1
|
Sarić N, Ishibashi N. The role of primary cilia in congenital heart defect-associated neurological impairments. Front Genet 2024; 15:1460228. [PMID: 39175754 PMCID: PMC11338889 DOI: 10.3389/fgene.2024.1460228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024] Open
Abstract
Congenital heart disease (CHD) has, despite significant improvements in patient survival, increasingly become associated with neurological deficits during infancy that persist into adulthood. These impairments afflict a wide range of behavioral domains including executive function, motor learning and coordination, social interaction, and language acquisition, reflecting alterations in multiple brain areas. In the past few decades, it has become clear that CHD is highly genetically heterogeneous, with large chromosomal aneuploidies and copy number variants (CNVs) as well as single nucleotide polymorphisms (SNPs) being implicated in CHD pathogenesis. Intriguingly, many of the identified loss-of-function genetic variants occur in genes important for primary cilia integrity and function, hinting at a key role for primary cilia in CHD. Here we review the current evidence for CHD primary cilia associated genetic variants, their independent functions during cardiac and brain development and their influence on behavior. We also highlight the role of environmental exposures in CHD, including stressors such as surgical factors and anesthesia, and how they might interact with ciliary genetic predispositions to determine the final neurodevelopmental outcome. The multifactorial nature of CHD and neurological impairments linked with it will, on one hand, likely necessitate therapeutic targeting of molecular pathways and neurobehavioral deficits shared by disparate forms of CHD. On the other hand, strategies for better CHD patient stratification based on genomic data, gestational and surgical history, and CHD complexity would allow for more precise therapeutic targeting of comorbid neurological deficits.
Collapse
Affiliation(s)
- Nemanja Sarić
- Center for Neuroscience Research, Children's National Medical Center, Washington, DC, United States
| | - Nobuyuki Ishibashi
- Center for Neuroscience Research, Children's National Medical Center, Washington, DC, United States
- Department of Pediatrics, Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
- Children's National Heart Center, Children's National Hospital, Washington, DC, United States
| |
Collapse
|
2
|
Djalinac N, Kolesnik E, Maechler H, Scheruebel-Posch S, Pelzmann B, Rainer PP, Foessl I, Wallner M, Scherr D, Heinemann A, Sedej S, Ljubojevic-Holzer S, von Lewinski D, Bisping E. miR-1183 Is a Key Marker of Remodeling upon Stretch and Tachycardia in Human Myocardium. Int J Mol Sci 2022; 23:ijms23136962. [PMID: 35805966 PMCID: PMC9266684 DOI: 10.3390/ijms23136962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Many cardiac insults causing atrial remodeling are linked to either stretch or tachycardia, but a comparative characterization of their effects on early remodeling events in human myocardium is lacking. Here, we applied isometric stretch or sustained tachycardia at 2.5 Hz in human atrial trabeculae for 6 h followed by microarray gene expression profiling. Among largely independent expression patterns, we found a small common fraction with the microRNA miR-1183 as the highest up-regulated transcript (up to 4-fold). Both, acute stretch and tachycardia induced down-regulation of the predicted miR-1183 target genes ADAM20 and PLA2G7. Furthermore, miR-1183 was also significantly up-regulated in chronically remodeled atrial samples from patients with persistent atrial fibrillation (3-fold up-regulation versus sinus rhythm samples), and in ventricular myocardium from dilative cardiomyopathy hearts (2-fold up-regulation) as compared to non-failing controls. In sum, although stretch and tachycardia show distinct transcriptomic signatures in human atrial myocardium, both cardiac insults consistently regulate the expression of miR-1183 and its downstream targets in acute and chronic remodeling. Thus, elevated expression of miR-1183 might serve as a tissue biomarker for atrial remodeling and might be of potential functional significance in cardiac disease.
Collapse
Affiliation(s)
- Natasa Djalinac
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, 8036 Graz, Austria; (N.D.); (E.K.); (P.P.R.); (D.S.); (S.S.); (S.L.-H.); (E.B.)
- Unit of Human Molecular Genetics and Functional Genomics, Department of Biology, University of Padua, 35121 Padua, Italy
| | - Ewald Kolesnik
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, 8036 Graz, Austria; (N.D.); (E.K.); (P.P.R.); (D.S.); (S.S.); (S.L.-H.); (E.B.)
| | - Heinrich Maechler
- Department of Cardiothoracic Surgery, Medical University of Graz, 8036 Graz, Austria;
| | - Susanne Scheruebel-Posch
- Gottfried Schatz Research Center, Institute of Biophysics, Medical University of Graz, 8010 Graz, Austria; (S.S.-P.); (B.P.)
| | - Brigitte Pelzmann
- Gottfried Schatz Research Center, Institute of Biophysics, Medical University of Graz, 8010 Graz, Austria; (S.S.-P.); (B.P.)
| | - Peter P. Rainer
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, 8036 Graz, Austria; (N.D.); (E.K.); (P.P.R.); (D.S.); (S.S.); (S.L.-H.); (E.B.)
- BioTechMed Graz, 8036 Graz, Austria
| | - Ines Foessl
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, 8010 Graz, Austria;
| | - Markus Wallner
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, 8036 Graz, Austria; (N.D.); (E.K.); (P.P.R.); (D.S.); (S.S.); (S.L.-H.); (E.B.)
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Correspondence: (M.W.); (D.v.L.); Tel.: +43-316-385-31261 (M.W.); +43-316-385-80684 (D.v.L.)
| | - Daniel Scherr
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, 8036 Graz, Austria; (N.D.); (E.K.); (P.P.R.); (D.S.); (S.S.); (S.L.-H.); (E.B.)
| | - Akos Heinemann
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, 8010 Graz, Austria;
| | - Simon Sedej
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, 8036 Graz, Austria; (N.D.); (E.K.); (P.P.R.); (D.S.); (S.S.); (S.L.-H.); (E.B.)
- BioTechMed Graz, 8036 Graz, Austria
- Institute of Physiology, Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Senka Ljubojevic-Holzer
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, 8036 Graz, Austria; (N.D.); (E.K.); (P.P.R.); (D.S.); (S.S.); (S.L.-H.); (E.B.)
- BioTechMed Graz, 8036 Graz, Austria
| | - Dirk von Lewinski
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, 8036 Graz, Austria; (N.D.); (E.K.); (P.P.R.); (D.S.); (S.S.); (S.L.-H.); (E.B.)
- Correspondence: (M.W.); (D.v.L.); Tel.: +43-316-385-31261 (M.W.); +43-316-385-80684 (D.v.L.)
| | - Egbert Bisping
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, 8036 Graz, Austria; (N.D.); (E.K.); (P.P.R.); (D.S.); (S.S.); (S.L.-H.); (E.B.)
| |
Collapse
|
3
|
Association of NFKB1, NKX2-5, GATA4 and RANKL Gene Polymorphisms with Sporadic Congenital Heart Disease in Greek Patients. Balkan J Med Genet 2021; 24:15-20. [PMID: 34447654 PMCID: PMC8366470 DOI: 10.2478/bjmg-2021-0014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Congenital heart disease (CHD) is a group of structural defects of the heart and the great vessels, and one of the leading causes of death among infants and young adults. Several gene variants are involved in diverse mechanisms of cardiac and vessel development and could thus be considered candidate mutated genes for a congenital heart defect or a specific variant could predispose a person to CHD. In the present study, variants in four such genes are investigated for the first time in a group of young Greek CHD patients: the NFKB1 gene polymorphism (-94ins/ delATTG), rs28362491, NKX2-5 gene polymorphism rs2277923, GATA4 gene polymorphism rs11785481 and RANKL gene polymorphism rs4531631. A total of 43 CHD patients and 100 healthy adults were included in the study. The polymerase chain reaction-restriction fragment length polymorphism (PRC-RFLP) method was used to genotype the aforementioned polymorphisms of NFKB1, NKX2-5, GATA4 and RANKL. The association analysis identified that there was a protective association between CHD and the A allele of rs2277923 polymorphism (p = 0.004). The D allele of the rs28362491 polymorphism is also a likely risk factor for causing CHD (p = 0.006). The differences of the rs4531631 and rs11785481 variant contribution had no statistical significance between the groups (p >0.05). In conclusion, our results revealed that the rs28362491 and rs2277923 gene polymorphisms, but not the rs4531631 and rs11785481 polymorphisms, may contribute to CHD risk in a cohort of Greek CHD patients.
Collapse
|
4
|
Ye W, Wang Y, Hou S, Mei B, Liu X, Huang H, Zhou Q, Niu Y, Chen Y, Zhang M, Huang Q. USF3 modulates osteoporosis risk by targeting WNT16, RANKL, RUNX2, and two GWAS lead SNPs rs2908007 and rs4531631. Hum Mutat 2020; 42:37-49. [PMID: 33058301 DOI: 10.1002/humu.24126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/09/2020] [Accepted: 10/05/2020] [Indexed: 01/15/2023]
Abstract
Osteoporotic fractures cause major morbidity and mortality in the aging population. Genome-wide association studies (GWAS) have identified USF3 as the novel susceptibility gene of osteoporosis. However, the functional role in bone metabolism and the target gene of the basic helix-loop-helix transcription factor USF3 are unclear. Here, we show that USF3 enhances osteoblast differentiation and suppresses osteoclastogenesis in cultured human osteoblast-like U-2OS cells. Mechanistic studies revealed that transcription factor USF3 antagonistically interacts with anti-osteogenic TWIST1/TCF12 heterodimer in the WNT16 and RUNX2 promoter, and counteracts CREB1 and JUN/FOS in the RANKL promoter. Importantly, the osteoporosis GWAS variant g.1744A>G (rs2908007A>G) located in the WNT16 promoter confers G-allele-specific transcriptional modulation by USF3, TWIST1/TCF12 and TBX5/TBX15, and USF3 transactivates the osteoclastogenesis suppressor WNT16 promoter activity and antagonizes the repression of WNT16 by TWIST1 and TCF12. The risk G allele of osteoporosis GWAS variant g.3260A>G (rs4531631A>G) in the RANKL promoter facilitates the binding of CREB1 and JUN/FOS and enhances transactivation of the osteoclastogenesis contributor RANKL that is inhibited by USF3. Our findings uncovered the functional mechanisms of osteoporosis novel GWAS-associated gene USF3 and lead single nucleotide polymorphisms rs2908007 and rs4531631 in the regulation of bone formation and resorption.
Collapse
Affiliation(s)
- Weiyuan Ye
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Ya Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Sasa Hou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Bing Mei
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Xinhong Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Han Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Qian Zhou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Yajing Niu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Yuanyuan Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Manling Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Qingyang Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| |
Collapse
|
5
|
Ferese R, Bonetti M, Consoli F, Guida V, Sarkozy A, Lepri FR, Versacci P, Gambardella S, Calcagni G, Margiotti K, Piceci Sparascio F, Hozhabri H, Mazza T, Digilio MC, Dallapiccola B, Tartaglia M, Marino B, Hertog JD, De Luca A. Heterozygous missense mutations in NFATC1 are associated with atrioventricular septal defect. Hum Mutat 2018; 39:1428-1441. [PMID: 30007050 DOI: 10.1002/humu.23593] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/27/2018] [Accepted: 07/08/2018] [Indexed: 11/10/2022]
Abstract
Atrioventricular septal defect (AVSD) may occur as part of a complex disorder (e.g., Down syndrome, heterotaxy), or as isolate cardiac defect. Multiple lines of evidence support a role of calcineurin/NFAT signaling in AVSD, and mutations in CRELD1, a protein functioning as a regulator of calcineurin/NFAT signaling have been reported in a small fraction of affected subjects. In this study, 22 patients with isolated AVSD and 38 with AVSD and heterotaxy were screened for NFATC1 gene mutations. Sequence analysis identified three missense variants in three individuals, including a subject with isolated AVSD [p.(Ala367Val)], an individual with AVSD and heterotaxy [p.(Val210Met)], and a subject with AVSD, heterotaxy, and oculo-auriculo-vertebral spectrum (OAVS) [p.(Ala696Thr)], respectively. The latter was also heterozygous for a missense change in TBX1 [p.(Pro86Leu)]. Targeted resequencing of genes associated with AVSD, heterotaxy, or OAVS excluded additional hits in the three mutation-positive subjects. Functional characterization of NFATC1 mutants documented defective nuclear translocation and decreased transcriptional transactivation activity. When expressed in zebrafish, the three NFATC1 mutants caused cardiac looping defects and altered atrioventricular canal patterning, providing evidence of their functional relevance in vivo. Our findings support a role of defective NFATC1 function in the etiology of isolated and heterotaxy-related AVSD.
Collapse
Affiliation(s)
| | - Monica Bonetti
- Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584CT, Utrecht, The Netherlands
| | - Federica Consoli
- Molecular Genetics Unit, Casa Sollievo della Sofferenza Hospital, IRCCS, 71013, San Giovanni Rotondo, Italy
| | - Valentina Guida
- Molecular Genetics Unit, Casa Sollievo della Sofferenza Hospital, IRCCS, 71013, San Giovanni Rotondo, Italy
| | - Anna Sarkozy
- Molecular Genetics Unit, Casa Sollievo della Sofferenza Hospital, IRCCS, 71013, San Giovanni Rotondo, Italy
| | - Francesca Romana Lepri
- Genetics and Rare Diseases Research Division, Bambino Gesù Children Hospital, IRCCS, 00146, Rome, Italy
| | - Paolo Versacci
- Division of Pediatric Cardiology, Department of Pediatrics, "Sapienza" University, 00161, Rome, Italy
| | | | - Giulio Calcagni
- Genetics and Rare Diseases Research Division, Bambino Gesù Children Hospital, IRCCS, 00146, Rome, Italy
| | - Katia Margiotti
- Molecular Genetics Unit, Casa Sollievo della Sofferenza Hospital, IRCCS, 71013, San Giovanni Rotondo, Italy
| | - Francesca Piceci Sparascio
- Molecular Genetics Unit, Casa Sollievo della Sofferenza Hospital, IRCCS, 71013, San Giovanni Rotondo, Italy
| | - Hossein Hozhabri
- Molecular Genetics Unit, Casa Sollievo della Sofferenza Hospital, IRCCS, 71013, San Giovanni Rotondo, Italy.,Department of Experimental Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - Tommaso Mazza
- Bioinformatics Unit, Casa Sollievo della Sofferenza Hospital, IRCCS, 71013, San Giovanni Rotondo, Italy
| | - Maria Cristina Digilio
- Genetics and Rare Diseases Research Division, Bambino Gesù Children Hospital, IRCCS, 00146, Rome, Italy
| | - Bruno Dallapiccola
- Genetics and Rare Diseases Research Division, Bambino Gesù Children Hospital, IRCCS, 00146, Rome, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Bambino Gesù Children Hospital, IRCCS, 00146, Rome, Italy
| | - Bruno Marino
- Division of Pediatric Cardiology, Department of Pediatrics, "Sapienza" University, 00161, Rome, Italy
| | - Jeroen den Hertog
- Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584CT, Utrecht, The Netherlands.,Institute of Biology, 2300RC, Leiden, The Netherlands
| | - Alessandro De Luca
- Molecular Genetics Unit, Casa Sollievo della Sofferenza Hospital, IRCCS, 71013, San Giovanni Rotondo, Italy
| |
Collapse
|
6
|
Lu CX, Wang W, Wang Q, Liu XY, Yang YQ. A Novel MEF2C Loss-of-Function Mutation Associated with Congenital Double Outlet Right Ventricle. Pediatr Cardiol 2018; 39:794-804. [PMID: 29468350 DOI: 10.1007/s00246-018-1822-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 01/20/2018] [Indexed: 02/07/2023]
Abstract
Congenital heart defect (CHD) represents the most prevalent birth defect, and accounts for substantial morbidity and mortality in humans. Aggregating evidence demonstrates the genetic basis for CHD. However, CHD is a heterogeneous disease, and the genetic determinants underlying CHD in most patients remain unknown. In the present study, a cohort of 186 unrelated cases with CHD and 300 unrelated control individuals were recruited. The coding exons and flanking introns of the MEF2C gene, which encodes a transcription factor crucial for proper cardiovascular development, were sequenced in all study participants. The functional effect of an identified MEF2C mutation was characterized using a dual-luciferase reporter assay system. As a result, a novel heterozygous MEF2C mutation, p.R15C, was detected in an index patient with congenital double outlet right ventricle (DORV) as well as ventricular septal defect. Analysis of the proband's pedigree showed that the mutation co-segregated with CHD with complete penetrance. The missense mutation, which changed the evolutionarily conserved amino acid, was absent in 300 control individuals. Functional deciphers revealed that the mutant MEF2C protein had a significantly decreased transcriptional activity. Furthermore, the mutation significantly reduced the synergistic activation between MEF2C and GATA4, another transcription factor linked to CHD. This study firstly associates MEF2C loss-of-function mutation with DORV in humans, which provides novel insight into the molecular pathogenesis of CHD, suggesting potential implications for genetic counseling and personalized treatment of CHD patients.
Collapse
Affiliation(s)
- Cai-Xia Lu
- Department of Pediatrics, Huashan Hospital North, Fudan University, Shanghai, 201907, China
| | - Wei Wang
- Department of Parasitology, School of Basic Medical Science, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Qian Wang
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xing-Yuan Liu
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China. .,Department of Cardiovascular Research Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China. .,Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China.
| |
Collapse
|