3390/genes14091719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
Oxalate is a metabolic end-product whose systemic concentrations are highly variable among individuals. Genetic (primary hyperoxaluria) and non-genetic (e.g., diet, microbiota, renal and metabolic disease) reasons underlie elevated plasma concentrations and tissue accumulation of oxalate, which is toxic to the body. A classic example is the triad of primary hyperoxaluria, nephrolithiasis, and kidney injury. Lessons learned from this example suggest further investigation of other putative factors associated with oxalate dysmetabolism, namely the identification of precursors (glyoxylate, aromatic amino acids, glyoxal and vitamin C), the regulation of the endogenous pathways that produce oxalate, or the microbiota's contribution to oxalate systemic availability. The association between secondary nephrolithiasis and cardiovascular and metabolic diseases (hypertension, type 2 diabetes, and obesity) inspired the authors to perform this comprehensive review about oxalate dysmetabolism and its relation to cardiometabolic toxicity. This perspective may offer something substantial that helps advance understanding of effective management and draws attention to the novel class of treatments available in clinical practice.
Collapse
Affiliation(s)
- Pedro Baltazar
- Centro Hospitalar Universitário de Lisboa Central, E.P.E, 1150-199 Lisboa, Portugal; (P.B.); (N.M.F.); (M.B.L.); (L.C.P.); (J.C.)
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, 1150-082 Lisboa, Portugal; (A.F.d.M.J.); (C.O.S.); (L.T.-S.); (E.C.M.); (C.S.); (J.M.)
- Centro Clínico Académico de Lisboa, 1159-056 Lisboa, Portugal
| | - Antonio Ferreira de Melo Junior
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, 1150-082 Lisboa, Portugal; (A.F.d.M.J.); (C.O.S.); (L.T.-S.); (E.C.M.); (C.S.); (J.M.)
- Centro Clínico Académico de Lisboa, 1159-056 Lisboa, Portugal
| | - Nuno Moreira Fonseca
- Centro Hospitalar Universitário de Lisboa Central, E.P.E, 1150-199 Lisboa, Portugal; (P.B.); (N.M.F.); (M.B.L.); (L.C.P.); (J.C.)
- Centro Clínico Académico de Lisboa, 1159-056 Lisboa, Portugal
| | - Miguel Brito Lança
- Centro Hospitalar Universitário de Lisboa Central, E.P.E, 1150-199 Lisboa, Portugal; (P.B.); (N.M.F.); (M.B.L.); (L.C.P.); (J.C.)
| | - Ana Faria
- CHRC, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, 1150-082 Lisboa, Portugal;
| | - Catarina O. Sequeira
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, 1150-082 Lisboa, Portugal; (A.F.d.M.J.); (C.O.S.); (L.T.-S.); (E.C.M.); (C.S.); (J.M.)
| | - Luísa Teixeira-Santos
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, 1150-082 Lisboa, Portugal; (A.F.d.M.J.); (C.O.S.); (L.T.-S.); (E.C.M.); (C.S.); (J.M.)
- Centro Clínico Académico de Lisboa, 1159-056 Lisboa, Portugal
| | - Emilia C. Monteiro
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, 1150-082 Lisboa, Portugal; (A.F.d.M.J.); (C.O.S.); (L.T.-S.); (E.C.M.); (C.S.); (J.M.)
- Centro Clínico Académico de Lisboa, 1159-056 Lisboa, Portugal
| | - Luís Campos Pinheiro
- Centro Hospitalar Universitário de Lisboa Central, E.P.E, 1150-199 Lisboa, Portugal; (P.B.); (N.M.F.); (M.B.L.); (L.C.P.); (J.C.)
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, 1150-082 Lisboa, Portugal; (A.F.d.M.J.); (C.O.S.); (L.T.-S.); (E.C.M.); (C.S.); (J.M.)
- Centro Clínico Académico de Lisboa, 1159-056 Lisboa, Portugal
| | - Joaquim Calado
- Centro Hospitalar Universitário de Lisboa Central, E.P.E, 1150-199 Lisboa, Portugal; (P.B.); (N.M.F.); (M.B.L.); (L.C.P.); (J.C.)
- Centro Clínico Académico de Lisboa, 1159-056 Lisboa, Portugal
- ToxOmics, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, 1150-082 Lisboa, Portugal
| | - Cátia Sousa
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, 1150-082 Lisboa, Portugal; (A.F.d.M.J.); (C.O.S.); (L.T.-S.); (E.C.M.); (C.S.); (J.M.)
- Centro Clínico Académico de Lisboa, 1159-056 Lisboa, Portugal
| | - Judit Morello
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, 1150-082 Lisboa, Portugal; (A.F.d.M.J.); (C.O.S.); (L.T.-S.); (E.C.M.); (C.S.); (J.M.)
| | - Sofia A. Pereira
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, 1150-082 Lisboa, Portugal; (A.F.d.M.J.); (C.O.S.); (L.T.-S.); (E.C.M.); (C.S.); (J.M.)
- Centro Clínico Académico de Lisboa, 1159-056 Lisboa, Portugal
| |
Collapse
|
6
|
Chaiyarit S, Thongboonkerd V. Mitochondria-derived vesicles and their potential roles in kidney stone disease. J Transl Med 2023; 21:294. [PMID: 37131163 PMCID: PMC10152607 DOI: 10.1186/s12967-023-04133-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/14/2023] [Indexed: 05/04/2023] Open
Abstract
Recent evidence has shown significant roles of mitochondria-derived vesicles (MDVs) in mitochondrial quality control (MQC) system. Under mild stress condition, MDVs are formed to carry the malfunctioned mitochondrial components, such as mitochondrial DNA (mtDNA), peptides, proteins and lipids, to be eliminated to restore normal mitochondrial structure and functions. Under severe oxidative stress condition, mitochondrial dynamics (fission/fusion) and mitophagy are predominantly activated to rescue mitochondrial structure and functions. Additionally, MDVs generation can be also triggered as the major MQC machinery to cope with unhealthy mitochondria when mitophagy is unsuccessful for eliminating the damaged mitochondria or mitochondrial fission/fusion fail to recover the mitochondrial structure and functions. This review summarizes the current knowledge on MDVs and discuss their roles in physiologic and pathophysiologic conditions. In addition, the potential clinical relevance of MDVs in therapeutics and diagnostics of kidney stone disease (KSD) are emphasized.
Collapse
Affiliation(s)
- Sakdithep Chaiyarit
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor, SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor, SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand.
| |
Collapse
|
7
|
Wang Q, Zhang J, Chen X, Sun F, Jiang K. Renal tubular epithelial cells treated with calcium oxalate up-regulate S100A8 and S100A9 expression in M1-polarized macrophages via interleukin 6. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:603-608. [PMID: 37051106 PMCID: PMC10083839 DOI: 10.22038/ijbms.2023.69202.15080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/12/2023] [Indexed: 04/14/2023]
Abstract
Objectives Calgranulins S100A8 and S100A9 are common in renal stones and they are up-regulated in both urinary exosomes and kidneys of stone patients. Renal sources and important regulators for S100A8 and S100A9 in nephrolithiasis were explored in this study. Materials and Methods We identified S100A8 and S100A9 abundance in various renal cells by searching the Single Cell Type Atlas. Macrophages were polarized from human myeloid leukemia mononuclear cells. Human proximal renal tubular epithelial cells (HK-2) were stimulated with calcium oxalate monohydrate (COM). Coculture experiments involving HK-2 cells and macrophages were conducted. qPCR, Western blotting, ELISA, and immunofluorescence were used for detecting interleukin 6 (IL6), S100A8, and S100A9. Results The Single Cell Type Atlas showed that S100A8 and S100A9 in human kidneys primarily originated from macrophages. M1 was the predominant macrophage type expressing S100A8 and S100A9. Direct culture with COM did not affect the expression of these two calgranulins in M1 macrophages but coculture with COM-treated HK-2 cells did. COM could promote HK-2 cells to secrete IL6. IL6 could up-regulate S100A8 and S100A9 expression in macrophages of M1 type. In addition, 0.5 μM SC144 (a kind of IL6 inhibitor) significantly prevented COM-treated HK-2 cells from up-regulating S100A8 and S100A9 expression in macrophages of M1 type. Conclusion M1-polarized macrophages were the predominant cell type expressing S100A8 and S100A9 in the kidneys of nephrolithiasis patients. CaOx crystals can promote renal tubular epithelial cells to secrete IL6 to up-regulate S100A8 and S100A9 expression in macrophages of M1 type.
Collapse
Affiliation(s)
- Qing Wang
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, 550000, China
| | | | - Xiaolong Chen
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, 550000, China
| | - Fa Sun
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, 550000, China
- Corresponding authors: Fa Sun. Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, 550000, China. Tel/ Fax: +86-085185924943; ; Kehua Jiang. Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, 550000, China. Tel/ Fax: +86-085185924943;
| | - Kehua Jiang
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, 550000, China
- Corresponding authors: Fa Sun. Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, 550000, China. Tel/ Fax: +86-085185924943; ; Kehua Jiang. Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, 550000, China. Tel/ Fax: +86-085185924943;
| |
Collapse
|
8
|
The advances of calcium oxalate calculi associated drugs and targets. Eur J Pharmacol 2022; 935:175324. [DOI: 10.1016/j.ejphar.2022.175324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/23/2022] [Accepted: 10/11/2022] [Indexed: 11/20/2022]
|