1
|
Qian G, Wang Y, Yao H, Zhang Z, Wang W, Xu L, Li W, Huang L, Li X, Gao Y, Wang N, Wang S, Pan J, Lv H. Involvement of USP7 in aggravating Kawasaki disease by promoting TGFβ2 signaling mediated endothelial-mesenchymal transition and coronary artery remodeling. Int Immunopharmacol 2025; 146:113823. [PMID: 39674001 PMCID: PMC11799894 DOI: 10.1016/j.intimp.2024.113823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/16/2024]
Abstract
Kawasaki disease (KD), characterized by systematic vasculitis, is a leading cause of pediatric heart disease. Although recent studies have highlighted the critical role of deubiquitinases in vascular pathophysiology, their specific contribution to KD remains largely unknown. Herein, we investigated the function of the deubiquitinase USP7 in both KD patients and a CAWS-induced KD murine model. USP7 expression level is increased both in HCAECs induced by KD sera and cardiac CD31+ endothelial cells of KD mice. Whereas knockout of USP7 increases the cellular proportion of endothelial cells and potentially attenuates the elevated EndoMT, fibrosis, and inflammation in cardiac tissue of KD mice, consistently with the in vitro experiment observed in HCAECs induced by TGF-β2. Mechanistically, USP7 interacts with SMAD2/3, enhancing their protein stability by removing the K48 ubiquitin chain from both proteins and preventing their proteasome degradation, thus increasing the p-SMAD2 levels and nuclear entry. Importantly, intraperitoneal injection of USP7 inhibitor, P22077 elicited a robust anti-EndoMT and anti-vascular inflammation effect in KD model mice. Therefore, our study uncovered a previously unrecognized function of increased USP7 in KD by augmenting TGFβ2/SMAD2/SMAD3 signaling, thus facilitating the transcription of genes implicated in the EndoMT, cardiac fibrosis, and vascular remodeling. Our finding suggests that USP7 could serve as a potential therapeutic target for the prevention and treatment of coronary artery lesions in KD and related vascular diseases.
Collapse
Affiliation(s)
- Guanghui Qian
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025 Jiangsu, China.
| | - Yan Wang
- Department of Cardiology, The Affiliated Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221000, China.
| | - Hongwei Yao
- Providence VA Medical Center, Providence, RI, USA; Departments of Medicine, Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI, USA.
| | - Zimu Zhang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025 Jiangsu, China.
| | - Wang Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025 Jiangsu, China
| | - Lei Xu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025 Jiangsu, China.
| | - Wenjie Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025 Jiangsu, China.
| | - Li Huang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025 Jiangsu, China.
| | - Xuan Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025 Jiangsu, China.
| | - Yang Gao
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025 Jiangsu, China
| | - Nana Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025 Jiangsu, China.
| | - Shuhui Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025 Jiangsu, China.
| | - Jian Pan
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025 Jiangsu, China.
| | - Haitao Lv
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025 Jiangsu, China.
| |
Collapse
|
2
|
Genetic Polymorphisms in the 3'-Untranslated Regions of SMAD5, FN3KRP, and RUNX-1 Are Associated with Recurrent Pregnancy Loss. Biomedicines 2022; 10:biomedicines10071481. [PMID: 35884785 PMCID: PMC9313017 DOI: 10.3390/biomedicines10071481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/27/2022] [Accepted: 06/20/2022] [Indexed: 12/13/2022] Open
Abstract
Recurrent pregnancy loss (RPL) is typically defined as two or more consecutive pregnancy losses prior to 20 weeks of gestation. Although the causes of idiopathic RPL are not completely understood, vascular development and glucose concentration were reported to correlate with the pregnancy loss. The TGF-β signaling pathway which plays a significant role in pregnancy is activated by the interaction between high glucose and SMAD signaling and affects the vascular cells. SMAD5 and RUNX-1 are involved in the TGF-β signaling pathway and contribute to advanced glycation end products (AGEs) production and vascular development. FN3KRP, a newly described gene, is also associated with vascular diseases and suggested to relate to AGEs. Therefore, in the present study, we investigated associations between RPL risk and genetic polymorphisms of SMAD5, FN3KRP, and RUNX-1 in 388 women with RPL and 280 healthy control women of Korean ethnicity. Participants were genotyped using real-time polymerase chain reaction and restriction fragment length polymorphism assay to determine the frequency of SMAD5 rs10515478 C>G, FN3KRP rs1046875 G>A, and RUNX-1 rs15285 G>A polymorphisms. We found that women with RPL had lower likelihoods of the FN3KRP rs1046875 AA genotype (adjusted odds ratio (AOR), 0.553; p = 0.010) and recessive model (AOR, 0.631; p = 0.017). Furthermore, combination analysis showed that SMAD5 rs10515478 C>G and FN3KRP rs1046875 G>A mutant alleles were together associated with reduced RPL risk. These findings suggest that the FN3KRP rs1046875 G>A polymorphism has a significant role on the prevalence of RPL in Korean women. Considering that it is the first study indicating a significant association between FN3KRP and pregnancy disease, RPL, our results suggest the need for further investigation of the role of FN3KRP in pregnancy loss.
Collapse
|
3
|
Colella MP, Morini BC, Niemann F, Lopes MR, Vigorito AC, Aranha FJP, Machado-Neto JA, Saad SO, Favaro P. Expression of transforming growth factor β pathway components in chronic graft-versus-host disease after allogeneic hematopoietic cell transplantation. Transpl Immunol 2021; 70:101514. [PMID: 34922025 DOI: 10.1016/j.trim.2021.101514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 10/27/2021] [Accepted: 12/09/2021] [Indexed: 10/19/2022]
Abstract
Chronic graft-versus-host disease (cGvHD), an immunological complication of allogeneic cell transplantation, is the principal cause of non-relapse mortality and morbidity. Even though advances have been made in understanding the pathophysiology of this disorder, many questions remain. We sought to evaluate gene expression of transforming growth factor β (TGF-β) pathway components, through quantitative RT-PCR and PCR array, in patients with cGvHD with different disease activity. We observed an upregulation of SMAD3, BMP2, CDKN1A, IL6, and TGF-β2 genes in the clinical tolerance group, which had never developed cGvHD, or which had been withdrawn from all immunosuppressive treatments (IST) for at least 1 year. In addition, SMAD5 gene upregulation was observed in cGvHD patients undergoing IST, and ordinal regression showed a correlation between SMAD5 expression and disease severity. Our data support the evidence of the important role of TGF-β effects in the pathological process of cGvHD.
Collapse
Affiliation(s)
| | | | - Fernanda Niemann
- Hematology and Hemotherapy Center, University of Campinas, Campinas, Brazil
| | | | | | | | | | - Sara Olalla Saad
- Hematology and Hemotherapy Center, University of Campinas, Campinas, Brazil
| | - Patricia Favaro
- Hematology and Hemotherapy Center, University of Campinas, Campinas, Brazil; Department of Biological Sciences, Federal University of São Paulo, Diadema, Brazil.
| |
Collapse
|
4
|
Meng L, Zhen Z, Jiang Q, Li XH, Yuan Y, Yao W, Zhang MM, Li AJ, Shi L. Predictive model based on gene and laboratory data for intravenous immunoglobulin resistance in Kawasaki disease in a Chinese population. Pediatr Rheumatol Online J 2021; 19:95. [PMID: 34174887 PMCID: PMC8236184 DOI: 10.1186/s12969-021-00582-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 04/04/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Here, we investigated the predictive efficiency of a newly developed model based on single nucleotide polymorphisms (SNPs) and laboratory data for intravenous immunoglobulin (IVIG) resistance in Kawasaki disease (KD) in a Chinese population. METHODS Data relating to children with KD were acquired from a single center between December 2015 and August 2019 and used to screen target SNPs. We then developed a predictive model of IVIG resistance using previous laboratory parameters. We then validated our model using data acquired from children with KD attending a second center between January and December 2019. RESULTS Analysis showed that rs10056474 GG, rs746994GG, rs76863441GT, rs16944 (CT/TT), and rs1143627 (CT/CC), increased the risk of IVIG-resistance in KD patients (odds ratio, OR > 1). The new predictive model, which combined SNP data with a previous model derived from laboratory data, significantly increased the area under the receiver-operator-characteristic curves (AUC) (0.832, 95% CI: 0.776-0.878 vs 0.793, 95%CI:0.734-0.844, P < 0.05) in the development dataset, and (0.820, 95% CI: 0.730-0.889 vs 0.749, 95% CI: 0.652-0.830, P < 0.05) in the validation dataset. The sensitivity and specificity of the new assay were 65.33% (95% CI: 53.5-76.0%) and 86.67% (95% CI: 80.2-91.7%) in the development dataset and 77.14% (95% CI: 59.9-89.6%) and 86.15% (95% CI: 75.3-93.5%) in the validation dataset. CONCLUSION Analysis showed that rs10056474 and rs746994 in the SMAD5 gene, rs76863441 in the PLA2G7 gene, and rs16944 or rs1143627 in the interleukin (IL)-1B gene, were associated with IVIG resistant KD in a Chinese population. The new model combined SNPs with laboratory data and improved the predictve efficiency of IVIG-resistant KD.
Collapse
Affiliation(s)
- Li Meng
- grid.418633.b0000 0004 1771 7032Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing, China ,grid.459434.bDepartment of Cardiology, Children’s Hospital Capital Institute of Pediatrics, No. 2 Ya-Bao Road, Chao Yang District, Beijing, 100020 China
| | - Zhen Zhen
- grid.24696.3f0000 0004 0369 153XDepartment of Cardiology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Qian Jiang
- grid.418633.b0000 0004 1771 7032Department of Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Xiao-hui Li
- grid.418633.b0000 0004 1771 7032Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing, China ,grid.459434.bDepartment of Cardiology, Children’s Hospital Capital Institute of Pediatrics, No. 2 Ya-Bao Road, Chao Yang District, Beijing, 100020 China
| | - Yue Yuan
- grid.24696.3f0000 0004 0369 153XDepartment of Cardiology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Wei Yao
- grid.459434.bDepartment of Cardiology, Children’s Hospital Capital Institute of Pediatrics, No. 2 Ya-Bao Road, Chao Yang District, Beijing, 100020 China
| | - Ming-ming Zhang
- grid.459434.bDepartment of Cardiology, Children’s Hospital Capital Institute of Pediatrics, No. 2 Ya-Bao Road, Chao Yang District, Beijing, 100020 China
| | - Ai-jie Li
- grid.459434.bDepartment of Cardiology, Children’s Hospital Capital Institute of Pediatrics, No. 2 Ya-Bao Road, Chao Yang District, Beijing, 100020 China
| | - Lin Shi
- grid.459434.bDepartment of Cardiology, Children’s Hospital Capital Institute of Pediatrics, No. 2 Ya-Bao Road, Chao Yang District, Beijing, 100020 China
| |
Collapse
|
5
|
Abstract
Kawasaki disease (KD) is a medium vessel vasculitis that affects young children. Despite extensive research over the last 50 years, the etiology of KD remains an enigma. Seasonal change in wind patterns was shown to have correlation with the epidemics of KD in Japan. Occurrence of disease in epidemiological clusters, seasonal variation, and a very low risk of recurrence suggest that KD is triggered by an infectious agent. The identification of oligoclonal IgA response in the affected tissues suggests an antigen-driven inflammation. The recent identification of a viral antigen in the cytoplasm of bronchial ciliated epithelium also favors infection as the main trigger for KD. Pointers that suggest a genetic basis of KD include a high disease prevalence in North-East Asian populations, a high risk among siblings, and familial occurrence of cases. Dysregulated innate and adaptive immune responses are evident in the acute stages of KD. In addition to the coronary wall inflammation, endothelial dysfunction and impaired vascular remodeling contribute to the development of coronary artery abnormalities (CAAs) and thrombosis. Genetic aberrations in certain intracellular signaling pathways involving immune effector functions are found to be associated with increased susceptibility to KD and development of coronary artery abnormalities (CAAs). Several susceptible genes have been identified through genome-wide association studies (GWAS) and linkage studies (GWLS). The genes that are studied in KD can be classified under 4 major groups-enhanced T cell activation (ITPKC, ORAI1, STIM1), dysregulated B cell signaling (CD40, BLK, FCGR2A), decreased apoptosis (CASP3), and altered transforming growth factor beta signaling (TGFB2, TGFBR2, MMP, SMAD). The review aims to highlight the role of several genetic risk factors that are linked with the increased susceptibility to KD.
Collapse
Affiliation(s)
- Rajni Kumrah
- Pediatric Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Pandiarajan Vignesh
- Pediatric Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| | - Amit Rawat
- Pediatric Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Surjit Singh
- Pediatric Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| |
Collapse
|
6
|
Shi R, Luo Y, Li S, Kong M, Liu X, Yu M, Wu J, Huang L, Yang Z. Single-nucleotide Polymorphism rs17860041 A/C in the Promoter of the PPIA Gene is Associated with Susceptibility to Kawasaki Disease in Chinese Children. Immunol Invest 2020; 50:230-242. [PMID: 32079425 DOI: 10.1080/08820139.2020.1727919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background: Kawasaki disease (KD) is an acute systemic vasculitis of unknown etiology. Cyclophilin A (CypA), also known as PPIA, has been identified to play a vital role in the pathogenesis of cardiovascular or inflammatory diseases. However, no studies have examined the relationship between single-nucleotide polymorphisms (SNPs) in the peptidylprolyl isomerase A (PPIA) and the development of KD and KD with or without coronary artery lesions (CALs). Objective: The present study was conducted to evaluate whether PPIA SNPs are associated with susceptibility to KD or CALs in KD. Methods: Three PPIA SNPs were genotyped in 101 KD patients and 105 healthy controls from a Chinese population. The allele and genotype frequencies were compared between the case and control groups, as well as in KD patients with and without CALs. Results: The data revealed a significant difference in the genotype and allele frequencies of rs17860041 A/C between KD patients and normal controls. Compared to the rs17860041 CC genotype, the AC genotype demonstrated a consistently beneficial roles in reducing the KD incidence. Furthermore, the allele frequency of C in the KD group was higher than that in the control group (P < .05). Haplotype analysis for PPIA polymorphisms (rs10951772 A/G, rs17860041 A/C, and rs4720485 A/T) also confirmed this association in KD patients and normal controls. Conclusion: A PPIA promoter SNP (rs17860041 A/C) confers susceptibility to KD in Chinese children and was identified as an important marker of KD in this study.
Collapse
Affiliation(s)
- Ruting Shi
- Department of Pediatrics, Third Xiangya Hospital of Central South University , Changsha, Hunan, P.R. China
| | - Yeping Luo
- Department of Pediatrics, Third Xiangya Hospital of Central South University , Changsha, Hunan, P.R. China
| | - Shentang Li
- Department of Pediatrics, Third Xiangya Hospital of Central South University , Changsha, Hunan, P.R. China
| | - Min Kong
- Department of Pediatrics, Third Xiangya Hospital of Central South University , Changsha, Hunan, P.R. China
| | - Xin Liu
- Department of Pediatrics, Third Xiangya Hospital of Central South University , Changsha, Hunan, P.R. China
| | - Meng Yu
- Department of Pediatrics, Third Xiangya Hospital of Central South University , Changsha, Hunan, P.R. China
| | - Jiping Wu
- Department of Pediatrics, Third Xiangya Hospital of Central South University , Changsha, Hunan, P.R. China
| | - Lihua Huang
- Center for Medical Experiments, the Third Xiangya Hospital, Central South University , Changsha, Hunan, China
| | - Zuocheng Yang
- Department of Pediatrics, Third Xiangya Hospital of Central South University , Changsha, Hunan, P.R. China
| |
Collapse
|
7
|
Zheng YJ, Zhao JY, Liang TS, Wang P, Wang J, Yang DK, Liu ZS. Long noncoding RNA SMAD5-AS1 acts as a microRNA-106a-5p sponge to promote epithelial mesenchymal transition in nasopharyngeal carcinoma. FASEB J 2019; 33:12915-12928. [PMID: 31557058 DOI: 10.1096/fj.201900803r] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant epithelial cancer of the head and neck with high prevalence in southern China, which is accompanied by notable invasiveness and metastasis. Long noncoding RNAs (lncRNAs) participate in the progression of various cancers including NPC. Microarray-based analysis identified highly expressed lncRNA mothers against decapentaplegic homolog 5 (SMAD5)-antisense RNA 1 (AS1) related to NPC. Interestingly, it is found that SMAD5-AS1 competitively bound to microRNA (miR)-106a-5p to regulate SMAD5. Herein, the study aimed to clarify the role of SMAD5-AS1/miR-106a-5p/SMAD5 axis in the process of epithelial mesenchymal transition (EMT) in NPC. SMAD5-AS1 was highly expressed and miR-106a-5p was poorly expressed in NPC tissues and cell lines. The NPC cells were treated with a series of small interfering RNAs, mimics, or inhibitors to explore the effects of SMAD5-AS1, SMAD5, and miR-106a-5p on EMT, cell proliferation, migration, and invasion in NPC. Of note, SMAD5-AS1 silencing or miR-106a-5p overexpression reduced expression of N-cadherin, matrix metallopeptidase 9, Snail, and Vimentin while elevating E-cadherin expression, thus inhibiting EMT, cell proliferation, migration, and invasion in NPC by down-regulation of SMAD5. Moreover, SMAD5 silencing could reduce the ability of EMT induced by SMAD5-AS1 up-regulation. SMAD5-AS1 silencing or miR-106a-5p elevation inhibited tumorigenesis in nude mice. Taken together, SMAD5-AS1 silencing suppressed EMT, cell proliferation, migration, and invasion in NPC by elevating miR-106a-5p to down-regulate SMAD5, which provided a novel therapeutic target for NPC treatment.-Zheng, Y.-J., Zhao, J.-Y., Liang, T.-S., Wang, P., Wang, J., Yang, D.-K., Liu, Z.-S. Long noncoding RNA SMAD5-AS1 acts as a microRNA-106a-5p sponge to promote epithelial mesenchymal transition in nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Ying-Juan Zheng
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing-Yi Zhao
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tian-Song Liang
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ping Wang
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Juan Wang
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dao-Ke Yang
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhang-Suo Liu
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Pi L, Xu Y, Fu L, Zhang L, Liu Y, Zhou H, Che D, Gu X. A PEAR1 polymorphism (rs12041331) is associated with risk of coronary artery aneurysm in Kawasaki disease. Ann Hum Genet 2018; 83:54-62. [PMID: 30256383 DOI: 10.1111/ahg.12285] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 12/18/2022]
Abstract
Kawasaki disease (KD) is an acute systemic vasculitis that is most seriously complicated by coronary artery aneurysm (CAA). The polymorphisms of platelet endothelial aggregation receptor 1 (PEAR1), notably rs12041331 and rs12566888, were found to be closely related to cardiac disease. However, little is known regarding the connection between PEAR1 and KD. In this study, we genotyped PEAR1 rs12566888 and rs12041331 in 637 healthy infants and 694 KD patients (74 with CAA). Subsequently, odds ratio (OR) and 95% confidence interval (CI) were calculated to assess the strength of their relationships. No significant differences in the frequency of rs12566888 or rs12041331 in PEAR1 were observed between KD and healthy controls. However, regardless of the statistical combination of rs12566888 genotype, the rs12041331 recessive inheritance model was associated with an increased risk of CAA after Bonferroni correction (for rs12041331, AA vs. GG/GA: adjusted OR = 2.37, 95% CI = 1.41-4.01, P = 0.009; combination of two recessive genotypes vs. combination of 0-1 recessive genotypes: adjusted OR = 2.39, 95% CI = 1.42-4.04, P = 0.009). This study suggests for the first time that PEAR1 polymorphisms did not indicate susceptibility for KD occurrence but the rs12041331 polymorphism was associated with increased risk of CAA formation in KD, and the functions of the gene warrant further research.
Collapse
Affiliation(s)
- Lei Pi
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yufen Xu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lanyan Fu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Li Zhang
- Department of Cardiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yunfeng Liu
- Department of Clinical Lab, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huazhong Zhou
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Di Che
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiaoqiong Gu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Department of Clinical Lab, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
9
|
Association of PECAM-1 Gene Polymorphisms with Kawasaki Disease in Chinese Children. DISEASE MARKERS 2017; 2017:2960502. [PMID: 28512385 PMCID: PMC5420431 DOI: 10.1155/2017/2960502] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 02/24/2017] [Accepted: 03/08/2017] [Indexed: 12/16/2022]
Abstract
Kawasaki disease (KD) is an acute systemic vasculitis complicated by development of coronary artery lesions. PECAM-1 is a kind of cell adhesion molecule, which plays an important role in coronary artery disease. The relationship between PECAM-1 gene polymorphisms and their susceptibility to Kawasaki diseases (KD) is still unclear. In our study, we examined the PECAM-1 gene polymorphisms in 44 KD patients and 59 healthy children and revealed the correlation of PECAM-1 gene polymorphisms in KD children with and without coronary artery lesions (CAL).
Collapse
|
10
|
Dissecting Kawasaki disease: a state-of-the-art review. Eur J Pediatr 2017; 176:995-1009. [PMID: 28656474 PMCID: PMC5511310 DOI: 10.1007/s00431-017-2937-5] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/11/2017] [Accepted: 05/15/2017] [Indexed: 12/12/2022]
Abstract
UNLABELLED Kawasaki disease (KD) is a pediatric vasculitis with coronary artery aneurysms (CAA) as its main complication. The diagnosis is based on the presence of persistent fever and clinical features including exanthema, lymphadenopathy, conjunctival injection, and changes to the mucosae and extremities. Although the etiology remains unknown, the current consensus is that it is likely caused by an (infectious) trigger initiating an abnormal immune response in genetically predisposed children. Treatment consists of high dose intravenous immunoglobulin (IVIG) and is directed at preventing the development of CAA. Unfortunately, 10-20% of all patients fail to respond to IVIG and these children need additional anti-inflammatory treatment. Coronary artery lesions are diagnosed by echocardiography in the acute and subacute phases. Both absolute arterial diameters and z-scores, adjusted for height and weight, are used as criteria for CAA. Close monitoring of CAA is important as ischemic symptoms or myocardial infarction due to thrombosis or stenosis can occur. These complications are most likely to arise in the largest, so-called giant CAA. Apart from the presence of CAA, it is unclear whether KD causes an increased cardiovascular risk due to the vasculitis itself. CONCLUSION Many aspects of KD remain unknown, although there is growing knowledge on the etiology, treatment, and development and classification of CAA. Since children with previous KD are entering adulthood, long-term follow-up is increasingly important. What is known: • Kawasaki disease (KD) is a pediatric vasculitis with coronary artery damage as its main complication. • Although KD approaches its 50th birthday since its first description, many aspects of the disease remain poorly understood. What is new: • In recent years, multiple genetic candidate pathways involved in KD have been identified, with recently promising information about the ITPKC pathway. • As increasing numbers of KD patients are reaching adulthood, increasing information is available about the long-term consequences of coronary artery damage and broader cardiovascular risk.
Collapse
|
11
|
Assari R, Aghighi Y, Ziaee V, Sadr M, Rahmani F, Rezaei A, Sadr Z, Moradinejad MH, Raeeskarami SR, Rezaei N. Pro-inflammatory cytokine single nucleotide polymorphisms in Kawasaki disease. Int J Rheum Dis 2016; 21:1120-1126. [PMID: 27455075 DOI: 10.1111/1756-185x.12911] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AIM Kawasaki disease (KD) is a systemic vasculitis of children associated with cardiovascular sequelae. Proinflammatory cytokines play a major role in KD pathogenesis. However, their role is both influenced and modified by regulatory T-cells. IL-1 gene cluster, IL-6 and TNF-α polymorphisms have shown significant associations with some vasculitides. Herein we investigated their role in KD. METHODS Fifty-five patients with KD who were randomly selected from referrals to the main pediatric hospital were enrolled in this case-control study. Single nucleotide polymorphisms (SNPs) of the following genes were assessed in patients and 140 healthy subjects as control group: IL-1α at -889 (rs1800587), IL-1β at -511 (rs16944), IL-1β at +3962 (rs1143634), IL-1R at Pst-I 1970 (rs2234650), IL-1RN/A at Mspa-I 11100 (rs315952), TNF-α at -308 (rs1800629), TNF-α at -238, IL-6 at -174 (rs1800795) and IL-6 at +565. RESULTS Twenty-one percent of the control group had A allele at TNF-α -238 while only 8% of KD patients had A allele at this position (P = 0.003, OR [95%CI] = 0.32 [0.14-0.71]). Consistently, TNF-α genotype GG at -238 had significant association with KD (OR [95% CI] = 4.31 [1.79-10.73]). Most controls carried the CG genotype at IL-6 -174 (n = 93 [66.9%]) while GG genotype was the most common genotype (n = 27 [49%]) among patients. Carriers of the GG haplotype at TNF-α (-308, -238) were significantly more prevalent among the KD group. No association was found between IL-1 gene cluster, allelic or haplotypic variants and KD. CONCLUSION TNF-α GG genotype at -238 and GG haplotype at positions -308 and -238 were associated with KD in an Iranian population.
Collapse
Affiliation(s)
- Raheleh Assari
- Pediatric Rheumatology Research Group, Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pediatrics, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Yahya Aghighi
- Department of Pediatrics, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Ziaee
- Pediatric Rheumatology Research Group, Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pediatrics, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Sadr
- Department of Immunology, Molecular Immunology Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Rahmani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Arezou Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Sadr
- Department of Immunology, Molecular Immunology Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hassan Moradinejad
- Department of Pediatrics, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Raeeskarami
- Department of Pediatrics, Vali-e-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
12
|
Uysal F, Bostan OM, Celebi S, Uysal B, Hamitoglu S, Cil E. Outcomes of Kawasaki Disease: A Single-Center Experience. Clin Pediatr (Phila) 2015; 54:579-84. [PMID: 25475592 DOI: 10.1177/0009922814561594] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Kawasaki disease (KD) is an acute systemic vasculitis of unknown etiology. Coronary artery lesions (CAL) develop in 15% to 20% of untreated cases. Our objective was to evaluate demographic, clinical, and laboratory features and short-intermediate coronary artery outcomes of children with KD. PATIENTS AND METHODS Medical records of patients with KD were retrospectively identified. Clinical information and echocardiography, laboratory, and angiographic results were noted using a standardized form. RESULTS The study included 44 patients with a mean age of the 29.72 ± 21 months (ranging from 1 month to 9.5 years). There were 28 male and 16 female patients; 20 patients were diagnosed as having had incomplete KD. Four cases with atypical presentation were significantly older than children with complete and incomplete KD; 17 patients (38.6 %) had coronary artery aneurysm (CAA), which declined to 6.8% after intravenous immunoglobulin (IVIG) treatment. Time between fever and diagnosis and abnormal levels of hemoglobin and platelets were all associated with CAA. The children were followed up for a mean of 36.39 ± 19 months (with a maximum of 16 years). Angiographic evolution and regression of CALs have been observed in 14 (82.3%) patients. Three patients in whom CALs persisted did not receive IVIG therapy because of delayed diagnosis. CONCLUSIONS Awareness of KD in children has led to an increase in the number of cases. Utility of IVIG treatment to reduce the coronary artery involvement in patients with delayed diagnoses should be discussed and considered. Long-term results are required to assess whether the KD represents a risk factor for coronary artery diseases seen during adulthood.
Collapse
Affiliation(s)
- Fahrettin Uysal
- University of Uludag, School of Medicine, Bursa, Turkey Turkish National Pediatric Society, Ankara, Turkey Turkish Pediatric Cardiology and Cardiovascular Surgery Society, Ankara, Turkey
| | - Ozlem Mehtap Bostan
- Turkish Pediatric Cardiology and Cardiovascular Surgery Society, Ankara, Turkey University of Uludag, Bursa, Turkey
| | | | | | | | - Ergun Cil
- University of Uludag, School of Medicine, Bursa, Turkey Turkish Pediatric Cardiology and Cardiovascular Surgery Society, Ankara, Turkey
| |
Collapse
|
13
|
Yoon KL. Update of genetic susceptibility in patients with Kawasaki disease. KOREAN JOURNAL OF PEDIATRICS 2015; 58:84-8. [PMID: 25861330 PMCID: PMC4388975 DOI: 10.3345/kjp.2015.58.3.84] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 02/20/2015] [Indexed: 12/23/2022]
Abstract
Kawasaki disease (KD) is an acute systemic vasculitis that predominantly affects children, and can result in coronary artery lesions (CAL). A patient with KD who is resistant to treatment with intravenous immunoglobulin (IVIG) has a higher risk of developing CAL. Incomplete KD has increased in prevalence in recent years, and is another risk factor for the development of CAL. Although the pathogenesis of KD remains unclear, there has been increasing evidence for the role of genetic susceptibility to the disease since it was discovered in 1967. We retrospectively reviewed previous genetic research for known susceptibility genes in the pathogenesis of KD, IVIG resistance, and the development of CAL. This review revealed numerous potential susceptibility genes including genetic polymorphisms of ITPKC, CASP3, the transforming growth factor-β signaling pathway, B lymphoid tyrosine kinase, FCGR2A, KCNN2, and other genes, an imbalance of Th17/Treg, and a range of suggested future treatment options. The results of genetic research may improve our understanding of the pathogenesis of KD, and aid in the discovery of new treatment modalities for high-risk patients with KD.
Collapse
Affiliation(s)
- Kyung Lim Yoon
- Department of Pediatrics, Kyung Hee University Hospital at Gangdong, Seoul, Korea
| |
Collapse
|