1
|
Kaur G, Ahuja A, Sen A, Singhal P, Verghese R. An extremely rare case of Rogers syndrome or thiamine responsive megaloblastic anemia. INDIAN J PATHOL MICR 2025; 68:158-160. [PMID: 38391342 DOI: 10.4103/ijpm.ijpm_287_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/27/2023] [Indexed: 02/24/2024] Open
Abstract
ABSTRACT Rogers syndrome is an extremely rare autosomal recessive syndrome of which only 100 cases are known worldwide. It is characterized by thiamine-responsive megaloblastic anaemia, diabetes mellitus and sensorineural deafness. It results from the deficiency of a thiamine transporter protein. We herein report a 16-year-old Indian male referred to our centre with complaints of refractory anaemia, deafness, diabetes pulmonary arterial hypertension and tricuspid regurgitation. Based on the clinical features and haematologic picture and dramatic response of anaemia to thiamine therapy the possibility of a TRMA was considered. Sequencing analysis for TRMA revealed a homozygous c.242dup (p.Tyr81Ter) mutation of the SLC19A2 gene.
Collapse
Affiliation(s)
- Gurpreet Kaur
- Department of Pathology, Armed Forces Medical College, Pune, Maharashtra, India
| | - Ankur Ahuja
- Department of Pathology, Armed Forces Medical College, Pune, Maharashtra, India
| | - Arijit Sen
- Department of Pathology, Armed Forces Medical College, Pune, Maharashtra, India
| | - Paresh Singhal
- Department of Pathology, Armed Forces Medical College, Pune, Maharashtra, India
| | - Renjith Verghese
- Department of Medicine, Command Hospital Southern Command, Pune, Maharashtra, India
| |
Collapse
|
2
|
Klötzer C, Schnabel F, Kubasch AS, Jentzsch M, Franke GN, Uhlig J, Faust H, Jauss RT, Oppermann H, Popp D, Metzeler KH, Lemke JR, Vučinić V, Platzbecker U. Thiamine-Responsive Megaloblastic Anemia Syndrome Mimicking Myelodysplastic Neoplasm. Acta Haematol 2024:1-5. [PMID: 39467528 DOI: 10.1159/000542286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/24/2024] [Indexed: 10/30/2024]
Abstract
INTRODUCTION Thiamine-responsive megaloblastic anemia syndrome (TRMA) is a rare autosomal recessive disease with a homozygous or compound-heterozygous mutation in the SLC19A2 gene characterized by megaloblastic anemia, diabetes mellitus (DM), and sensorineural hearing loss with onset in childhood. Folic acid and vitamin B12 in serum are normal with dysplastic erythropoiesis in the bone marrow often mimicking myelodysplastic neoplasms (MDS) as a potential differential diagnosis. Thiamine substitution leads to normalization of anemia, without effects on hearing loss or DM. CASE PRESENTATION We report about a 38-year-old male patient, presented with a 12-year history of anemia, insulin dependent DM, optic neuropathy, and a cataract since early childhood. The laboratory showed megaloblastic anemia. Other values were normal. The bone marrow smear showed dysplastic erythropoiesis with megaloblastic changes, and normal findings in cytogenetic and molecular genetic examinations. Next-generation sequencing-based diagnostics revealed a heterozygous missense variant in the SLC19A2 gene on the maternal allele and a 3.4 Mb inversion in the chromosomal region 1q24.2 with breaking points in FAM78B and SLC19A2 on the paternal allele. Treatment with oral thiamine 100 mg daily was initiated, and 12 weeks later hemoglobin levels and bone marrow morphology had normalized. CONCLUSION Late-onset TRMA should be considered in adult patients with indicative comorbidities and a typical phenotype, which may mimic features of MDS.
Collapse
Affiliation(s)
- Christina Klötzer
- University Leipzig Medical Center, Department of Hematology, Cellular Therapy, Hemostaseology and Infectious Diseases, Leipzig, Germany
- Comprehensive Cancer Center Central Germany, Leipzig, Germany
| | - Franziska Schnabel
- University Leipzig Medical Center, Institute of Human Genetics, Leipzig, Germany
| | - Anne-Sophie Kubasch
- University Leipzig Medical Center, Department of Hematology, Cellular Therapy, Hemostaseology and Infectious Diseases, Leipzig, Germany
- Comprehensive Cancer Center Central Germany, Leipzig, Germany
| | - Madlen Jentzsch
- University Leipzig Medical Center, Department of Hematology, Cellular Therapy, Hemostaseology and Infectious Diseases, Leipzig, Germany
- Comprehensive Cancer Center Central Germany, Leipzig, Germany
| | - Georg-Nikolaus Franke
- University Leipzig Medical Center, Department of Hematology, Cellular Therapy, Hemostaseology and Infectious Diseases, Leipzig, Germany
- Comprehensive Cancer Center Central Germany, Leipzig, Germany
| | - Jens Uhlig
- Hematological Praxis Naunhof, Naunhof, Germany
| | - Helene Faust
- University Leipzig Medical Center, Institute of Human Genetics, Leipzig, Germany
| | - Robin-Tobias Jauss
- University Leipzig Medical Center, Institute of Human Genetics, Leipzig, Germany
| | - Henry Oppermann
- University Leipzig Medical Center, Institute of Human Genetics, Leipzig, Germany
| | - Denny Popp
- University Leipzig Medical Center, Institute of Human Genetics, Leipzig, Germany
| | - Klaus H Metzeler
- University Leipzig Medical Center, Department of Hematology, Cellular Therapy, Hemostaseology and Infectious Diseases, Leipzig, Germany
- Comprehensive Cancer Center Central Germany, Leipzig, Germany
| | - Johannes R Lemke
- University Leipzig Medical Center, Institute of Human Genetics, Leipzig, Germany
- University Leipzig Medical Center, Center for Rare Diseases, Leipzig, Germany
| | - Vladan Vučinić
- University Leipzig Medical Center, Department of Hematology, Cellular Therapy, Hemostaseology and Infectious Diseases, Leipzig, Germany
- Comprehensive Cancer Center Central Germany, Leipzig, Germany
| | - Uwe Platzbecker
- University Leipzig Medical Center, Department of Hematology, Cellular Therapy, Hemostaseology and Infectious Diseases, Leipzig, Germany
- Comprehensive Cancer Center Central Germany, Leipzig, Germany
| |
Collapse
|
3
|
Keh RYS, du Plessis D, Potter GM, Kobylecki C, Cooper P. Fatal cerebral air embolism from atrio-oesophageal fistula following cardiac ablation. Pract Neurol 2024; 24:37-40. [PMID: 37827844 DOI: 10.1136/pn-2023-003915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2023] [Indexed: 10/14/2023]
Abstract
A young woman with Rogers syndrome (thiamine-responsive megaloblastic anaemia, diabetes mellitus and sensorineural deafness) presented with headache, recurrent supraventricular tachycardia and features of an upper gastrointestinal bleed, 1 month after radiofrequency cardiac ablation for supraventricular tachycardia. She deteriorated rapidly after endoscopy and subsequently died. Brain imaging during the acute deterioration showed diffuse intracranial air embolism and hypoxic-ischaemic injury. Postmortem examination showed an atrio-oesophageal fistula, a rare complication of cardiac ablation. Clinicians should suspect this condition in patients with acute neurological deterioration after cardiac ablation who have diffuse air embolism on imaging.
Collapse
Affiliation(s)
- Ryan Yann Shern Keh
- Manchester Centre for Clinical Neurosciences, Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Manchester, UK
- MRC Centre for Neuromuscular Diseases, National Hospital of Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, UK
| | - Daniel du Plessis
- Department of Neuropathology, Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Manchester, UK
| | - Gillian M Potter
- Department of Neuroradiology, Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Manchester, UK
- University of Manchester, Manchester, UK
| | - Christopher Kobylecki
- Manchester Centre for Clinical Neurosciences, Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Manchester, UK
- University of Manchester, Manchester, UK
| | - Paul Cooper
- Manchester Centre for Clinical Neurosciences, Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Manchester, UK
- University of Manchester, Manchester, UK
| |
Collapse
|
4
|
Sedaghat-Hamedani F, Andelfinger GU, Meder B. Human Genetics of Ebstein Anomaly. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:909-914. [PMID: 38884759 DOI: 10.1007/978-3-031-44087-8_57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Ebstein anomaly (EA) is a rare, congenital cardiac defect of the tricuspid valve with a birth prevalence between 0.5 and 1 in 20,000 [1]. It is characterized by displacement of the tricuspid valve toward the apex of the right ventricle (RV) and "atrialization" of the RV (Fig. 57.1) [2]. EA accounts for about 0.5% of all congenital heart diseases (CHD) [2]. Depending on severity of the defect and due to heterogeneity of the disease, patient's presentation varies from severe heart failure symptoms and arrhythmia in neonatal life to asymptomatic adults.
Collapse
Affiliation(s)
- Farbod Sedaghat-Hamedani
- Institute for Cardiomyopathies Heidelberg (ICH), University Hospital Heidelberg, Heidelberg, Germany
| | | | - Benjamin Meder
- Institute for Cardiomyopathies Heidelberg, Universitätsklinikum Heidelberg, Innere Medizin III - Kardiologie, Angiologie und Pneumologie, Heidelberg, Germany.
| |
Collapse
|
5
|
Di Candia F, Di Iorio V, Tinto N, Bonfanti R, Iovino C, Rosanio FM, Fedi L, Iafusco F, Arrigoni F, Malesci R, Simonelli F, Rigamonti A, Franzese A, Mozzillo E. An Italian case series' description of thiamine responsive megaloblastic anemia syndrome: importance of early diagnosis and treatment. Ital J Pediatr 2023; 49:158. [PMID: 38037112 PMCID: PMC10691017 DOI: 10.1186/s13052-023-01553-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/12/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Individuals with thiamine-responsive megaloblastic anemia (TRMA) mainly manifest macrocytic anemia, sensorineural deafness, ocular complications, and nonautoimmune diabetes. Macrocytic anemia and diabetes may be responsive to high-dosage thiamine treatment, in contrast to sensorineural deafness. Little is known about the efficacy of thiamine treatment on ocular manifestations. CASES PRESENTATION Our objective is to report data from four Italian TRMA patients: in Cases 1, 2 and 3, the diagnosis of TRMA was made at 9, 14 and 27 months. In 3 out of 4 subjects, thiamine therapy allowed both normalization of hyperglycemia, with consequent insulin suspension, and macrocytic anemia. In all Cases, thiamine therapy did not resolve the clinical manifestation of deafness. In Cases 2 and 3, follow-up showed no blindness, unlike Case 4, in which treatment was started for megaloblastic anemia at age 7 but was increased to high doses only at age 25, when the genetic diagnosis of TRMA was performed. CONCLUSIONS Early institution of high-dose thiamine supplementation seems to prevent the development of retinal changes and optic atrophy in TRMA patients. The spectrum of clinical manifestations is broad, and it is important to describe known Cases to gain a better understanding of this rare disease.
Collapse
Affiliation(s)
- Francesca Di Candia
- Department of Translational Medical Science, Section of Pediatrics, Regional Centre of Pediatric Diabetes, Federico II University of Naples, Via S. Pansini 5, Naples, 80131, Italy
| | - Valentina Di Iorio
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, Eye Clinic, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Nadia Tinto
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
- CEINGE Advanced Biotechnology, Naples, Italy
| | - Riccardo Bonfanti
- Department of Pediatrics, Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
- Vita Salute San Raffaele University, Milan, Italy
| | - Claudio Iovino
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, Eye Clinic, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Francesco Maria Rosanio
- Department of Translational Medical Science, Section of Pediatrics, Regional Centre of Pediatric Diabetes, Federico II University of Naples, Via S. Pansini 5, Naples, 80131, Italy
| | - Ludovica Fedi
- Department of Translational Medical Science, Section of Pediatrics, Regional Centre of Pediatric Diabetes, Federico II University of Naples, Via S. Pansini 5, Naples, 80131, Italy
| | - Fernanda Iafusco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Francesca Arrigoni
- Department of Pediatrics, Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Rita Malesci
- Unit of Audiology, Department of Neurosciences, Reproductives and Odontostomatologic Sciences, University of Naples ''Federico II'', Naples, Italy
| | - Francesca Simonelli
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, Eye Clinic, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Andrea Rigamonti
- Department of Pediatrics, Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Adriana Franzese
- Department of Translational Medical Science, Section of Pediatrics, Regional Centre of Pediatric Diabetes, Federico II University of Naples, Via S. Pansini 5, Naples, 80131, Italy
| | - Enza Mozzillo
- Department of Translational Medical Science, Section of Pediatrics, Regional Centre of Pediatric Diabetes, Federico II University of Naples, Via S. Pansini 5, Naples, 80131, Italy.
| |
Collapse
|
6
|
Conte F, Sam JE, Lefeber DJ, Passier R. Metabolic Cardiomyopathies and Cardiac Defects in Inherited Disorders of Carbohydrate Metabolism: A Systematic Review. Int J Mol Sci 2023; 24:ijms24108632. [PMID: 37239976 DOI: 10.3390/ijms24108632] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Heart failure (HF) is a progressive chronic disease that remains a primary cause of death worldwide, affecting over 64 million patients. HF can be caused by cardiomyopathies and congenital cardiac defects with monogenic etiology. The number of genes and monogenic disorders linked to development of cardiac defects is constantly growing and includes inherited metabolic disorders (IMDs). Several IMDs affecting various metabolic pathways have been reported presenting cardiomyopathies and cardiac defects. Considering the pivotal role of sugar metabolism in cardiac tissue, including energy production, nucleic acid synthesis and glycosylation, it is not surprising that an increasing number of IMDs linked to carbohydrate metabolism are described with cardiac manifestations. In this systematic review, we offer a comprehensive overview of IMDs linked to carbohydrate metabolism presenting that present with cardiomyopathies, arrhythmogenic disorders and/or structural cardiac defects. We identified 58 IMDs presenting with cardiac complications: 3 defects of sugar/sugar-linked transporters (GLUT3, GLUT10, THTR1); 2 disorders of the pentose phosphate pathway (G6PDH, TALDO); 9 diseases of glycogen metabolism (GAA, GBE1, GDE, GYG1, GYS1, LAMP2, RBCK1, PRKAG2, G6PT1); 29 congenital disorders of glycosylation (ALG3, ALG6, ALG9, ALG12, ATP6V1A, ATP6V1E1, B3GALTL, B3GAT3, COG1, COG7, DOLK, DPM3, FKRP, FKTN, GMPPB, MPDU1, NPL, PGM1, PIGA, PIGL, PIGN, PIGO, PIGT, PIGV, PMM2, POMT1, POMT2, SRD5A3, XYLT2); 15 carbohydrate-linked lysosomal storage diseases (CTSA, GBA1, GLA, GLB1, HEXB, IDUA, IDS, SGSH, NAGLU, HGSNAT, GNS, GALNS, ARSB, GUSB, ARSK). With this systematic review we aim to raise awareness about the cardiac presentations in carbohydrate-linked IMDs and draw attention to carbohydrate-linked pathogenic mechanisms that may underlie cardiac complications.
Collapse
Affiliation(s)
- Federica Conte
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, 7522 NH Enschede, The Netherlands
| | - Juda-El Sam
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Dirk J Lefeber
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Robert Passier
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, 7522 NH Enschede, The Netherlands
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
7
|
Kareem O, Nisar S, Tanvir M, Muzaffer U, Bader GN. Thiamine deficiency in pregnancy and lactation: implications and present perspectives. Front Nutr 2023; 10:1080611. [PMID: 37153911 PMCID: PMC10158844 DOI: 10.3389/fnut.2023.1080611] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/03/2023] [Indexed: 05/10/2023] Open
Abstract
During pregnancy, many physiologic changes occur in order to accommodate fetal growth. These changes require an increase in many of the nutritional needs to prevent long-term consequences for both mother and the offspring. One of the main vitamins that are needed throughout the pregnancy is thiamine (vitamin B1) which is a water-soluble vitamin that plays an important role in many metabolic and physiologic processes in the human body. Thiamine deficiency during pregnancy can cause can have many cardiac, neurologic, and psychological effects on the mother. It can also dispose the fetus to gastrointestinal, pulmonological, cardiac, and neurologic conditions. This paper reviews the recently published literature about thiamine and its physiologic roles, thiamine deficiency in pregnancy, its prevalence, its impact on infants and subsequent consequences in them. This review also highlights the knowledge gaps within these topics.
Collapse
Affiliation(s)
- Ozaifa Kareem
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, India
- *Correspondence: Ozaifa Kareem, ,
| | - Sobia Nisar
- Department of Medicine, Government Medical College, Srinagar, India
| | - Masood Tanvir
- Department of Medicine, Government Medical College, Srinagar, India
| | - Umar Muzaffer
- Department of Medicine, Government Medical College, Srinagar, India
| | - G. N. Bader
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, India
- G. N. Bader,
| |
Collapse
|
8
|
Frameshift variance in SLC19A2 gene causing thiamine responsive megaloblastic anemia (TRMA): a case report from Pakistan. Int J Diabetes Dev Ctries 2020. [DOI: 10.1007/s13410-020-00797-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
9
|
Dalwadi P, Joshi AS, Thakur DS, Bhagwat NM. Neonatal diabetes mellitus: remission induced by novel therapy. BMJ Case Rep 2019; 12:12/6/e228806. [PMID: 31243025 DOI: 10.1136/bcr-2018-228806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A female child with deafness was diagnosed to have neonatal diabetes mellitus at the age of 6 months, on routine evaluation prior to cochlear implant surgery. She presented to us at 11 months of age with diabetic ketoacidosis due to an intercurrent febrile illness. Her haematological parameters showed megaloblastic anaemia and thrombocytopenia. Therefore a possibility of Thiamine Responsive Megaloblastic Anaemia (TRMA) syndrome was considered. She was empirically treated with parenteral thiamine hydrochloride (Hcl). Subsequently, due to the unavailability of pharmacological preparation of oral thiamine Hcl in a recommended dose she was treated with benfotiamine. She had a sustained improvement in all her haematological parameters on oral benfotiamine. The insulin requirement progressively reduced and she is currently in remission for last 2 years. The genetic analysis confirmed the diagnosis of TRMA syndrome. Thus benfotiamine can be considered a new treatment option in management of TRMA syndrome.
Collapse
Affiliation(s)
- Pradip Dalwadi
- Endocrinology, Topiwala National Medical College and BYL Nair Charitable Hospital, Mumbai, Maharashtra, India
| | - Ameya S Joshi
- Endocrinology, Topiwala National Medical College and BYL Nair Charitable Hospital, Mumbai, Maharashtra, India
| | - Darshana Sudip Thakur
- Endocrinology, Topiwala National Medical College and BYL Nair Charitable Hospital, Mumbai, Maharashtra, India
| | - Nikhil M Bhagwat
- Endocrinology, Topiwala National Medical College and BYL Nair Charitable Hospital, Mumbai, Maharashtra, India
| |
Collapse
|
10
|
Tinsa F, Hechmi M, Hadj I, Khalsi F, Chargui M, Kefi R, Azouz H, Boussetta K, Abdelhak S. Thiamine responsive megaloblastic anemia mimicking mitochondrial disorders. Rev Neurol (Paris) 2019; 175:324-327. [DOI: 10.1016/j.neurol.2018.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 06/26/2018] [Accepted: 07/03/2018] [Indexed: 01/19/2023]
|
11
|
Jungtrakoon P, Shirakawa J, Buranasupkajorn P, Gupta MK, De Jesus DF, Pezzolesi MG, Panya A, Hastings T, Chanprasert C, Mendonca C, Kulkarni RN, Doria A. Loss-of-Function Mutation in Thiamine Transporter 1 in a Family With Autosomal Dominant Diabetes. Diabetes 2019; 68:1084-1093. [PMID: 30833467 PMCID: PMC6477897 DOI: 10.2337/db17-0821] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 02/23/2019] [Indexed: 01/19/2023]
Abstract
Solute Carrier Family 19 Member 2 (SLC19A2) encodes thiamine transporter 1 (THTR1), which facilitates thiamine transport across the cell membrane. SLC19A2 homozygous mutations have been described as a cause of thiamine-responsive megaloblastic anemia (TRMA), an autosomal recessive syndrome characterized by megaloblastic anemia, diabetes, and sensorineural deafness. Here we describe a loss-of-function SLC19A2 mutation (c.A1063C: p.Lys355Gln) in a family with early-onset diabetes and mild TRMA traits transmitted in an autosomal dominant fashion. We show that SLC19A2-deficient β-cells are characterized by impaired thiamine uptake, which is not rescued by overexpression of the p.Lys355Gln mutant protein. We further demonstrate that SLC19A2 deficit causes impaired insulin secretion in conjunction with mitochondrial dysfunction, loss of protection against oxidative stress, and cell cycle arrest. These findings link SLC19A2 mutations to autosomal dominant diabetes and suggest a role of SLC19A2 in β-cell function and survival.
Collapse
Affiliation(s)
- Prapaporn Jungtrakoon
- Department of Medicine, Harvard Medical School, Boston, MA
- Section on Genetics and Epidemiology, Joslin Diabetes Center, Boston, MA
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA
| | - Jun Shirakawa
- Department of Medicine, Harvard Medical School, Boston, MA
- Division of Molecular Medicine, Research Department, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Patinut Buranasupkajorn
- Department of Medicine, Harvard Medical School, Boston, MA
- Section on Genetics and Epidemiology, Joslin Diabetes Center, Boston, MA
- Division of Hospital and Ambulatory Medicine, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Manoj K Gupta
- Department of Medicine, Harvard Medical School, Boston, MA
- Division of Molecular Medicine, Research Department, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Dario F De Jesus
- Department of Medicine, Harvard Medical School, Boston, MA
- Division of Molecular Medicine, Research Department, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Marcus G Pezzolesi
- Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, UT
| | - Aussara Panya
- Department of Medicine, Harvard Medical School, Boston, MA
- Section on Genetics and Epidemiology, Joslin Diabetes Center, Boston, MA
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA
| | - Timothy Hastings
- Section on Genetics and Epidemiology, Joslin Diabetes Center, Boston, MA
| | - Chutima Chanprasert
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA
| | - Christine Mendonca
- Section on Genetics and Epidemiology, Joslin Diabetes Center, Boston, MA
| | - Rohit N Kulkarni
- Department of Medicine, Harvard Medical School, Boston, MA
- Division of Molecular Medicine, Research Department, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Alessandro Doria
- Department of Medicine, Harvard Medical School, Boston, MA
- Section on Genetics and Epidemiology, Joslin Diabetes Center, Boston, MA
| |
Collapse
|
12
|
Dhir S, Tarasenko M, Napoli E, Giulivi C. Neurological, Psychiatric, and Biochemical Aspects of Thiamine Deficiency in Children and Adults. Front Psychiatry 2019; 10:207. [PMID: 31019473 PMCID: PMC6459027 DOI: 10.3389/fpsyt.2019.00207] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/22/2019] [Indexed: 01/19/2023] Open
Abstract
Thiamine (vitamin B1) is an essential nutrient that serves as a cofactor for a number of enzymes, mostly with mitochondrial localization. Some thiamine-dependent enzymes are involved in energy metabolism and biosynthesis of nucleic acids whereas others are part of the antioxidant machinery. The brain is highly vulnerable to thiamine deficiency due to its heavy reliance on mitochondrial ATP production. This is more evident during rapid growth (i.e., perinatal periods and children) in which thiamine deficiency is commonly associated with either malnutrition or genetic defects. Thiamine deficiency contributes to a number of conditions spanning from mild neurological and psychiatric symptoms (confusion, reduced memory, and sleep disturbances) to severe encephalopathy, ataxia, congestive heart failure, muscle atrophy, and even death. This review discusses the current knowledge on thiamine deficiency and associated morbidity of neurological and psychiatric disorders, with special emphasis on the pediatric population, as well as the putative beneficial effect of thiamine supplementation in autism spectrum disorder (ASD) and other neurological conditions.
Collapse
Affiliation(s)
- Shibani Dhir
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Maya Tarasenko
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Eleonora Napoli
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, Davis, CA, United States
| |
Collapse
|
13
|
Lu H, Lu H, Vaucher J, Tran C, Vollenweider P, Castioni J. [Thiamine-responsive megaloblastic anemia or Rogers syndrome: A literature review]. Rev Med Interne 2018; 40:20-27. [PMID: 30031565 DOI: 10.1016/j.revmed.2018.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/28/2018] [Accepted: 06/17/2018] [Indexed: 01/30/2023]
Abstract
Thiamine-responsive megaloblastic anemia (TRMA), also known as Rogers syndrome, is a rare autosomal recessive disease characterized by three main components: megaloblastic anemia, diabetes mellitus and sensorineural deafness. Those features occur in infancy but may arise during adolescence. Diagnosis relies on uncovering genetic variations (alleles) in the SLC19A2 gene, encoding for a high affinity thiamine transporter. This transporter is essentially present in hematopoietic stem cells, pancreatic beta cells and inner ear cells, explaining the clinical manifestations of the disease. Based on a multidisciplinary approach, treatment resides on lifelong thiamine oral supplementation at pharmacological doses, which reverses anemia and may delay development of diabetes. However, thiamine supplementation does not alleviate already existing hearing defects.
Collapse
Affiliation(s)
- H Lu
- Service de médecine interne, centre hospitalier universitaire vaudois (CHUV), rue du Bugnon, 46, 1011 Lausanne, Suisse.
| | - H Lu
- Service des urgences adultes, centre hospitalier universitaire Antoine-Béclère, Assistance publique-Hôpitaux de Paris (AP-HP), 157, rue de la Porte de Trivaux, 92140 Clamart, France
| | - J Vaucher
- Service de médecine interne, centre hospitalier universitaire vaudois (CHUV), rue du Bugnon, 46, 1011 Lausanne, Suisse
| | - C Tran
- Service de médecine génétique, centre hospitalier universitaire vaudois (CHUV), rue du Bugnon, 46, 1011 Lausanne, Suisse
| | - P Vollenweider
- Service de médecine interne, centre hospitalier universitaire vaudois (CHUV), rue du Bugnon, 46, 1011 Lausanne, Suisse
| | - J Castioni
- Service de médecine interne, centre hospitalier universitaire vaudois (CHUV), rue du Bugnon, 46, 1011 Lausanne, Suisse
| |
Collapse
|
14
|
Sun C, Pei Z, Zhang M, Sun B, Yang L, Zhao Z, Cheng R, Luo F. Recovered insulin production after thiamine administration in permanent neonatal diabetes mellitus with a novel solute carrier family 19 member 2 (SLC19A2) mutation. J Diabetes 2018; 10:50-58. [PMID: 28371426 DOI: 10.1111/1753-0407.12556] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 03/08/2017] [Accepted: 03/23/2017] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Solute carrier family 19 member 2 (SLC19A2) gene deficiency is one of the causes of permanent neonatal diabetes mellitus (PNDM) and can be effectively managed by thiamine supplementation. Herein we report on a male patient with a novel SLC19A2 mutation and summarize the clinical characteristics of patients with SLC19A2 deficiency. METHODS The genetic diagnosis of the patient with PNDM was made by sequencing and quantitative polymerase chain reaction. The clinical characteristics of PNDM were summarized on the basis of a systematic review of the literature. RESULTS The patient with PNDM had c.848G>A (p.W283X) homozygous mutation in SLC19A2. His father had a wild-type SLC19A2 (c.848G) and his mother was c.848G/A heterozygous. The patient and his father both had a diploid genotype (c.848A/A and c.848G/G). After oral thiamine administration, the patient's fasting C-peptide levels increased gradually, and there was a marked decrease in insulin requirements. A search of the literature revealed that thiamine treatment was effective and improved diabetes in 63% of patients with SLC19A2 deficiency. CONCLUSIONS A novel SLC19A2 mutation (c.848G>A; p.W283X) was identified, which was most likely inherited as segmental uniparental isodisomy. Insulin insufficiency in PNDM caused by SLC19A2 deficiency can be corrected by thiamine supplementation. The differential diagnosis of SLC19A2 deficiency should be considered in children with PNDM accompanied by anemia or hearing defects to allow for early treatment.
Collapse
Affiliation(s)
- Chengjun Sun
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Zhou Pei
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Miaoying Zhang
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Bijun Sun
- The Molecular Genetic Diagnosis Center, Pediatrics Research Institute, Children's Hospital of Fudan University, Shanghai, China
| | - Lin Yang
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, Shanghai, China
- The Molecular Genetic Diagnosis Center, Pediatrics Research Institute, Children's Hospital of Fudan University, Shanghai, China
| | - Zhuhui Zhao
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Ruoqian Cheng
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Feihong Luo
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
15
|
Pomahačová R, Zamboryová J, Sýkora J, Paterová P, Fiklík K, Votava T, Černá Z, Jehlička P, Lád V, Šubrt I, Dort J, Dortová E. First 2 cases with thiamine-responsive megaloblastic anemia in the Czech Republic, a rare form of monogenic diabetes mellitus: a novel mutation in the thiamine transporter SLC19A2 gene-intron 1 mutation c.204+2T>G. Pediatr Diabetes 2017; 18:844-847. [PMID: 28004468 DOI: 10.1111/pedi.12479] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 08/10/2016] [Accepted: 11/01/2016] [Indexed: 01/19/2023] Open
Abstract
Thiamine-responsive megaloblastic anemia (TRMA) is a rare autosomal recessive disorder caused by mutations in the SLC19A2 gene. To date at least 43 mutations have been reported for the gene encoding a plasma membrane thiamine transporter protein (THTR-1). TRMA has been reported in less than 80 cases worldwide. Here, we illustrate 2 female patients with TRMA first diagnosed in the Czech Republic and in central Europe being confirmed by sequencing of the THTR-1 gene SLC19A2. Both subjects are compound heterozygotes with 3 different mutations in the SLC19A2 gene. In case 2, the SLC19A2 intron 1 mutation c.204+2T>G has never been reported before. TRMA subjects are at risk of diabetic ketoacidosis during intercurrent disease and arrythmias. Thiamine supplementation has prevented hematological disorders over a few years in both pediatric subjects, and improved glycaemic control of diabetes mellitus. Patient 1 was suffering from hearing loss and rod-cone dystrophy at the time of diagnosis, however, she was unresponsive to thiamine substitution. Our patient 2 developed the hearing loss despite the early thiamine substitution, however no visual disorder had developed. The novel mutation described here extends the list of SLC19A2 mutations causing TRMA.
Collapse
Affiliation(s)
- Renata Pomahačová
- Department of Paediatrics, Faculty of Medicine in Pilsen, Charles University, Prague, Czech Republic
| | - Jana Zamboryová
- Department of Paediatrics, Faculty of Medicine in Pilsen, Charles University, Prague, Czech Republic
| | - Josef Sýkora
- Department of Paediatrics, Faculty of Medicine in Pilsen, Charles University, Prague, Czech Republic
| | - Petra Paterová
- Department of Paediatrics, Faculty of Medicine in Pilsen, Charles University, Prague, Czech Republic
| | - Karel Fiklík
- Department of Paediatrics, Faculty of Medicine in Pilsen, Charles University, Prague, Czech Republic
| | - Tomáš Votava
- Department of Paediatrics, Faculty of Medicine in Pilsen, Charles University, Prague, Czech Republic
| | - Zdeňka Černá
- Department of Paediatrics, Faculty of Medicine in Pilsen, Charles University, Prague, Czech Republic
| | - Petr Jehlička
- Department of Paediatrics, Faculty of Medicine in Pilsen, Charles University, Prague, Czech Republic
| | - Václav Lád
- Department of Paediatrics, Faculty of Medicine in Pilsen, Charles University, Prague, Czech Republic
| | - Ivan Šubrt
- Institute of Medical Genetics, Faculty of Medicine in Pilsen, Charles University, Prague, Czech Republic
| | - Jiří Dort
- Department of Neonatology, Faculty of Medicine in Pilsen, Charles University, Prague, Czech Republic
| | - Eva Dortová
- Department of Neonatology, Faculty of Medicine in Pilsen, Charles University, Prague, Czech Republic
| |
Collapse
|
16
|
Brunel-Guitton C, Levtova A, Sasarman F. Mitochondrial Diseases and Cardiomyopathies. Can J Cardiol 2015; 31:1360-76. [DOI: 10.1016/j.cjca.2015.08.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/21/2015] [Accepted: 08/21/2015] [Indexed: 12/31/2022] Open
|
17
|
Thiamine-responsive megaloblastic anemia syndrome with Ebstein anomaly: a case report. Eur J Pediatr 2014; 173:1663-5. [PMID: 24357267 DOI: 10.1007/s00431-013-2237-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 12/04/2013] [Indexed: 01/19/2023]
Abstract
UNLABELLED Thiamine-responsive megaloblastic anemia (TRMA) or Roger syndrome is a rare autosomal recessive disorder characterized by the occurrence of multiple clinical manifestations including megaloblastic anemia, diabetes mellitus, and sensorineural deafness. A few patients have been also described with congenital cardiac malformations. The patients usually respond to treatment with pharmacological doses of thiamine. Mutations in the SLC19A2 gene, located at chromosome 1q24.2, are responsible for this syndrome. Here, we present two new Iranian TRMA patients who were homozygous for c.697C > T mutation in the SLC19A2 gene. On follow-up, one of the patients showed Ebstein anomaly. CONCLUSION The present study confirms the variability of the clinical manifestations caused by the same mutation within patients with TRMA syndrome. Therefore, follow-up of the affected children should be considered.
Collapse
|
18
|
Brown G. Defects of thiamine transport and metabolism. J Inherit Metab Dis 2014; 37:577-85. [PMID: 24789339 DOI: 10.1007/s10545-014-9712-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 03/25/2014] [Accepted: 03/31/2014] [Indexed: 01/19/2023]
Abstract
Thiamine, in the form of thiamine pyrophosphate, is a cofactor for a number of enzymes which play important roles in energy metabolism. Although dietary thiamine deficiency states have long been recognised, it is only relatively recently that inherited defects in thiamine uptake, activation and the attachment of the active cofactor to target enzymes have been described, and the underlying genetic defects identified. Thiamine is transported into cells by two carriers, THTR1 and THTR2, and deficiency of these results in thiamine-responsive megaloblastic anaemia and biotin-responsive basal ganglia disease respectively. Defective synthesis of thiamine pyrophosphate has been found in a small number of patients with episodic ataxia, delayed development and dystonia, while impaired transport of thiamine pyrophosphate into the mitochondrion is associated with Amish lethal microcephaly in most cases. In addition to defects in thiamine uptake and metabolism, patients with pyruvate dehydrogenase deficiency and maple syrup urine disease have been described who have a significant clinical and/or biochemical response to thiamine supplementation. In these patients, an intrinsic structural defect in the target enzymes reduces binding of the cofactor and this can be overcome at high concentrations. In most cases, the clinical and biochemical abnormalities in these conditions are relatively non-specific, and the range of recognised presentations is increasing rapidly at present as new patients are identified, often by genome sequencing. These conditions highlight the value of a trial of thiamine supplementation in patients whose clinical presentation falls within the spectrum of documented cases.
Collapse
Affiliation(s)
- Garry Brown
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK,
| |
Collapse
|
19
|
Beshlawi I, Al Zadjali S, Bashir W, Elshinawy M, Alrawas A, Wali Y. Thiamine responsive megaloblastic anemia: the puzzling phenotype. Pediatr Blood Cancer 2014; 61:528-31. [PMID: 24249281 DOI: 10.1002/pbc.24849] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/15/2013] [Indexed: 01/19/2023]
Abstract
BACKGROUND Thiamine responsive megaloblastic anemia (TRMA) is characterized by a triad of megaloblastic anemia, non-type 1 diabetes mellitus and sensorineural deafness. Other clinical findings have been described in few cases. The SLC19A2 gene on chromosome 1q 23.3 is implicated in all cases with TRMA. Our aim is to discuss the clinical manifestations of all Omani children diagnosed with TRMA and determine genotype-phenotype relationship. PROCEDURE Clinical and laboratory data of all patients diagnosed in Oman were retrospectively collected. Mutation analysis of affected families was conducted using two Microsatellite markers. Genotyping was performed with fluorescent-labeled PCR primers. To define the deletion breakpoint region, PCR reactions were carried out using different primer pairs located at the introns 3 and 3'-untranslated region with Expand Long Template PCR kit. RESULTS A total of six children have been diagnosed with this syndrome. They were five females and one male. They all presented with sensorineural deafness at birth while the age of anemia presentation ranged between 6 weeks to 19 months. They all belong to same family with complex interfamilial marriages and presented with the typical triad. Of interest is the very rare presentation of one patient with Uhl cardiac anomaly (total absence of right ventricular myocardium with apposition of endocardium and pericardium) that has never been described before in patients with TRMA. All patients have a novel large deletion of 5,224 bp involving exons 4, 5, and 6 of SLC19A2. CONCLUSIONS TRMA is a disease of expanding phenotypic spectrum with poor genotype-phenotype correlation.
Collapse
Affiliation(s)
- Ismail Beshlawi
- Department of Child Health, Sultan Qaboos University Hospital, Muscat, Oman
| | | | | | | | | | | |
Collapse
|
20
|
Ganie MA, Ali I, Ahangar AG, Wani MM, Ahmed S, Bhat MA, Seth S, Mudasir S. Thiamine responsive megaloblastic anemia syndrome associated with patent ductus arteriosus: First case report from Kashmir Valley of the Indian subcontinent. Indian J Endocrinol Metab 2012; 16:646-650. [PMID: 22837935 PMCID: PMC3401775 DOI: 10.4103/2230-8210.98033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Thiamine responsive megaloblastic anemia syndrome, an autosomal recessive inherited disorder characterized by a triad of anemia, diabetes mellitus and sensorineural deafness is caused by a deficiency of a thiamine transporter protein. The disorder is rare and has not been reported from our community which has high background of consanguinity. We report a six years old girl who presented with diabetes mellitus which remitted after thiamine replacement. The girl in addition had sensorineural deafness, reinopathy, atrial septal defect and megaloblastic anemia which responded to high doses of thymine. This is the first case reported from Kashmir valley and third from India. The presentation and management in such cases is discussed.
Collapse
Affiliation(s)
- Mohd Ashraf Ganie
- Department of Endocrinology, Sher-I-Kashmir Institute of Medical Sciences, Soura, Srinagar, Jammu and Kashmir, India
| | - Imran Ali
- Department of Endocrinology, Sher-I-Kashmir Institute of Medical Sciences, Soura, Srinagar, Jammu and Kashmir, India
| | - A. G. Ahangar
- Department of Cardiovascular Thoracic Surgery, Sher-I-Kashmir Institute of Medical Sciences, Soura, Srinagar, Jammu and Kashmir, India
| | - Mohd Maqbool Wani
- Department of Neurology, Sher-I-Kashmir Institute of Medical Sciences, Soura, Srinagar, Jammu and Kashmir, India
| | - Sanjeed Ahmed
- Department of Cardiovascular Thoracic Surgery, Sher-I-Kashmir Institute of Medical Sciences, Soura, Srinagar, Jammu and Kashmir, India
- Department of Radio Diagnosis, Sher-I-Kashmir Institute of Medical Sciences, Soura, Srinagar, Jammu and Kashmir, India
| | - Manzoor Ahmed Bhat
- Department of Endocrinology, Sher-I-Kashmir Institute of Medical Sciences, Soura, Srinagar, Jammu and Kashmir, India
| | - Sulaiman Seth
- Department of Endocrinology, Sher-I-Kashmir Institute of Medical Sciences, Soura, Srinagar, Jammu and Kashmir, India
| | - Syed Mudasir
- Department of Clinical Biochemistry, Sher-I-Kashmir Institute of Medical Sciences, Soura, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
21
|
Abstract
One of the earliest vitamins to be discovered and synthesized, thiamin was originally spelled with an "e". The terminal "e" was dropped when it was found that it was not an amine. It is still spelled with and without the "e" depending on the text. This chapter provides a brief historical review of the association of thiamin with the ancient scourge of beriberi. It emphasizes that beriberi is the model for high calorie malnutrition because of its occurrence in predominantly white rice consuming cultures. Some of the symptomatology of this ancient scourge is described, emphasizing the difference from that seen in starvation. High calorie malnutrition, due to excessive ingestion of simple carbohydrates, is widely encountered in the U.S.A. today. Thiamin deficiency is commonly associated with this, largely because of its cofactor status in the metabolism of glucose. The biochemistry of the three phosphorylated esters of thiamin and the transporters are discussed and the pathophysiology of thiamin deficiency reviewed. The role of thiamin, and particularly its synthetic derivatives as therapeutic agents, is not fully appreciated in Western civilization and a clinical section describes some of the unusual cases described in the scientific literature and some experienced by the author. The possible role of high calorie malnutrition and related thiamin deficiency in juvenile crime is hypothesized.
Collapse
|
22
|
Akın L, Kurtoğlu S, Kendirci M, Akın MA, Karakükçü M. Does early treatment prevent deafness in thiamine-responsive megaloblastic anaemia syndrome? J Clin Res Pediatr Endocrinol 2011; 3:36-9. [PMID: 21448333 PMCID: PMC3065315 DOI: 10.4274/jcrpe.v3i1.08] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 11/25/2010] [Indexed: 01/19/2023] Open
Abstract
Thiamine-responsive megaloblastic anaemia (TRMA; OMIM 249270) syndrome is an autosomal recessive disorder characterized by diabetes mellitus, megaloblastic anaemia, and sensorineural deafness. Progressive hearing loss is one of the cardinal findings of the syndrome and is known to be irreversible. Whether the deafness in TRMA syndrome can be prevented is not yet known. Here, we report a four-month-old female infant diagnosed with TRMA syndrome at an early age. There was no hearing loss at the time of diagnosis. The patient's initial auditory evoked brainstem response measurements were normal. Although she was given thiamine supplementation regularly following the diagnosis, the patient developed moderate sensorineural hearing loss at 20 months of age, indicating that early diagnosis and treatment with oral thiamine (100 mg/day) could not prevent deafness in TRMA syndrome. It would be premature to draw general conclusions from one case, but we believe that further patient-based observations can shed light on the pathophysiology of this rare syndrome as well as prediction of its prognosis.
Collapse
Affiliation(s)
- Leyla Akın
- Erciyes University, Faculty of Medicine Department of Pediatric Endocrinology, Kayseri, Turkey.
| | - Selim Kurtoğlu
- Department of Pediatrics, Erciyes University Faculty of Medicine, Kayseri, Turkey
| | - Mustafa Kendirci
- Department of Pediatrics, Erciyes University Faculty of Medicine, Kayseri, Turkey
| | - Mustafa Ali Akın
- Department of Pediatrics, Erciyes University Faculty of Medicine, Kayseri, Turkey
| | - Musa Karakükçü
- Department of Pediatrics, Erciyes University Faculty of Medicine, Kayseri, Turkey
| |
Collapse
|
23
|
Alcázar-Leyva S, Alvarado-Vásquez N. Could thiamine pyrophosphate be a regulator of the nitric oxide synthesis in the endothelial cell of diabetic patients? Med Hypotheses 2011; 76:629-31. [PMID: 21288652 DOI: 10.1016/j.mehy.2011.01.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 01/09/2011] [Indexed: 12/12/2022]
Abstract
Thiamine (Vitamin B1) is considered an essential micronutrient for humans; its deficient intake brings about the Wernicke-Korsakoff syndrome (encephalopathy and psychosis) or beriberi (a neurological and cardiovascular disease). Once thiamine enters the cells it is phosphorylated by thiamine pyrophosphokinase (TPPK), and converted into the coenzyme thiamine pyrophosphate (TPP), the active form of thiamine. TPP is a relevant cofactor for transketolase (TK), α-ketoglutarate dehydrogenase (αKDH), and pyruvate dehydrogenase (PDH), all these enzymes are fundamental for glucose metabolism. Diabetes mellitus (DM), however, is considered both a deficient thiamine and deficient energy state, as a consequence of the limited TPP synthesis. Recent evidences have shown that the administration of thiamine or lipid-soluble derivatives, such as benfotiamine (developed to improve the bioavailability of thiamine), has positive effects in the diabetic patient (after thiamine is transformed into TPP). For this reason, administration of supplements with TPP in the diabetic patients is recommended to avoid complications, like neuropathy and nephropathy. It has been suggested that these beneficial effects are a consequence of the activation of TK (pentose pathway) or the PDH complex in mitochondria. Nitric oxide (NO) is synthesized by the endothelial cell and is also an important element for the viability and functionality of this cell type. However, in the DM patient, a deficient synthesis of NO has been reported. It is relevant to mention that recent evidences have led to propose mitochondrial activity as an important regulator of nitric oxide synthesis (ON). We consider that the exogenous administration of TPP facilitates the utilization of this molecule, regulating some metabolic processes such as phosphorylation of thiamine by TPPK, energy consumption (ATP), as well as mitochondrial activity, inducing eventually NO synthesis. If this is confirmed, the administration of TPP to the diabetic patient would provide additional protection to endothelial cells, reducing the risk of vascular damage, to which the diabetic patient is highly susceptible.
Collapse
|
24
|
Crouzet-Ozenda Luci L, De Smet S, Monpoux F, Ferrero-Vacher C, Giuliano F, Sirvent N. Galactosémie congénitale associée à un syndrome de Rogers chez une petite fille de 10 mois. Arch Pediatr 2011; 18:54-7. [DOI: 10.1016/j.arcped.2010.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 03/30/2010] [Accepted: 10/08/2010] [Indexed: 01/19/2023]
|
25
|
Thiamine-responsive megaloblastic anemia syndrome. Int J Hematol 2010; 92:524-6. [DOI: 10.1007/s12185-010-0681-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 08/17/2010] [Accepted: 08/25/2010] [Indexed: 11/26/2022]
|
26
|
Neuwirth AK, Sahai I, Falcone JF, Fleming J, Bagg A, Borgna-Pignatti C, Casey R, Fabris L, Hexner E, Mathews L, Ribeiro ML, Wierenga KJ, Neufeld EJ. Thiamine-responsive megaloblastic anemia: identification of novel compound heterozygotes and mutation update. J Pediatr 2009; 155:888-892.e1. [PMID: 19643445 PMCID: PMC2858590 DOI: 10.1016/j.jpeds.2009.06.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 03/25/2009] [Accepted: 06/08/2009] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To determine causative mutations and clinical status of 7 previously unreported kindreds with TRMA syndrome, (thiamine-responsive megaloblastic anemia, online Mendelian inheritance in man, no. 249270), a recessive disorder of thiamine transporter Slc19A2. STUDY DESIGN Genomic DNA was purified from blood, and SLC19A2 mutations were characterized by sequencing polymerase chain reaction-amplified coding regions and intron-exon boundaries of all probands. Compound heterozygotes were further analyzed by sequencing parents, or cloning patient genomic DNA, to ascertain that mutations were in trans. RESULTS We detected 9 novel SLC19A2 mutations. Of these, 5 were missense, 3 were nonsense, and 1 was insertion. Five patients from 4 kindreds were compound heterozygotes, a finding not reported previously for this disorder, which has mostly been found in consanguineous kindreds. CONCLUSION SLC19A2 mutation sites in TRMA are heterogeneous; with no regional "hot spots." TRMA can be caused by heterozygous compound mutations; in these cases, the disorder is found in outbred populations. To the extent that heterozygous patients were ascertained at older ages, a plausible explanation is that if one or more allele(s) is not null, partial function might be preserved. Phenotypic variability may lead to underdiagnosis or diagnostic delay, as the average time between the onset of symptoms and diagnosis was 8 years in this cohort.
Collapse
Affiliation(s)
- Anke K. Neuwirth
- Division of Hematology and Oncology, Children’s Hospital Boston and Harvard Medical School, Boston, Massachusetts
| | - Inderneel Sahai
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jill F. Falcone
- Division of Hematology and Oncology, Children’s Hospital Boston and Harvard Medical School, Boston, Massachusetts
| | - Judy Fleming
- Translational Research Program, Children’s Hospital Boston and Harvard Medical School, Boston, Massachusetts
| | - Adam Bagg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia
| | | | - Robin Casey
- Department of Medical Genetics, Alberta Children’s Hospital & University of Calgary, Alberta, Canada
| | - Luca Fabris
- Department of Surgical and Gastroenterological Sciences University of Padova, Italy
| | - Elizabeth Hexner
- Department of Medicine, University of Pennsylvania, Philadelphia
| | - Lulu Mathews
- Department of Pediatrics, Medical College Calicut, Kerala, India
| | | | - Klaas J. Wierenga
- Division of Genetics, Department of Pediatrics, University of Miami, Miller School of Medicine, Florida
| | - Ellis J. Neufeld
- Division of Hematology and Oncology, Children’s Hospital Boston and Harvard Medical School, Boston, Massachusetts
- Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
27
|
Ganesh R, Ezhilarasi S, Vasanthi T, Gowrishankar K, Rajajee S. Thiamine responsive megaloblastic anemia syndrome. Indian J Pediatr 2009; 76:313-4. [PMID: 19347672 DOI: 10.1007/s12098-009-0058-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Accepted: 10/30/2007] [Indexed: 01/19/2023]
Abstract
Thiamine responsive megaloblastic anemia syndrome (TRMA) is a clinical triad characterized by thiamine-responsive anemia, diabetes mellitus and sensorineural deafness. We report a 4-year-old girl with TRMA whose anemia improved following administration of thiamine and this case report sensitizes the early diagnosis and treatment with thiamine in children presenting with anemia, diabetes and deafness.
Collapse
Affiliation(s)
- Ramaswamy Ganesh
- Kanchi Kamakoti CHILDS Trust Hospital, Nageswara road, Nungambakkam, Chennai, Tamilnadu, India.
| | | | | | | | | |
Collapse
|
28
|
Olsen BS, Hahnemann JMD, Schwartz M, Østergaard E. Thiamine-responsive megaloblastic anaemia: a cause of syndromic diabetes in childhood. Pediatr Diabetes 2007; 8:239-41. [PMID: 17659067 DOI: 10.1111/j.1399-5448.2007.00251.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Thiamine-responsive megaloblastic anaemia (TRMA) is a rare autosomal recessive condition, characterized by megaloblastic anaemia, non-autoimmune diabetes mellitus, and sensorineural hearing loss. We describe three infants with TRMA from two consanguineous Pakistani families, who were not known to be related but originated from the same area in Pakistan. All children were homozygous, and the parents were heterozygous for a c.196G>T mutation in the SLC19A2 gene on chromosome 1q23.3, which encodes a high-affinity thiamine transporter. The result is an abnormal thiamine transportation and vitamin deficiency in the cells. Thiamine in high doses (100-200 mg/d) reversed the anaemia in all our patients. Two patients discontinued insulin treatment successfully after a short period, while the third patient had to continue with insulin. The hearing loss persisted in all three children. The diagnosis of TRMA should be suspected in patients with syndromic diabetes including hearing loss and anaemia, even if the latter is only very mild and, particularly, in the case of consanguinity.
Collapse
Affiliation(s)
- Birthe S Olsen
- Department of Paediatrics, Glostrup University Hospital, Glostrup, Denmark.
| | | | | | | |
Collapse
|
29
|
Alzahrani AS, Baitei E, Zou M, Shi Y. Thiamine transporter mutation: an example of monogenic diabetes mellitus. Eur J Endocrinol 2006; 155:787-92. [PMID: 17132746 DOI: 10.1530/eje.1.02305] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Thiamine-responsive megaloblastic anemia (TRMA) is a rare syndrome characterized by diabetes mellitus (DM), anemia, and sensorineural deafness. We describe the clinical course and the molecular defect of a young woman who was diagnosed to have this syndrome. CASE The patient is an 18-year-old girl who was born to non-consanguous parents. She was noted to be deaf-mute in the first year of life. She was diagnosed with DM at the age of 9 months and with severe anemia at the age of 2 years. An extensive work up could not identify the cause. She was treated with blood transfusions every 3-4 weeks for the past 16 years. A diagnosis of TRMA was suspected and the patient was treated with thiamine hydrochloride. Hemoglobin and platelets increased to normal values after a few weeks of thiamine therapy. Diabetic control significantly improved but she had no noticeable changes in the deafness. METHODS Peripheral blood DNA was extracted from the patient, her mother, aunt, and a healthy sister. Exons and exon-intron boundaries of the thiamine transporter gene SLC19A2 were PCR amplified and directly sequenced. RESULTS A G515C homozygous mutation was identified in the SLC19A2 gene of the patient. This mutation changes Gly to Arg at codon 172 (G172R). The mother, an aunt, and a sister had a heterozygous G172R mutation. CONCLUSIONS Mutations in thiamine transporter gene, SLC19A2, causes a rare form of monogenic diabetes, anemia, and sensorineural deafness. Thiamine induces a remarkable hematological response and improvement in the diabetic control but has no effect on deafness.
Collapse
Affiliation(s)
- Ali S Alzahrani
- Department of Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
| | | | | | | |
Collapse
|
30
|
Lonsdale D. A review of the biochemistry, metabolism and clinical benefits of thiamin(e) and its derivatives. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2006; 3:49-59. [PMID: 16550223 PMCID: PMC1375232 DOI: 10.1093/ecam/nek009] [Citation(s) in RCA: 230] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Thiamin(e), also known as vitamin B1, is now known to play a fundamental role in energy metabolism. Its discovery followed from the original early research on the ‘anti-beriberi factor’ found in rice polishings. After its synthesis in 1936, it led to many years of research to find its action in treating beriberi, a lethal scourge known for thousands of years, particularly in cultures dependent on rice as a staple. This paper refers to the previously described symptomatology of beriberi, emphasizing that it differs from that in pure, experimentally induced thiamine deficiency in human subjects. Emphasis is placed on some of the more unusual manifestations of thiamine deficiency and its potential role in modern nutrition. Its biochemistry and pathophysiology are discussed and some of the less common conditions associated with thiamine deficiency are reviewed. An understanding of the role of thiamine in modern nutrition is crucial in the rapidly advancing knowledge applicable to Complementary Alternative Medicine. References are given that provide insight into the use of this vitamin in clinical conditions that are not usually associated with nutritional deficiency. The role of allithiamine and its synthetic derivatives is discussed. Thiamine plays a vital role in metabolism of glucose. Thus, emphasis is placed on the fact that ingestion of excessive simple carbohydrates automatically increases the need for this vitamin. This is referred to as high calorie malnutrition.
Collapse
Affiliation(s)
- Derrick Lonsdale
- Preventive Medicine Group, Westlake, OH 44145, USA. dlonsdale@@pol.net
| |
Collapse
|
31
|
Abstract
After peroxynitrite addition to aqueous solutions of thiamine at neutral and alkaline pH formation of thiamine disulfide and fluorescent products was observed. The fluorescent compounds were identified as thiochrome (TChr) and oxodihydrothiochrome (ODTChr) using spectral and fluorescent methods as well as paper chromatography and mass spectrometry. TChr and ODTChr are not the end products of thiamine oxidation and in neutral medium are unstable to peroxynitrite action and degrade rapidly to form non-fluorescent products. Thiamine, TChr, and ODTChr protects tyrosine from its modification by peroxynitrite. In the presence of TChr and ODTChr modification of tyrosinyl residues in human serum albumin and cytocrome c decreased. The prolonged thiamine incubation with glucose, amino acids and nitrite was accompanied by oxidative transformation of thiamine and formation of fluorescent products. We have shown that thiamine is also oxidized into TChr and ODTChr, i.e., it forms the same products as after thiamine oxidation by peroxynitrite. Moreover, thiamine (or its derivatives) appears as peroxynitrite scavenger leading to toxic effects lowering at diabetes mellitus.
Collapse
Affiliation(s)
- I I Stepuro
- Institute of Biochemistry, National Academy of Sciences of Belarus, BLK-50, 230009 Grodno, Belarus.
| |
Collapse
|