1
|
Richard S, Boucher M, Lalatonne Y, Mériaux S, Motte L. Iron oxide nanoparticle surface decorated with cRGD peptides for magnetic resonance imaging of brain tumors. Biochim Biophys Acta Gen Subj 2016; 1861:1515-1520. [PMID: 28017683 DOI: 10.1016/j.bbagen.2016.12.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/07/2016] [Accepted: 12/19/2016] [Indexed: 11/18/2022]
Abstract
In this article, a specific targeting Magnetic Resonance Imaging (MRI) nanoplatform, composed by iron oxide nanoparticle (NP) with cRGD peptides as targeting agent onto NP surface, is explored for the diagnosis of brain tumors by MRI using intracranial U87MG mice xenograft tumor. This article is part of a Special Issue entitled "Recent Advances in Bionanomaterials" Guest Editor: Dr. Marie-Louise Saboungi and Dr. Samuel D. Bader.
Collapse
Affiliation(s)
- Sophie Richard
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057, CNRS and Université Paris Diderot, 75205 Paris Cedex 05, France
| | - Marianne Boucher
- Unité d'Imagerie par Résonance Magnétique et de Spectroscopie, CEA/DRF/I2BM/NeuroSpin, F-91191, Gif-sur-Yvette, France
| | - Yoann Lalatonne
- Service de Médecine Nucléaire, Hôpital Avicenne Assistance Publique-Hôpitaux de Paris, F-93009 Bobigny, France; Inserm, U1148, Laboratory for Vascular Translational Science, UFR SMBH, Université Paris 13, Sorbonne Paris Cité, F-93017 Bobigny, France
| | - Sébastien Mériaux
- Unité d'Imagerie par Résonance Magnétique et de Spectroscopie, CEA/DRF/I2BM/NeuroSpin, F-91191, Gif-sur-Yvette, France
| | - Laurence Motte
- Inserm, U1148, Laboratory for Vascular Translational Science, UFR SMBH, Université Paris 13, Sorbonne Paris Cité, F-93017 Bobigny, France.
| |
Collapse
|
2
|
Molecular imaging: from bench to clinic. BIOMED RESEARCH INTERNATIONAL 2014; 2014:357258. [PMID: 25610862 PMCID: PMC4295132 DOI: 10.1155/2014/357258] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 09/16/2014] [Indexed: 12/31/2022]
|
3
|
Zeng MY, Wu CG, Cheng YS. Molecular imaging of inflammatory bowel disease. Shijie Huaren Xiaohua Zazhi 2014; 22:3424-3429. [DOI: 10.11569/wcjd.v22.i23.3424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a kind of chronic non-specific intestinal inflammatory disease of unknown etiology. Traditional imaging is difficult for early detection of mucosal lesions and is not conducive to early treatment. Colonoscopy is a kind of invasive procedure, and its clinical use is therefore limited. Molecular imaging provides a new approach for early diagnosis of IBD. In this paper, we review recent advances in molecular imaging of IBD.
Collapse
|
4
|
Fortin PY, Genevois C, Chapolard M, Santalucía T, Planas AM, Couillaud F. Dual-reporter in vivo imaging of transient and inducible heat-shock promoter activation. BIOMEDICAL OPTICS EXPRESS 2014; 5:457-467. [PMID: 24575340 PMCID: PMC3920876 DOI: 10.1364/boe.5.000457] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 12/23/2013] [Accepted: 12/25/2013] [Indexed: 06/03/2023]
Abstract
Gene promoter activity can be studied in vivo by molecular imaging methods using reporter gene technology. Transcription of the reporter and the reported genes occurs simultaneously. However, imaging depends on reporter protein translation, stability, and cellular fate that may differ among the various proteins. A double transgenic mouse strain expressing the firefly luciferase (lucF) and fluorescent mPlum protein under the transcriptional control of the thermo-inducible heat-shock protein (Hspa1b) promoter was generated allowing to follow up the reporter proteins by different and complementary in vivo imaging technologies. These mice were used for in vivo imaging by bioluminescence and epi fluorescence reflectance imaging (BLI & FRI) and as a source of embryonic fibroblast (MEF) for in vitro approaches. LucF, mPlum and endogenous Hsp70 mRNAs were transcribed simultaneously. The increase in mRNA was transient, peaking at 3 h and then returning to the basal level about 6 h after the thermal stimulations. The bioluminescent signal was transient and initiated with a 3 h delay versus mRNA expression. The onset of mPlum fluorescence was more delayed, increasing slowly up to 30 h after heat-shock and remaining for several days. This mouse allows for both bioluminescence imaging (BLI) and fluorescence reflectance imaging (FRI) of Hsp70 promoter activation showing an early and transient lucF activity and a retrospective and persistent mPlum fluorescence. This transgenic mouse will allow following the transient local induction of Hsp-70 promoter beyond its induction time-frame and relate into subsequent dynamic biological effects of the heat-shock response.
Collapse
Affiliation(s)
- Pierre-Yves Fortin
- Laboratoire d'Imagerie Moléculaire et Fonctionnelle (IMF), Université Bordeaux Segalen, CNRS/UMR 5231, Université Bordeaux2, France ; IBIO, Université Bordeaux Segalen, CNRS/UMR 3428, Université Bordeaux 2, France
| | - Coralie Genevois
- Laboratoire d'Imagerie Moléculaire et Fonctionnelle (IMF), Université Bordeaux Segalen, CNRS/UMR 5231, Université Bordeaux2, France ; IBIO, Université Bordeaux Segalen, CNRS/UMR 3428, Université Bordeaux 2, France
| | - Mathilde Chapolard
- Laboratoire d'Imagerie Moléculaire et Fonctionnelle (IMF), Université Bordeaux Segalen, CNRS/UMR 5231, Université Bordeaux2, France
| | - Tomàs Santalucía
- Department of Brain Ischemia and Neurodegeneration, Institute for Biomedical Research of Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Anna M Planas
- Department of Brain Ischemia and Neurodegeneration, Institute for Biomedical Research of Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Franck Couillaud
- Laboratoire d'Imagerie Moléculaire et Fonctionnelle (IMF), Université Bordeaux Segalen, CNRS/UMR 5231, Université Bordeaux2, France ; . Centre de Résonance Magnétique des Systèmes Biologiques (RMSB), Université Bordeaux Segalen, CNRS/UMR 5536, Université Bordeaux 2, France
| |
Collapse
|
5
|
Hoerr V, Faber C. Magnetic resonance imaging characterization of microbial infections. J Pharm Biomed Anal 2013; 93:136-46. [PMID: 24257444 DOI: 10.1016/j.jpba.2013.10.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 10/19/2013] [Accepted: 10/23/2013] [Indexed: 12/18/2022]
Abstract
The investigation of microbial infections relies to a large part on animal models of infection, if host pathogen interactions or the host response are considered. Especially for the assessment of novel therapeutic agents, animal models are required. Non-invasive imaging methods to study such models have gained increasing importance over the recent years. In particular, magnetic resonance imaging (MRI) affords a variety of diagnostic options, and can be used for longitudinal studies. In this review, we introduce the most important MRI modalities that show how MRI has been used for the investigation of animal models of infection previously and how it may be applied in the future.
Collapse
Affiliation(s)
- Verena Hoerr
- Department of Clinical Radiology, University Hospital of Muenster, 48149 Muenster, Germany.
| | - Cornelius Faber
- Department of Clinical Radiology, University Hospital of Muenster, 48149 Muenster, Germany
| |
Collapse
|
6
|
Tourdias T, Dousset V. Neuroinflammatory imaging biomarkers: relevance to multiple sclerosis and its therapy. Neurotherapeutics 2013; 10:111-23. [PMID: 23132327 PMCID: PMC3557362 DOI: 10.1007/s13311-012-0155-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Magnetic resonance imaging is an established tool in the management of multiple sclerosis (MS). Loss of blood brain barrier integrity assessed by gadolinium (Gd) enhancement is the current standard marker of MS activity. To explore the complex cascade of the inflammatory events, other magnetic resonance imaging, but also positron emission tomographic markers reviewed in this article are being developed to address active neuroinflammation with increased sensitivity and specificity. Alternative magnetic resonance contrast agents, positron emission tomographic tracers and imaging techniques could be more sensitive than Gd to early blood brain barrier alteration, and they could assess the inflammatory cell recruitment and/or the associated edema accumulation. These markers of active neuroinflammation, although some of them are limited to experimental studies, could find great relevance to complete Gd information and thereby increase our understanding of acute lesion pathophysiology and its noninvasive follow-up, especially to monitor treatment efficacy. Furthermore, such accurate markers of inflammation combined with those of neurodegeneration hold promise to provide a more complete picture of MS, which will be of great benefit for future therapeutic strategies.
Collapse
Affiliation(s)
- Thomas Tourdias
- INSERM Unit 1049 Neuroinflammation, Imagerie et Thérapie de la Sclérose en Plaques, Université de Bordeaux, 146 rue Léo Saignat, Bordeaux, F-33076, France.
| | | |
Collapse
|
7
|
Brain water channel proteins in health and disease. Mol Aspects Med 2012; 33:562-78. [DOI: 10.1016/j.mam.2012.03.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 03/28/2012] [Accepted: 03/31/2012] [Indexed: 02/07/2023]
|