1
|
Bérard A, Crouzet O, Morin S, Pesce S. Improved assessment of the impacts of plant protection products on certain soil ecosystem services requires better consideration of terrestrial microalgae and cyanobacteria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:2786-2793. [PMID: 38010548 DOI: 10.1007/s11356-023-31198-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/19/2023] [Indexed: 11/29/2023]
Abstract
There is growing scientific and societal consciousness that the environmental risks and impacts of plant protection products (PPPs) cannot be properly assessed without considering ecosystem services. However, the science on this issue remains incomplete and fragmented, as recently illustrated in a collective scientific assessment that pointed out the limited knowledge on the risks and impacts of PPPs on soil ecosystem services, which are clearly overlooked. Beside soil ecosystem services, certain key players involved in these services are largely overlooked in the scientific literature on the risks and impacts of PPPs, namely soil microbial photosynthetic communities. Here, we followed the principles of evidence-based logic chain approaches to show the importance of considering these microorganisms when studying the impacts of PPPs on certain services provided by soil ecosystems, with a focus on regulating and maintenance services that play a role in the regulation of baseline flows and extreme events. Terrestrial microalgae and cyanobacteria are ubiquitous photosynthetic microorganisms that, together with other soil micro- and macro-organisms, play key roles in the ecosystem functions that underpin these ecosystem services. There is an extensive literature on the ecotoxicological effects of PPPs on different organisms including soil microorganisms, but studies concerning soil microbial photosynthetic communities are very scarce. However, there is scientific evidence that herbicides can have both direct and indirect impacts on these microbial photosynthetic communities. Given that they play key functional roles, we argue that soil microbial photosynthetic communities warrant greater attention in efforts to assess the environmental risks and impacts of PPPs and, ultimately, help preserve or restore the regulating and maintenance services provided by soil ecosystems.
Collapse
Affiliation(s)
- Annette Bérard
- UMR EMMAH, INRAE, Avignon Université, 84000, Avignon, France
| | - Olivier Crouzet
- OFB, Direction Recherche Et Appui Scientifique, 78610, Auffargis, France
| | | | | |
Collapse
|
2
|
Ndikuryayo F, Gong XY, Yang WC. Advances in Understanding the Toxicity of 4-Hydroxyphenylpyruvate Dioxygenase-Inhibiting Herbicides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17762-17770. [PMID: 39093601 DOI: 10.1021/acs.jafc.4c04624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
4-Hydroxyphenylpyruvate dioxygenase inhibiting herbicides (HIHs) represent a recent class (HRAC group 27) of herbicides that offer many advantages, such as broad-spectrum activity, crop selectivity, and low resistance rates. However, emerging studies have highlighted the potential toxicity of HIHs in the environment. This review aims to provide a comprehensive summary of the toxicity of HIHs toward nontarget organisms, including plants, microorganisms, animals, and humans. Furthermore, the present work discusses the ecological roles of these organisms in the environment and their significance in agriculture. By shedding light on the toxicity of HIHs, this study seeks to raise awareness among end users, including environmentalists, researchers, and farmers, regarding the potential ecological implications of these herbicides. Hopefully, this knowledge can contribute to informed decision-making and sustainable practices in green agriculture and environmental management.
Collapse
Affiliation(s)
- Ferdinand Ndikuryayo
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
- Centre Universitaire de Recherche et de Pédagogie Appliquées aux Sciences, Laboratoire de Nutrition-Phytochimie, d'Ecologie et Environnement Appliqués, Institut de Pédagogie Appliquée, Université du Burundi, BP 2700 Bujumbura, Burundi
| | - Xue-Yan Gong
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Wen-Chao Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
3
|
Terol H, Thiour-Mauprivez C, Devers M, Martin-Laurent F, Suzuki M, Calvayrac C, Barthelmebs L. "Structural responses of non-targeted bacterial and hppd communities to the herbicide tembotrione in soil". THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168198. [PMID: 37914111 DOI: 10.1016/j.scitotenv.2023.168198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Tembotrione (TBT) is a β-triketone herbicide targeting the 4-Hydroxyphenylpyruvate dioxygenase enzyme (4-HPPD) of weeds. This molecule can also affect soil microorganisms, either through both direct and indirect toxic effects for microorganisms expressing 4-HPPD, or by promoting tolerant and/or degrading microbial populations. Our study aimed to characterize the impacts of TBT on the diversity of total- and hppd (coding for 4-HPPD) -soil bacterial communities. Soil microcosms were treated with the active ingredient TBT at the recommended field dose (100 g a.i/ha; D1) or the tenfold dose (D10). Soil samples were collected from 0 to 55 days post-treatment to study: (i) total- and hppd-bacterial diversities using 16SrRNA and hppd amplicons sequencing, respectively; (ii) TBT dissipation in soil. Both total- and hppd-bacterial community composition was not affected by TBT treatments (D1 and D10). However, D10 treatment slightly increased richness and phylogenetic diversity of the total bacterial community while decreasing hppd richness. Overall, the highest dose of TBT seemed to promote TBT-tolerant or TBT-degrading bacterial populations and to deplete TBT-sensitive ones. These effects were transient as TBT was rapidly dissipated with a DT50 of 7 days and 15 days for D1 and D10, respectively. Differential abundance analysis with a Generalized Linear Model allowed the identification of Sphingomonas, Steroidobacter and Lysobacter as genus that were influenced by TBT, and which could be used as a new class of exposure biomarkers.
Collapse
Affiliation(s)
- Hugo Terol
- Université de Perpignan Via Domitia, Biocapteurs-Analyse-Environnement, 66860 Perpignan, France; Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, F-66650 Banyuls-sur-Mer, France
| | - Clémence Thiour-Mauprivez
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Marion Devers
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Fabrice Martin-Laurent
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Marcelino Suzuki
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, F-66650 Banyuls-sur-Mer, France
| | - Christophe Calvayrac
- Université de Perpignan Via Domitia, Biocapteurs-Analyse-Environnement, 66860 Perpignan, France; Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, F-66650 Banyuls-sur-Mer, France
| | - Lise Barthelmebs
- Université de Perpignan Via Domitia, Biocapteurs-Analyse-Environnement, 66860 Perpignan, France; Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, F-66650 Banyuls-sur-Mer, France.
| |
Collapse
|
4
|
Karpouzas DG, Vryzas Z, Martin-Laurent F. Pesticide soil microbial toxicity: setting the scene for a new pesticide risk assessment for soil microorganisms (IUPAC Technical Report). PURE APPL CHEM 2022. [DOI: 10.1515/pac-2022-0201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Pesticides constitute an integral part of modern agriculture. However, there are still concerns about their effects on non-target organisms. To address this the European Commission has imposed a stringent regulatory scheme for new pesticide compounds. Assessment of the aquatic toxicity of pesticides is based on a range of advanced tests. This does not apply to terrestrial ecosystems, where the toxicity of pesticides on soil microorganisms, is based on an outdated and crude test (N mineralization). This regulatory gap is reinforced by the recent methodological and standardization advances in soil microbial ecology. The inclusion of such standardized tools in a revised risk assessment scheme will enable the accurate estimation of the toxicity of pesticides on soil microorganisms and on associated ecosystem services. In this review we (i) summarize recent work in the assessment of the soil microbial toxicity of pesticides and point to ammonia-oxidizing microorganisms (AOM) and arbuscular mycorrhizal fungi (AMF) as most relevant bioindicator groups (ii) identify limitations in the experimental approaches used and propose mitigation solutions, (iii) identify scientific gaps and (iv) propose a new risk assessment procedure to assess the effects of pesticides on soil microorganisms.
Collapse
Affiliation(s)
- Dimitrios G. Karpouzas
- Department of Biochemistry and Biotechnology , Laboratory of Plant and Environmental Biotechnology, University of Thessaly , Viopolis 41500 , Larissa , Greece
| | - Zisis Vryzas
- Department of Agricultural Development , Democritus University of Thrace , Orestiada , Greece
| | | |
Collapse
|
5
|
Effect of herbicide stress on the content of tyramine and its metabolites in Japanese radish sprouts (Raphanus sativus). J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
6
|
Thiour-Mauprivez C, Martin-Laurent F, Calvayrac C, Barthelmebs L. Effects of herbicide on non-target microorganisms: Towards a new class of biomarkers? THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 684:314-325. [PMID: 31153078 DOI: 10.1016/j.scitotenv.2019.05.230] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/02/2019] [Accepted: 05/16/2019] [Indexed: 05/19/2023]
Abstract
Conventional agriculture still relies on the general use of agrochemicals (herbicides, fungicides and insecticides) to control various pests (weeds, fungal pathogens and insects), to ensure the yield of crop and to feed a constantly growing population. The generalized use of pesticides in agriculture leads to the contamination of soil and other connected environmental resources. The persistence of pesticide residues in soil is identified as a major threat for in-soil living organisms that are supporting an important number of ecosystem services. Although authorities released pesticides on the market only after their careful and thorough evaluation, the risk assessment for in-soil living organisms is unsatisfactory, particularly for microorganisms for which pesticide toxicity is solely considered by one global test measuring N mineralization. Recently, European Food Safety Authority (EFSA) underlined the lack of standardized methods to assess pesticide ecotoxicological effects on soil microorganisms. Within this context, there is an obvious need to develop innovative microbial markers sensitive to pesticide exposure. Biomarkers that reveal direct effects of pesticides on microorganisms are often viewed as the panacea. Such biomarkers can only be developed for pesticides having a mode of action inhibiting a specific enzyme not only found in the targeted organisms but also in microorganisms which are considered as "non-target organisms" by current regulations. This review explores possible ways of innovation to develop such biomarkers for herbicides. We scanned the herbicide classification by considering the mode of action, the targeted enzyme and the ecotoxicological effects of each class of active substance in order to identify those that can be tracked using sensitive microbial markers.
Collapse
Affiliation(s)
- Clémence Thiour-Mauprivez
- Univ. Perpignan Via Domitia, Biocapteurs-Analyses-Environnement, 66860 Perpignan, France; Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR 3579 Sorbonne Universités (UPMC) Paris 6 et CNRS Observatoire Océanologique, 66650 Banyuls-sur-Mer, France; AgroSup Dijon, INRA, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21065 Dijon, France
| | - Fabrice Martin-Laurent
- AgroSup Dijon, INRA, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21065 Dijon, France
| | - Christophe Calvayrac
- Univ. Perpignan Via Domitia, Biocapteurs-Analyses-Environnement, 66860 Perpignan, France; Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR 3579 Sorbonne Universités (UPMC) Paris 6 et CNRS Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Lise Barthelmebs
- Univ. Perpignan Via Domitia, Biocapteurs-Analyses-Environnement, 66860 Perpignan, France; Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR 3579 Sorbonne Universités (UPMC) Paris 6 et CNRS Observatoire Océanologique, 66650 Banyuls-sur-Mer, France.
| |
Collapse
|
7
|
Crouzet O, Consentino L, Pétraud JP, Marrauld C, Aguer JP, Bureau S, Le Bourvellec C, Touloumet L, Bérard A. Soil Photosynthetic Microbial Communities Mediate Aggregate Stability: Influence of Cropping Systems and Herbicide Use in an Agricultural Soil. Front Microbiol 2019; 10:1319. [PMID: 31258520 PMCID: PMC6587365 DOI: 10.3389/fmicb.2019.01319] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/27/2019] [Indexed: 11/13/2022] Open
Abstract
Edaphic cyanobacteria and algae have been extensively studied in dryland soils because they play key roles in the formation of biological soil crusts and the stabilization of soil surfaces. Yet, in temperate agricultural crop soils, little is understood about the functional significance of indigenous photosynthetic microbial communities for various soil processes. This study investigated how indigenous soil algae and cyanobacteria affected topsoil aggregate stability in cereal cropping systems. Topsoil aggregates from conventional and organic cropping systems were incubated in microcosms under dark or photoperiodic conditions with or without a treatment with an herbicide (isoproturon). Physicochemical parameters (bound exopolysaccharides, organic carbon) and microbial parameters (esterase activity, chlorophyll a biomass, and pigment profiles) were measured for incubated aggregates. Aggregate stability were analyzed on the basis of aggregate size distribution and the mean weight diameter (MWD) index, resulting from disaggregation tests. Soil photosynthetic microbial biomass (chl a) was strongly and positively correlated with aggregate stability indicators. The development of microalgae crusts in photoperiodic conditions induced a strong increase of the largest aggregates (>2 mm), as compared to dark conditions (up to 10.6 fold and 27.1 fold, in soil from organic and conventional cropping systems, respectively). Concomitantly, the MWD significantly increased by 2.4 fold and 4.2 fold, for soil from organic and conventional cropping systems. Soil microalgae may have operated directly via biochemical mechanisms, by producing exopolymeric matrices surrounding soil aggregates (bound exopolysaccharides: 0.39-0.45 μg C g-1 soil), and via biophysical mechanisms, where filamentous living microbiota enmeshed soil aggregates. In addition, they may have acted indirectly by stimulating heterotrophic microbial communities, as revealed by the positive effect of microalgal growth on total microbial activity. The herbicide treatment negatively impacted soil microalgal community, resulting in significant decreases of the MWD of the conventional soil aggregates (up to -42% of the value in light treatment). This study underscores that indigenous edaphic algae and cyanobacteria can promote aggregate formation, by forming photosynthetic microbiotic crusts, thus improving the structural stability of topsoil, in temperate croplands. However, the herbicide uses can impair the functional abilities of algal and cyanobacterial communities in agricultural soils. Originality/Significance Edaphic algal and cyanobacterial communities are known to form photosynthetic microbial crusts in arid soils, where they drive key ecosystem functions. Although less well characterized, such communities are also transiently abundant in temperate and mesic cropped soils. This microcosm study investigated the communities' functional significance in topsoil aggregate formation and stabilization in two temperate cropping systems. Overall, our results showed that the development of indigenous microalgal communities under our experimental conditions drove higher structural stability in topsoil aggregates in temperate cropland soils. Also, herbicide use affected photosynthetic microbial communities and consequently impaired soil aggregation.
Collapse
Affiliation(s)
- Olivier Crouzet
- UMR ECOSYS (Ecologie et Ecotoxicologie des Agroécosystèmes), INRA, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Laurent Consentino
- UMR ECOSYS (Ecologie et Ecotoxicologie des Agroécosystèmes), INRA, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Jean-Pierre Pétraud
- UMR ECOSYS (Ecologie et Ecotoxicologie des Agroécosystèmes), INRA, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Christelle Marrauld
- UMR ECOSYS (Ecologie et Ecotoxicologie des Agroécosystèmes), INRA, AgroParisTech, Université Paris-Saclay, Versailles, France
| | | | - Sylvie Bureau
- UMR 408 SQPOV, INRA, Avignon Université, Avignon, France
| | | | - Line Touloumet
- UMR 408 SQPOV, INRA, Avignon Université, Avignon, France
| | - Annette Bérard
- UMR 1114 EMMAH (Environnement Méditerranéen et Modélisation des Agro-Hydrosystèmes), INRA, Avignon Université, Avignon, France
| |
Collapse
|
8
|
Du Z, Zhu Y, Zhu L, Zhang J, Li B, Wang J, Wang J, Zhang C, Cheng C. Effects of the herbicide mesotrione on soil enzyme activity and microbial communities. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 164:571-578. [PMID: 30149356 DOI: 10.1016/j.ecoenv.2018.08.075] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/11/2018] [Accepted: 08/20/2018] [Indexed: 06/08/2023]
Abstract
Mesotrione (2-[4-(methylsulfonyl)-2-nithobenzoyl]-1, 3-cyclohexanedione) is a selective triketone herbicide that has been widely used in corn production for the past 15 years. However, its potential for risk to soil ecosystems is poorly documented. The present study investigated the soil enzyme activity and soil microbial community responses to a 20 days' mesotrione exposure at doses of 0.1, 1.0 and 5.0 mg/kg. On days 2, 5, 10 and 20, activities of soil β-glucosidase, urease and acid phosphatase, soil microbe abundances, soil microbial community structure and abundance of the AOA-amoA and AOB-amoA genes were measured. Results showed that activities of urease and acid phosphatase were relatively stable, with no difference found between the mesotrione-treated group and control at the end of exposure. But β-glucosidase activity was reduced in the 5.0 mg/kg mesotrione treatment. In the 1.0 and 5.0 mg/kg mesotrione-treated soil, abundance of bacteria, fungi and actinomycetes all were reduced. In the 0.1 mg/kg mesotrione-treated soil, only fungi abundance was reduced by the end of the exposure. The analysis of terminal restriction fragment length polymorphism (T-RFLP) revealed soil microbial community structure could be affected by mesotrione at all experimental doses, and microbial diversity declined slightly after mesotrione exposure. Abundance of AOA-amoA and AOB-amoA genes were reduced markedly in 1.0 and 5.0 mg/kg mesotrione-treated soil. The present study suggests that mesotrione at higher doses might induce negative impacts on soil microbes, a finding which merits additional research and which should be accounted for when application of this herbicide is considered.
Collapse
Affiliation(s)
- Zhongkun Du
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, PR China
| | - Yanyan Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, PR China
| | - Lusheng Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, PR China.
| | - Ji Zhang
- College of Mechanical and Electronic Engineering, Key Laboratory of Horticultural Machinery and Equipment of Shandong, Shandong Agricultural University, Taian 271018, PR China
| | - Bing Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, PR China
| | - Jinhua Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, PR China.
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, PR China.
| | - Cheng Zhang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, PR China
| | - Chao Cheng
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, PR China
| |
Collapse
|
9
|
Singh AK, Singh PP, Tripathi V, Verma H, Singh SK, Srivastava AK, Kumar A. Distribution of cyanobacteria and their interactions with pesticides in paddy field: A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 224:361-375. [PMID: 30059934 DOI: 10.1016/j.jenvman.2018.07.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/13/2018] [Accepted: 07/14/2018] [Indexed: 06/08/2023]
Abstract
Cyanobacteria, also known as blue green algae are one of the important ubiquitous oxygen evolving photosynthetic prokaryotes and ultimate source of nitrogen for paddy fields since decades. In past two decades, indiscriminated use of pesticides led to biomagnification that intensively harm the structure and soil functions of soil microbes including cyanobacteria. Cyanobacterial abundance biomass, short generation, water holding capacity, mineralizing capacity and more importantly nitrogen fixing have enormous potential to abate the negative effects of pesticides. Therefore, investigation of the ecotoxicological effects of pesticides on the structure and function of the tropical paddy field associated cyanobacteria is urgent and need to estimate the fate of interaction of pesticides over nitrogen fixations and other attributes. In this regard, comprehensive survey over cyanobacterial distribution patterns and their interaction with pesticides in Indian context has been deeply reviewed. In addition, the present paper also deals the molecular docking pattern of pesticides with the nitrogen fixing proteins, which helps in revealing the functional interpretation over nitrogen fixation process.
Collapse
Affiliation(s)
| | - Prem Pratap Singh
- Center of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vijay Tripathi
- Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, 211007, India
| | - Hariom Verma
- Center of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Sandeep Kumar Singh
- Center of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | | | - Ajay Kumar
- Center of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
10
|
Dumas E, Giraudo M, Goujon E, Halma M, Knhili E, Stauffert M, Batisson I, Besse-Hoggan P, Bohatier J, Bouchard P, Celle-Jeanton H, Costa Gomes M, Delbac F, Forano C, Goupil P, Guix N, Husson P, Ledoigt G, Mallet C, Mousty C, Prévot V, Richard C, Sarraute S. Fate and ecotoxicological impact of new generation herbicides from the triketone family: An overview to assess the environmental risks. JOURNAL OF HAZARDOUS MATERIALS 2017; 325:136-156. [PMID: 27930998 DOI: 10.1016/j.jhazmat.2016.11.059] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 10/21/2016] [Accepted: 11/19/2016] [Indexed: 06/06/2023]
Abstract
Triketones, derived chemically from a natural phytotoxin (leptospermone), are a good example of allelochemicals as lead molecules for the development of new herbicides. Targeting a new and key enzyme involved in carotenoid biosynthesis, these latest-generation herbicides (sulcotrione, mesotrione and tembotrione) were designed to be eco-friendly and commercialized fifteen-twenty years ago. The mechanisms controlling their fate in different ecological niches as well as their toxicity and impact on different organisms or ecosystems are still under investigation. This review combines an overview of the results published in the literature on β-triketones and more specifically, on the commercially-available herbicides and includes new results obtained in our interdisciplinary study aiming to understand all the processes involved (i) in their transfer from the soil to the connected aquatic compartments, (ii) in their transformation by photochemical and biological mechanisms but also to evaluate (iii) the impacts of the parent molecules and their transformation products on various target and non-target organisms (aquatic microorganisms, plants, soil microbial communities). Analysis of all the data on the fate and impact of these molecules, used pure, as formulation or in cocktails, give an overall guide for the assessment of their environmental risks.
Collapse
Affiliation(s)
- E Dumas
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, 63000 Clermont-Ferrand, France; CNRS, UMR 6296, ICCF, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - M Giraudo
- Clermont Université, Université Blaise Pascal-Université d'Auvergne, Laboratoire Microorganismes: Génome et Environnement, BP 10448, 63000 Clermont Ferrand, France; CNRS, UMR 6023, LMGE, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - E Goujon
- Clermont Université, Université Blaise Pascal, Physique et Physiologie Intégratives de l'Arbre Fruitier et Forestier, 63000 Clermont-Ferrand, France; INRA, UMR PIAF 547, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - M Halma
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, 63000 Clermont-Ferrand, France; CNRS, UMR 6296, ICCF, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - E Knhili
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, 63000 Clermont-Ferrand, France; CNRS, UMR 6296, ICCF, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - M Stauffert
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, 63000 Clermont-Ferrand, France; CNRS, UMR 6296, ICCF, TSA 60026, CS 60026, 63178 Aubière Cedex, France; Clermont Université, Université Blaise Pascal-Université d'Auvergne, Laboratoire Microorganismes: Génome et Environnement, BP 10448, 63000 Clermont Ferrand, France; CNRS, UMR 6023, LMGE, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - I Batisson
- Clermont Université, Université Blaise Pascal-Université d'Auvergne, Laboratoire Microorganismes: Génome et Environnement, BP 10448, 63000 Clermont Ferrand, France; CNRS, UMR 6023, LMGE, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - P Besse-Hoggan
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, 63000 Clermont-Ferrand, France; CNRS, UMR 6296, ICCF, TSA 60026, CS 60026, 63178 Aubière Cedex, France.
| | - J Bohatier
- Clermont Université, Université Blaise Pascal-Université d'Auvergne, Laboratoire Microorganismes: Génome et Environnement, BP 10448, 63000 Clermont Ferrand, France; CNRS, UMR 6023, LMGE, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - P Bouchard
- Clermont Université, Université Blaise Pascal-Université d'Auvergne, Laboratoire Microorganismes: Génome et Environnement, BP 10448, 63000 Clermont Ferrand, France; CNRS, UMR 6023, LMGE, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - H Celle-Jeanton
- Clermont Université, Université Blaise Pascal, Laboratoire Magmas et Volcans, BP 10448, 63000 Clermont-Ferrand, France; CNRS, UMR 6524, LMV, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - M Costa Gomes
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, 63000 Clermont-Ferrand, France; CNRS, UMR 6296, ICCF, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - F Delbac
- Clermont Université, Université Blaise Pascal-Université d'Auvergne, Laboratoire Microorganismes: Génome et Environnement, BP 10448, 63000 Clermont Ferrand, France; CNRS, UMR 6023, LMGE, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - C Forano
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, 63000 Clermont-Ferrand, France; CNRS, UMR 6296, ICCF, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - P Goupil
- Clermont Université, Université Blaise Pascal, Physique et Physiologie Intégratives de l'Arbre Fruitier et Forestier, 63000 Clermont-Ferrand, France; INRA, UMR PIAF 547, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - N Guix
- INRA, UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France; VetAgro Sup, 89 avenue de l'Europe, BP 35, 63370 Lempdes, France; UMR Génétique Diversité et Ecophysiologie des Céréales, INRA-UBP, UMR 1095, 63000 Clermont-Ferrand, France
| | - P Husson
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, 63000 Clermont-Ferrand, France; CNRS, UMR 6296, ICCF, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - G Ledoigt
- Clermont Université, Université Blaise Pascal, Physique et Physiologie Intégratives de l'Arbre Fruitier et Forestier, 63000 Clermont-Ferrand, France; INRA, UMR PIAF 547, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - C Mallet
- Clermont Université, Université Blaise Pascal-Université d'Auvergne, Laboratoire Microorganismes: Génome et Environnement, BP 10448, 63000 Clermont Ferrand, France; CNRS, UMR 6023, LMGE, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - C Mousty
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, 63000 Clermont-Ferrand, France; CNRS, UMR 6296, ICCF, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - V Prévot
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, 63000 Clermont-Ferrand, France; CNRS, UMR 6296, ICCF, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - C Richard
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, 63000 Clermont-Ferrand, France; CNRS, UMR 6296, ICCF, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - S Sarraute
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, 63000 Clermont-Ferrand, France; CNRS, UMR 6296, ICCF, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| |
Collapse
|
11
|
Barchanska H, Sajdak M, Szczypka K, Swientek A, Tworek M, Kurek M. Atrazine, triketone herbicides, and their degradation products in sediment, soil and surface water samples in Poland. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:644-658. [PMID: 27743329 PMCID: PMC5219039 DOI: 10.1007/s11356-016-7798-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 09/28/2016] [Indexed: 05/12/2023]
Abstract
The aim of this study was to monitor the sediment, soil and surface water contamination with selected popular triketone herbicides (mesotrione (MES) and sulcotrione(SUL)), atrazine (ATR) classified as a possible carcinogen and endocrine disrupting chemical, as well as their degradation products, in Silesia (Poland). Seventeen sediment samples, 24 soil samples, and 64 surface water samples collected in 2014 were studied. After solid-liquid extraction (SLE) and solid phase extraction (SPE), analytes were determined by high-performance liquid chromatography (HPLC) with diode array detection (DAD). Ten years after the withdrawal from the use, ATR was not detected in any of the collected samples; however, its degradation products are still present in 41 % of sediment, 71 % of soil, and 8 % of surface water samples. SUL was determined in 85 % of soil samples; its degradation product (2-chloro-4-(methylosulfonyl) benzoic acid (CMBA)) was present in 43 % of soil samples. In 17 % of sediment samples, CMBA was detected. Triketones were detected occasionally in surface water samples. The chemometric analysis (clustering analysis (CA), single-factor analysis of variance (ANOVA), N-Way ANOVA) was applied to find relations between selected soil and sediment parameters and herbicides concentration. In neither of the studied cases a statistically significant relationship between the concentrations of examined herbicides, their degradation products and soil parameters (organic carbon (OC), pH) was observed.
Collapse
Affiliation(s)
- Hanna Barchanska
- Department of Inorganic, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6 Str, 44-100, Gliwice, Poland.
| | - Marcin Sajdak
- Institute for Chemical Processing of Coal, 1 Zamkowa St, 41-803, Zabrze, Poland
| | - Kornelia Szczypka
- Department of Inorganic, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6 Str, 44-100, Gliwice, Poland
| | - Angelika Swientek
- Department of Inorganic, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6 Str, 44-100, Gliwice, Poland
| | - Martyna Tworek
- Department of Inorganic, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6 Str, 44-100, Gliwice, Poland
| | - Magdalena Kurek
- Department of Inorganic, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6 Str, 44-100, Gliwice, Poland
| |
Collapse
|
12
|
Crouzet O, Poly F, Bonnemoy F, Bru D, Batisson I, Bohatier J, Philippot L, Mallet C. Functional and structural responses of soil N-cycling microbial communities to the herbicide mesotrione: a dose-effect microcosm approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:4207-4217. [PMID: 26122568 DOI: 10.1007/s11356-015-4797-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 05/27/2015] [Indexed: 06/04/2023]
Abstract
Microbial communities driving the nitrogen cycle contribute to ecosystem services such as crop production and air, soil, and water quality. The responses to herbicide stress of ammonia-oxidizing and ammonia-denitrifying microbial communities were investigated by an analysis of changes in structure-function relationships. Their potential activities, abundances (quantitative PCR), and genetic structure (denaturing gradient gel electrophoresis) were assessed in a microcosm experiment. The application rate (1 × FR, 0.45 μg g(-1) soil) of the mesotrione herbicide did not strongly affect soil N-nutrient dynamics or microbial community structure and abundances. Doses of the commercial product Callisto® (10 × FR and 100 × FR) or pure mesotrione (100 × FR) exceeding field rates induced short-term inhibition of nitrification and a lasting stimulation of denitrification. These effects could play a part in the increase in soil ammonium content and decrease in nitrate contents observed in treated soils. These functional impacts were mainly correlated with abundance shifts of ammonia-oxidizing Bacteria (AOB) and Archaea (AOA) or denitrifying bacteria. The sustained restoration of nitrification activity, from day 42 in the 100 × FR-treated soils, was likely promoted by changes in the community size and composition of AOB, which suggests a leading role, rather than AOA, for soil nitrification restoration after herbicide stress. This ecotoxicological community approach provides a nonesuch multiparameter assessment of responses of N-cycling microbial guilds to pesticide stress.
Collapse
Affiliation(s)
- Olivier Crouzet
- INRA UR 251 PESSAC, Centre Versailles-Grignon, RD 10, 78026, Versailles cedex, France.
| | - Franck Poly
- Ecologie Microbienne, INRA USC 1193 - CNRS UMR 5557, 69622, Villeurbanne, France
- Ecologie Microbienne, Université de Lyon, Université Lyon 1, 69622, Villeurbanne, France
| | - Frédérique Bonnemoy
- CNRS UMR 6023 LMGE, Campus de Cézeaux, 63171, Aubière cedex, France
- Clermont Université, Université Blaise Pascal, 63000, Clermont-Ferrand, France
| | - David Bru
- Agroécologie, INRA, UMR 1347, 17 rue Sully, BP 86510, 21065, Dijon cedex, France
| | - Isabelle Batisson
- CNRS UMR 6023 LMGE, Campus de Cézeaux, 63171, Aubière cedex, France
- Clermont Université, Université Blaise Pascal, 63000, Clermont-Ferrand, France
| | - Jacques Bohatier
- CNRS UMR 6023 LMGE, Campus de Cézeaux, 63171, Aubière cedex, France
- Clermont Université, Université Blaise Pascal, 63000, Clermont-Ferrand, France
| | - Laurent Philippot
- Agroécologie, INRA, UMR 1347, 17 rue Sully, BP 86510, 21065, Dijon cedex, France
| | - Clarisse Mallet
- CNRS UMR 6023 LMGE, Campus de Cézeaux, 63171, Aubière cedex, France
- Clermont Université, Université Blaise Pascal, 63000, Clermont-Ferrand, France
| |
Collapse
|
13
|
Rocaboy-Faquet E, Barthelmebs L, Calas-Blanchard C, Noguer T. A novel amperometric biosensor for ß-triketone herbicides based on hydroxyphenylpyruvate dioxygenase inhibition: A case study for sulcotrione. Talanta 2015; 146:510-6. [PMID: 26695298 DOI: 10.1016/j.talanta.2015.09.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/09/2015] [Accepted: 09/11/2015] [Indexed: 11/28/2022]
Abstract
An amperometric biosensor was designed for the determination of sulcotrione, a β-triketone herbicide, based on inhibition of hydroxyphenylpyruvate dioxygenase (HPPD), an enzyme allowing the oxidation of hydroxyphenylpyruvate (HPP) in homogentisic acid (HGA). HPPD was produced by cloning the hppd gene from Arabidopsis thaliana in E. coli, followed by overexpression and purification by nickel-histidine affinity. The electrochemical detection of HPPD activity was based on the electrochemical oxidation of HGA at +0.1 V vs. Ag/AgCl, using a poly(3,4-ethylenedioxythiophene) polystyrene sulfonate-modified screen-printed electrode. Assays were performed at 25°C in 0.1 M phosphate buffer pH 8 containing 0.1M KCl. The purified HPPD was shown to display a maximum velocity of 0.51 µM(HGA) min(-1), and an apparent K(M) of 22.6 µM for HPP. HPPD inhibition assays in presence of sulcotrione confirmed a competitive inhibition of HPPD, the calculated inhibition constant K(I) was 1.11.10(-8) M. The dynamic range for sulcotrione extended from 5.10(-10) M to 5.10(-6) M and the limit of detection (LOD), estimated as the concentration inducing 20% of inhibition, was 1.4.10(-10) M.
Collapse
Affiliation(s)
- Emilie Rocaboy-Faquet
- Laboratoire BAE, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan cedex 9, France
| | - Lise Barthelmebs
- Laboratoire BAE, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan cedex 9, France
| | - Carole Calas-Blanchard
- Laboratoire BAE, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan cedex 9, France
| | - Thierry Noguer
- Laboratoire BAE, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan cedex 9, France.
| |
Collapse
|
14
|
Joly P, Misson B, Perrière F, Bonnemoy F, Joly M, Donnadieu-Bernard F, Aguer JP, Bohatier J, Mallet C. Soil surface colonization by phototrophic indigenous organisms, in two contrasted soils treated by formulated maize herbicide mixtures. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:1648-1658. [PMID: 25129149 DOI: 10.1007/s10646-014-1304-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/06/2014] [Indexed: 06/03/2023]
Abstract
Soil phototrophic microorganisms, contributors to soil health and food webs, share their particular metabolism with plants. Current agricultural practices employ mixtures of pesticides to ensure the crops yields and can potentially impair these non-target organisms. However despite this environmental reality, studies dealing the susceptibility of phototrophic microorganisms to pesticide mixtures are scarce. We designed a 3 months microcosm study to assess the ecotoxicity of realistic herbicide mixtures of formulated S-metolachlor (Dual Gold Safeneur(®)), mesotrione (Callisto(®)) and nicosulfuron (Milagro(®)) on phototrophic communities of two soils (Limagne vertisol and Versailles luvisol). The soils presented different colonizing communities, with diatoms and chlorophyceae dominating communities in Limagne soil and cyanobacteria and bryophyta communities in Versailles soil. The results highlighted the strong impairment of Dual Gold Safeneur(®) treated microcosms on the biomass and the composition of both soil phototrophic communities, with no resilience after a delay of 3 months. This study also excluded any significant mixture effect on these organisms for Callisto(®) and Milagro(®) herbicides. We strongly recommend carrying on extensive soil studies on S-metolachlor and its commercial formulations, in order to reconsider its use from an ecotoxicological point of view.
Collapse
Affiliation(s)
- Pierre Joly
- Clermont Université, Université Blaise Pascal, LMGE, 63000, Clermont Ferrand, France,
| | | | | | | | | | | | | | | | | |
Collapse
|