1
|
Heinonen-Tanski H. Arithmetic vs. Weighted Means in Fish Fillets Mercury Analyses. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:758. [PMID: 38929004 PMCID: PMC11203440 DOI: 10.3390/ijerph21060758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Mercury (Hg) analyses in species of fish are performed for two reasons: (1) to safeguard human health; and (2) to assess environmental quality, since different environmental changes may increase the Hg concentrations in fish. These analyses are important since both natural and human activities can increase these Hg concentrations, which can vary extensively, depending on the species, age and catching location. Hg-contaminated fish or other marine foodstuffs can be only detected by chemical analysis. If the aim of Hg analysis is to protect the health of marine food consumers, researcher workers must consider the location where the fish were caught and interpret the results accordingly. Health and environmental officials must appreciate that in specific places, local people may have a daily diet consisting entirely of fish or other marine foods, and these individuals should not be exposed to high concentrations of Hg. Regional and national health and environmental officials should follow the recent guidance of international organizations when drawing their final conclusions about whether the products are safe or unsafe to eat. Correct statistical calculations are not always carried out; so, too high Hg amounts could be presented, and fish eaters could be protected. This work has been conducted to show the differences in Hg concentrations between weighted (weighted with fish weights) and arithmetic means. Thus, the mean that is only weighted also includes the Hg content in fishes; so, the exposure to Hg can be evaluated.
Collapse
Affiliation(s)
- Helvi Heinonen-Tanski
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
2
|
Lacombe RM, Martigny P, Pelletier D, Barst BD, Guillemette M, Amyot M, Elliott KH, Lavoie RA. Exploring the spatial variation of mercury in the Gulf of St. Lawrence using northern gannets as fish samplers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172152. [PMID: 38575012 DOI: 10.1016/j.scitotenv.2024.172152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/22/2024] [Accepted: 03/30/2024] [Indexed: 04/06/2024]
Abstract
Mercury (Hg) is a ubiquitous and pervasive environmental contaminant with detrimental effects on wildlife, which originates from both natural and anthropogenic sources. Its distribution within ecosystems is influenced by various biogeochemical processes, making it crucial to elucidate the factors driving this variability. To explore these factors, we employed an innovative method to use northern gannets (Morus bassanus) as biological samplers of regurgitated fish in the Gulf of St. Lawrence. We assessed fish total Hg (THg) concentrations in relation to their geographical catch location as well as to pertinent biotic and anthropogenic factors. In small fish species, trophic position, calculated from compound-specific stable nitrogen isotopes in amino acids, emerged as the most influential predictor of THg concentrations. For large fish species, THg concentrations were best explained by δ13C, indicating higher concentrations in inshore habitats. No anthropogenic factors, such as pollution, shipping traffic, or coastal development, were significantly related to THg concentrations in fish. Moreover, previously published THg data in mussels sampled nearby were positively linked with THg concentrations in gannet prey, suggesting consistent mercury distribution across trophic levels in the Gulf of St. Lawrence. Our findings point to habitat-dependent variability in THg concentrations across multiple trophic levels. Our study could have many potential uses in the future, including the identification of vulnerability hotspots for fish populations and their predators, or assessing risk factors for seabirds themselves by using biologically relevant prey.
Collapse
Affiliation(s)
- R M Lacombe
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Rd, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada.
| | - P Martigny
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, 300 allée des Ursulines, Rimouski, Québec G5L 3A1, Canada.
| | - D Pelletier
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, 300 allée des Ursulines, Rimouski, Québec G5L 3A1, Canada; Département de Biologie, Cégep de Rimouski, 60 rue de l'Évêché O, Rimouski, Québec G5L 4H6, Canada.
| | - B D Barst
- Water and Environmental Research Center, University of Alaska Fairbanks, 1764 Tanana Loop, Fairbanks, AK 99775-5910, USA.
| | - M Guillemette
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, 300 allée des Ursulines, Rimouski, Québec G5L 3A1, Canada.
| | - M Amyot
- Department of Biological Sciences, University of Montreal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2V 0B3, Canada.
| | - K H Elliott
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Rd, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada.
| | - R A Lavoie
- Science and Technology Branch, Environment and Climate Change Canada, 1550 Av. D'Estimauville, Québec G1J 0C3, Canada.
| |
Collapse
|
3
|
Amundsen PA, Henriksson M, Poste A, Prati S, Power M. Ecological Drivers of Mercury Bioaccumulation in Fish of a Subarctic Watercourse. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:873-887. [PMID: 36727562 DOI: 10.1002/etc.5580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/02/2022] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Mercury (Hg) is a serious concern for aquatic ecosystems because it may biomagnify to harmful concentrations within food webs and consequently end up in humans that eat fish. However, the trophic transfer of mercury through the aquatic food web may be impacted by several factors related to network complexity and the ecology of the species present. The present study addresses the interplay between trophic ecology and mercury contamination in the fish communities of two lakes in a pollution-impacted subarctic watercourse, exploring the role of both horizontal (feeding habitat) and vertical (trophic position) food web characteristics as drivers for the Hg contamination in fish. The lakes are located in the upper and lower parts of the watercourse, with the lower site located closer to, and downstream from, the main pollution source. The lakes have complex fish communities dominated by coregonids (polymorphic whitefish and invasive vendace) and several piscivorous species. Analyses of habitat use, stomach contents, and stable isotope signatures (δ15 N, δ13 C) revealed similar food web structures in the two lakes except for a few differences chiefly related to ecological effects of the invasive vendace. The piscivores had higher Hg concentrations than invertebrate-feeding fish. Concentrations increased with size and age for the piscivores and vendace, whereas habitat differences were of minor importance. Most fish species showed significant differences in Hg concentrations between the lakes, the highest values typically found in the downstream site where the biomagnification rate also was higher. Mercury levels in piscivorous fish included concentrations that exceed health authorization limits, with possible negative implications for fishing and human consumption. Our findings accentuate the importance of acquiring detailed knowledge of the drivers that can magnify Hg concentrations in fish and how these may vary within and among aquatic systems, to provide a scientific basis for adequate management strategies. Environ Toxicol Chem 2023;42:873-887. © 2023 SETAC.
Collapse
Affiliation(s)
- Per-Arne Amundsen
- Freshwater Ecology Group, Department of Arctic and Marine Biology, Faculty for Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - Matilda Henriksson
- Freshwater Ecology Group, Department of Arctic and Marine Biology, Faculty for Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - Amanda Poste
- Freshwater Ecology Group, Department of Arctic and Marine Biology, Faculty for Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
- The Norwegian Institute for Water Research, Framsenteret, Tromsø, Norway
| | - Sebastian Prati
- Freshwater Ecology Group, Department of Arctic and Marine Biology, Faculty for Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
- Department of Aquatic Ecology, University of Duisburg-Essen, Essen, Germany
| | - Michael Power
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
4
|
Chen B, Dong S. Mercury Contamination in Fish and Its Effects on the Health of Pregnant Women and Their Fetuses, and Guidance for Fish Consumption-A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15929. [PMID: 36498005 PMCID: PMC9739465 DOI: 10.3390/ijerph192315929] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
As a principal source of long-chain omega-3 fatty acids (3FAs), which provide vital health benefits, fish consumption also comes with the additional benefit of being rich in diverse nutrients (e.g., vitamins and selenium, high in proteins and low in saturated fats, etc.). The consumption of fish and other seafood products has been significantly promoted universally, given that fish is an important part of a healthy diet. However, many documents indicate that fish may also be a potential source of exposure to chemical pollutants, especially mercury (Hg) (one of the top ten chemicals or groups of chemicals of concern worldwide), and this is a grave concern for many consumers, especially pregnant women, as this could affect their fetuses. In this review, the definition of Hg and its forms and mode of entrance into fish are introduced in detail and, moreover, the bio-accumulation of Hg in fish and its toxicity and action mechanisms on fish and humans, especially considering the health of pregnant women and their fetuses after the daily intake of fish, are also reviewed. Finally, some feasible and constructive suggestions and guidelines are recommended for the specific group of pregnant women for the consumption of balanced and appropriate fish diets in a rational manner.
Collapse
Affiliation(s)
- Bojian Chen
- Food Science and Engineering, Haide College, Ocean University of China, Qingdao 266100, China
| | - Shiyuan Dong
- College of Food Science and Technology, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
5
|
Kalisinska E, Lanocha-Arendarczyk N, Podlasinska J. Current and historical nephric and hepatic mercury concentrations in terrestrial mammals in Poland and other European countries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145808. [PMID: 33621879 DOI: 10.1016/j.scitotenv.2021.145808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/06/2021] [Accepted: 02/07/2021] [Indexed: 06/12/2023]
Abstract
The long-term anthropogenic release of mercury (Hg) into the environment has led to contamination of the biosphere, with all forms of Hg showing toxic effects and the ability to accumulate in organisms. Since the 1970s, efforts have been made in Western Europe to reduce Hg emissions and for the economic use of Hg, leading to a reduction in Hg exposure to humans and entire ecosystems. The purpose of this research was to present the total mercury (THg) burden in three mustelids (the piscivorous Eurasian otter and American mink, and the invertebrativorous European badger) inhabiting north-western Poland (mostly floodplains) and other European countries (literature data). Moreover, we wanted to investigate whether reductions in the environmental Hg burden in Europe have resulted in reductions in liver and kidney levels in wild terrestrial mammals (Eurasian otter, wild boar, red deer, roe deer, cervids, leporids, rodents, and ecotrophic groups: piscivorous mustelids, non-mustelids whose diets include aquatic prey, canids and other carnivores, omnivores, herbivores), between samples collected before and after 2000. We revealed significantly higher nephric THg levels in roadkilled than in trapped American minks. As roadkilled piscivorous mustelids from the same floodplain had similar hepatic and nephric THg concentrations, we suggest that the European research on Hg ecotoxicology should more often use alien American mink instead of the protected Eurasian otter. Badgers inhabiting Polish and other European floodplains bioaccumulated higher amounts of THg than those from other areas, and as such, may be recommended as bioindicator of mercury soil contamination. Our analysis of abundant data on mammalian hepatic and nephric THg concentrations (excluding non-piscivores mustelids) showed that in 12 of 21 cases, Hg concentrations had dropped significantly since 2000. This data signals a reduction in Hg contamination in terrestrial mammals, such as the Eurasian otter, and may be reason for cautious optimism.
Collapse
Affiliation(s)
- Elżbieta Kalisinska
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland.
| | - Natalia Lanocha-Arendarczyk
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Joanna Podlasinska
- Department of Environmental Management, West Pomeranian University of Technology, Szczecin, Poland
| |
Collapse
|
6
|
Zhou Q, Zhou J, Cao H, Xu X. Effects of CO and CO 2 on the Removal of Elemental Mercury over Carbonaceous Surfaces. ACS OMEGA 2021; 6:2916-2924. [PMID: 33553910 PMCID: PMC7860079 DOI: 10.1021/acsomega.0c05260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/28/2020] [Indexed: 05/24/2023]
Abstract
Coal gasification is a popular method for the optimization of coal utilization and the reduction of environmental pollutant emissions. However, the reductive atmosphere of its products is disadvantageous for removing elemental mercury (Hg0). Activated cokes (AC) was employed in this work for mercury capture in a reducing atmosphere. The high-temperature heating decreases the mercury-removal capability of carbon sorbents because the carbonaceous surface is becoming oxygen-depleted and micropore-decreased after the heating treatment. The mechanism of mercury adsorption in pure nitrogen follows the Mars-Maessen mechanism over the carbon sorbents. To identify the effects of carbon monoxide (CO) and carbon dioxide (CO2) on Hg0 removal, the Hg0-adsorption and thermal desorption experiments were carried in a fixed-bed reaction system. CO inhibits both the chemisorption and physisorption of Hg0. CO2 competes for the active sites, lactone groups and hydroxyl groups, and occupies the micropores, which is beneficial to adsorb Hg0 physically. When CO and CO2 coexisted, the removal efficiencies show steadier than those in monocomponent gas (only CO or CO2). CO2 can resist the negative effect of CO on Hg0 removal, to some extent, because CO2 can inhibit the oxidation and disproportionation of CO. This experimental study provides practical guidance for the development of mercury-removal technology with carbon materials in the coal gasification plant.
Collapse
|