1
|
Navarro-Ballester A, Álvaro-Ballester R, Lara-Martínez MÁ. Imaging biomarkers for detection and longitudinal monitoring of ventricular abnormalities from birth to childhood. World J Radiol 2025; 17:106084. [DOI: 10.4329/wjr.v17.i5.106084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/12/2025] [Accepted: 04/11/2025] [Indexed: 05/26/2025] Open
Abstract
This narrative review examines the use of imaging biomarkers for diagnosing and monitoring hydrocephalus from birth through childhood. Early detection and longitudinal follow-up are essential for guiding timely interventions and assessing treatment outcomes. Cranial ultrasound and magnetic resonance imaging (MRI) are the primary imaging modalities, providing critical insights into ventricular size, cerebrospinal fluid dynamics, and neurodevelopmental implications. Key parameters, including Evans’ index, Levene’s index, and the Cella Media index, as well as volumetric and diffusion-based MRI techniques, have been explored for their diagnostic and prognostic value. Advances in automated image analysis and artificial intelligence have further improved measurement precision and reproducibility. Despite these developments, challenges remain in standardizing imaging protocols and establishing normative reference values across different pediatric populations. This review highlights the strengths and limitations of current imaging approaches, emphasizing the need for consistent methodologies to enhance diagnostic accuracy and optimize patient management in hydrocephalus.
Collapse
Affiliation(s)
- Antonio Navarro-Ballester
- Department of Radiology, Hospital General Universitario de Castellón, Castellon de la Plana 12004, Castellón, Spain
| | - Rosa Álvaro-Ballester
- Department of Radiology, Hospital General Universitario de Castellón, Castellon de la Plana 12004, Castellón, Spain
| | - Miguel Á Lara-Martínez
- Department of Radiology, Hospital General Universitario de Castellón, Castellon de la Plana 12004, Castellón, Spain
| |
Collapse
|
2
|
Schwarz S, Denis L, Nedoschill E, Buehler A, Danko V, Hilger AC, Brevis Nuñez F, Dürr NR, Schlunz‐Hendann M, Brassel F, Felderhoff‐Müser U, Reutter H, Woelfle J, Jüngert J, Dohna‐Schwake C, Bruns N, Regensburger AP, Couture O, Mandelbaum H, Knieling F. Ultrasound Super-Resolution Imaging of Neonatal Cerebral Vascular Reorganization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415235. [PMID: 39899647 PMCID: PMC11948062 DOI: 10.1002/advs.202415235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/29/2024] [Indexed: 02/05/2025]
Abstract
During the first days of neonatal growth, the central nervous system (CNS) develops self-regulatory mechanisms to ensure constant cerebral perfusion. However, this vascular neogenesis takes place at a microscopic scale that cannot be observed with current clinical imaging techniques. Ultrasound localization microscopy (ULM) allows us to observe micro-vessels of the order of a few microns at depths of several centimeters. This can be done using conventional clinical ultrasound scanners and contrast sequences (CEUS). In this study, ULM is used to observe the human microvasculature in neonatal patients undergoing treatment for life-threatening malformations forming direct connections between the cerebral arterial and venous systems. It is observed that neuroendovascular treatment of neonatal arteriovenous malformations causes remodeling and reorganization of the cerebral vasculature by also activating corticomedullary vascular connections. ULM enables us to follow microvascular changes in human neonates with high spatio-temporal resolution. ULM may provide a novel clinical translatable tool, particularly including cerebral imaging in very young patients.
Collapse
Affiliation(s)
- Simone Schwarz
- Department of Neonatology and Pediatric Intensive Care MedicineSana Clinics DuisburgZu den Rehwiesen 947055DuisburgGermany
- Department of Pediatrics IUniversity Hospital EssenUniversity of Duisburg‐EssenHufelandstraße 5545147EssenGermany
- Centre for Translational Neuro‐ and Behavioral SciencesUniversity Hospital EssenUniversity of Duisburg‐EssenHufelandstraße 5545147EssenGermany
| | - Louise Denis
- Laboratoire d'Imagerie BiomédicaleSorbonne UniversitéCNRSINSERM15 Rue de l'Ecole de Médecine75006ParisFrance
| | - Emmanuel Nedoschill
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenLoschgestraße 1591054ErlangenGermany
| | - Adrian Buehler
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenLoschgestraße 1591054ErlangenGermany
| | - Vera Danko
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenLoschgestraße 1591054ErlangenGermany
| | - Alina C. Hilger
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenLoschgestraße 1591054ErlangenGermany
| | - Francisco Brevis Nuñez
- Department of Neonatology and Pediatric Intensive Care MedicineSana Clinics DuisburgZu den Rehwiesen 947055DuisburgGermany
| | - Nikola R. Dürr
- Clinic for Radiology and NeuroradiologySana Clinics DuisburgZu den Rehwiesen 947055DuisburgGermany
| | - Martin Schlunz‐Hendann
- Clinic for Radiology and NeuroradiologySana Clinics DuisburgZu den Rehwiesen 947055DuisburgGermany
| | - Friedhelm Brassel
- Clinic for Radiology and NeuroradiologySana Clinics DuisburgZu den Rehwiesen 947055DuisburgGermany
| | - Ursula Felderhoff‐Müser
- Department of Pediatrics IUniversity Hospital EssenUniversity of Duisburg‐EssenHufelandstraße 5545147EssenGermany
- Centre for Translational Neuro‐ and Behavioral SciencesUniversity Hospital EssenUniversity of Duisburg‐EssenHufelandstraße 5545147EssenGermany
| | - Heiko Reutter
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenLoschgestraße 1591054ErlangenGermany
| | - Joachim Woelfle
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenLoschgestraße 1591054ErlangenGermany
| | - Jörg Jüngert
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenLoschgestraße 1591054ErlangenGermany
| | - Christian Dohna‐Schwake
- Department of Pediatrics IUniversity Hospital EssenUniversity of Duisburg‐EssenHufelandstraße 5545147EssenGermany
- Centre for Translational Neuro‐ and Behavioral SciencesUniversity Hospital EssenUniversity of Duisburg‐EssenHufelandstraße 5545147EssenGermany
| | - Nora Bruns
- Department of Pediatrics IUniversity Hospital EssenUniversity of Duisburg‐EssenHufelandstraße 5545147EssenGermany
- Centre for Translational Neuro‐ and Behavioral SciencesUniversity Hospital EssenUniversity of Duisburg‐EssenHufelandstraße 5545147EssenGermany
| | - Adrian P. Regensburger
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenLoschgestraße 1591054ErlangenGermany
| | - Olivier Couture
- Laboratoire d'Imagerie BiomédicaleSorbonne UniversitéCNRSINSERM15 Rue de l'Ecole de Médecine75006ParisFrance
| | - Henriette Mandelbaum
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenLoschgestraße 1591054ErlangenGermany
| | - Ferdinand Knieling
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenLoschgestraße 1591054ErlangenGermany
| |
Collapse
|
3
|
Kibrom BT, Manyazewal T, Demma BD, Feleke TH, Kabtimer AS, Ayele ND, Korsa EW, Hailu SS. Emerging technologies in pediatric radiology: current developments and future prospects. Pediatr Radiol 2024; 54:1428-1436. [PMID: 39012407 DOI: 10.1007/s00247-024-05997-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024]
Abstract
Radiological imaging is a crucial diagnostic tool for the pediatric population. However, it is associated with several unique challenges in this age group compared to adults. These challenges mainly come from the fact that children are not small-sized adults and differ in development, anatomy, physiology, and pathology compared to adults. This paper reviews relevant articles published between January 2015 and October 2023 to analyze challenges associated with imaging technologies currently used in pediatric radiology, emerging technologies, and their role in resolving the challenges and future prospects of pediatric radiology. In recent decades, imaging technologies have advanced rapidly, developing advanced ultrasound, computed tomography, magnetic resonance, nuclear imaging, teleradiology, artificial intelligence, machine learning, three-dimensional printing, radiomics, and radiogenomics, among many others. By prioritizing the unique needs of pediatric patients while developing such technologies, we can significantly alleviate the challenges faced in pediatric radiology.
Collapse
Affiliation(s)
- Bethlehem T Kibrom
- Centre for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), College of Health Sciences, Addis Ababa University, P.O. Box 9086, Addis Ababa, Ethiopia.
| | - Tsegahun Manyazewal
- Centre for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), College of Health Sciences, Addis Ababa University, P.O. Box 9086, Addis Ababa, Ethiopia
| | - Biruk D Demma
- College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tesfahunegn H Feleke
- Centre for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), College of Health Sciences, Addis Ababa University, P.O. Box 9086, Addis Ababa, Ethiopia
- Potomac Urology Clinic, Alexandria, VA, USA
| | | | - Nitsuh D Ayele
- College of Health Sciences, Wolkite University, Wolkite, Ethiopia
| | - Eyasu W Korsa
- Department of Radiology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Samuel S Hailu
- Department of Radiology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
4
|
Zhang Z, Hwang M, Kilbaugh TJ, Katz J. Improving sub-pixel accuracy in ultrasound localization microscopy using supervised and self-supervised deep learning. MEASUREMENT SCIENCE & TECHNOLOGY 2024; 35:045701. [PMID: 38205381 PMCID: PMC10774911 DOI: 10.1088/1361-6501/ad1671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/30/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024]
Abstract
With a spatial resolution of tens of microns, ultrasound localization microscopy (ULM) reconstructs microvascular structures and measures intravascular flows by tracking microbubbles (1-5 μm) in contrast enhanced ultrasound (CEUS) images. Since the size of CEUS bubble traces, e.g. 0.5-1 mm for ultrasound with a wavelength λ = 280 μm, is typically two orders of magnitude larger than the bubble diameter, accurately localizing microbubbles in noisy CEUS data is vital to the fidelity of the ULM results. In this paper, we introduce a residual learning based supervised super-resolution blind deconvolution network (SupBD-net), and a new loss function for a self-supervised blind deconvolution network (SelfBD-net), for detecting bubble centers at a spatial resolution finer than λ/10. Our ultimate purpose is to improve the ability to distinguish closely located microvessels and the accuracy of the velocity profile measurements in macrovessels. Using realistic synthetic data, the performance of these methods is calibrated and compared against several recently introduced deep learning and blind deconvolution techniques. For bubble detection, errors in bubble center location increase with the trace size, noise level, and bubble concentration. For all cases, SupBD-net yields the least error, keeping it below 0.1 λ. For unknown bubble trace morphology, where all the supervised learning methods fail, SelfBD-net can still maintain an error of less than 0.15 λ. SupBD-net also outperforms the other methods in separating closely located bubbles and parallel microvessels. In macrovessels, SupBD-net maintains the least errors in the vessel radius and velocity profile after introducing a procedure that corrects for terminated tracks caused by overlapping traces. Application of these methods is demonstrated by mapping the cerebral microvasculature of a neonatal pig, where neighboring microvessels separated by 0.15 λ can be readily distinguished by SupBD-net and SelfBD-net, but not by the other techniques. Hence, the newly proposed residual learning based methods improve the spatial resolution and accuracy of ULM in micro- and macro-vessels.
Collapse
Affiliation(s)
- Zeng Zhang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | - Misun Hwang
- Departments of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Todd J Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Joseph Katz
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| |
Collapse
|
5
|
Xu S, Zhang J, Yue S, Qian J, Zhu D, Dong Y, Liu G, Zhang J. Global trends in neonatal MRI brain neuroimaging research over the last decade: a bibliometric analysis. Quant Imaging Med Surg 2024; 14:1526-1540. [PMID: 38415119 PMCID: PMC10895092 DOI: 10.21037/qims-23-880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/20/2023] [Indexed: 02/29/2024]
Abstract
Background Neuroimaging plays a central role in the evaluation, treatment, and prognosis of neonates. In recent years, the exploration of the developing brain has been a major focus of research for researchers and clinicians. In this study, we conducted bibliometric and visualization analyses of the related studies in the field of neonatal magnetic resonance imaging (MRI) brain neuroimaging from the past 10 years, and summarized its research status, hotspots, and frontier development trends. Methods The Web of Science core collection database was used as the literature source from which to retrieve the relevant papers and reviews in the field of neonatal MRI brain neuroimaging published in the Science Citation Index-Expanded from 2013 to 2022. VOSviewer and CiteSpace were used to conduct bibliometric and visualization analyses of the annual publication volume, countries, institutions, journals, authors, co-cited literature, and the overall distribution of keywords. Results We retrieved 3,568 papers and reviews published from 2013 to 2022. The number of publications increased during this period. The United States (US) and the United Kingdom were the largest contributors, with the US receiving the highest H-index and number of citations. The institutions that published the most were the University of London and Harvard University. The research mainly focused on cerebral cortex, brain tissue, brain structure network, artificial intelligence algorithm, automatic image segmentation, and premature infants. Conclusions This study reveals the research status and hotspots of magnetic resonance imaging in the field of neonatal brain neuroimaging in the past decade, which helps researchers to better understand the research status, hotspots, and frontier development trends.
Collapse
Affiliation(s)
- Shengfang Xu
- Second Clinical School, Lanzhou University, Lanzhou, China
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
- Medical Imaging Center, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China
| | - Jinlong Zhang
- Pulmonary and Critical Care Medicine, The 940th Hospital of the Joint Logistic Support Force of the People’s Liberation Army, Lanzhou, China
| | - Songhong Yue
- Second Clinical School, Lanzhou University, Lanzhou, China
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Jifang Qian
- Medical Imaging Center, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China
| | - Dalin Zhu
- Medical Imaging Center, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China
| | - Yankai Dong
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guangyao Liu
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Jing Zhang
- Second Clinical School, Lanzhou University, Lanzhou, China
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| |
Collapse
|
6
|
Zhou C, Zhu X, Li J, Luo Y, Zhou Y. Dynamic assessment of brain perfusion in a middle cerebral artery occlusion rat model by contrast-enhanced ultrasound imaging: a pilot study. Acta Radiol 2023; 64:3042-3051. [PMID: 37872652 DOI: 10.1177/02841851231205163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
BACKGROUND The middle cerebral artery occlusion model (MCAo) is a commonly used animal model for cerebral ischemia studies but lacks accessible imaging techniques for the assessment of hemodynamic changes of the model. PURPOSE The study aims to explore the value of contrast-enhanced ultrasound (CEUS) in evaluating brain perfusion in the early stages after MCAo surgery. MATERIAL AND METHODS In total, 18 adult male Sprague-Dawley rats were subjected to right MCAo using an intraluminal filament model, and CEUS was performed at the three following timepoints: before (T0), immediately after (T1), and 6 h after permanent MCAo (T2). Twelve rats successfully completed the study, and their brains were removed and stained using 2, 3, 5-triphenyltetrazolium chloride (TTC). CEUS video images were visualized offline, and the time-intensity curves (TICs) were analyzed. Different cerebrovascular patterns and manifestations of the contrast enhancement in rat ischemic hemispheres were observed. Semi-quantitative parameters of TICs in ischemic areas (ROIi) and the surrounding normal- or hypo-perfused areas (ROIn) were calculated and compared between T0, T1, and T2, and also between ROIi and ROIn. RESULTS A significant correlation was found between the lesion volume (%) determined by TTC and CEUS parameters (r = -0.691, P = 0.013 for peak intensity; r = -0.742, P = 0.006 for area under the curve) at T2. After the same occlusion, there were differences in contrast perfusion in each group. CONCLUSION This study suggests that CEUS could be an effective imaging tool for studying cerebral ischemia and perfusion in small animals as long as the transcranial acoustic window allows it.
Collapse
Affiliation(s)
- Chenyun Zhou
- Department of Ultrasound, West China Hospital of Sichuan University, Chengdu, Sichuan, PR China
| | - Xiaoxia Zhu
- Department of Ultrasound, West China Hospital of Sichuan University, Chengdu, Sichuan, PR China
| | - Jin Li
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, PR China
| | - Yan Luo
- Department of Ultrasound, West China Hospital of Sichuan University, Chengdu, Sichuan, PR China
| | - Yuqing Zhou
- Department of Ultrasound, West China Hospital of Sichuan University, Chengdu, Sichuan, PR China
| |
Collapse
|
7
|
Plut D, Prutki M, Slak P. The Use of Contrast-Enhanced Ultrasound (CEUS) in the Evaluation of the Neonatal Brain. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1303. [PMID: 37628302 PMCID: PMC10453292 DOI: 10.3390/children10081303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/18/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023]
Abstract
In recent years, advancements in technology have allowed the use of contrast-enhanced ultrasounds (CEUS) with high-frequency transducers, which in turn, led to new possibilities in diagnosing a variety of diseases and conditions in the field of radiology, including neonatal brain imaging. CEUSs overcome some of the limitations of conventional ultrasounds (US) and Doppler USs. It allows the visualization of dynamic perfusion even in the smallest vessels in the whole brain and allows the quantitative analysis of perfusion parameters. An increasing number of articles are published on the topic of the use of CEUSs on children each year. In the area of brain imaging, the CEUS has already proven to be useful in cases with clinical indications, such as hypoxic-ischemic injuries, stroke, intracranial hemorrhages, vascular anomalies, brain tumors, and infections. We present and discuss the basic principles of the CEUS and its safety considerations, the examination protocol for imaging the neonatal brain, and current and emerging clinical applications.
Collapse
Affiliation(s)
- Domen Plut
- Clinical Radiology Institute, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Department of Radiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Maja Prutki
- Clinical Department of Diagnostic and Interventional Radiology, University Hospital Center Zagreb, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Peter Slak
- Clinical Radiology Institute, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Department of Radiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
8
|
Larson AC, Sridharan A, Moon JK, Agarwal D, Chang J, Wallace KD, Forsberg F, Didier RA. Contrast-enhanced subharmonic aided pressure estimation for assessment of intracranial pressure in vivo. Pediatr Radiol 2023; 53:1640-1647. [PMID: 37062765 DOI: 10.1007/s00247-023-05637-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 04/18/2023]
Abstract
BACKGROUND Intracranial pressure (ICP) monitoring in children currently requires invasive techniques. Subharmonic aided pressure estimation (SHAPE) uses contrast-enhanced ultrasound (CEUS) to measure intravascular and interstitial pressure, but utility in ICP measurements has yet to be explored. OBJECTIVE The objective of this study was to investigate SHAPE as a novel tool for noninvasive ICP measurements in fetal lambs. MATERIALS AND METHODS Eighteen fetal lambs at 107-139 days gestational age (term = 145 days) underwent subdural ICP catheter placement. The brain was imaged in the coronal plane in CEUS mode optimized for SHAPE, while infusing an US contrast agent into the fetal circulation. After SHAPE calibration, saline was infused via the subdural catheter to increase ICP. Five-second SHAPE cine clips were obtained at various ICPs. Subharmonic intensity values of the whole brain and thalami were correlated with ICP values using mixed effects linear regression analyses and the strength of the relationship was evaluated by Spearman's rank-order correlation. RESULTS Forty-nine experiments produced 723 datapoints, including SHAPE intensity values and mean ICP measurements. There was a statistically significant inverse relationship between SHAPE intensity values and ICP measurements in the whole brain and thalami (median rho value - 0.58 and - 0.56, respectively). CONCLUSION SHAPE intensity values of the brain demonstrate an inverse and statistically significant correlation with in vivo ICP measurements in an animal model.
Collapse
Affiliation(s)
- Abby C Larson
- Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Anush Sridharan
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - James K Moon
- Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Divyansh Agarwal
- Perelmen School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jonathan Chang
- Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Flemming Forsberg
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ryne A Didier
- Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA.
- Perelmen School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Ko TS, Catennacio E, Shin SS, Stern J, Massey SL, Kilbaugh TJ, Hwang M. Advanced Neuromonitoring Modalities on the Horizon: Detection and Management of Acute Brain Injury in Children. Neurocrit Care 2023; 38:791-811. [PMID: 36949362 PMCID: PMC10241718 DOI: 10.1007/s12028-023-01690-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 01/31/2023] [Indexed: 03/24/2023]
Abstract
Timely detection and monitoring of acute brain injury in children is essential to mitigate causes of injury and prevent secondary insults. Increasing survival in critically ill children has emphasized the importance of neuroprotective management strategies for long-term quality of life. In emergent and critical care settings, traditional neuroimaging modalities, such as computed tomography and magnetic resonance imaging (MRI), remain frontline diagnostic techniques to detect acute brain injury. Although detection of structural and anatomical abnormalities remains crucial, advanced MRI sequences assessing functional alterations in cerebral physiology provide unique diagnostic utility. Head ultrasound has emerged as a portable neuroimaging modality for point-of-care diagnosis via assessments of anatomical and perfusion abnormalities. Application of electroencephalography and near-infrared spectroscopy provides the opportunity for real-time detection and goal-directed management of neurological abnormalities at the bedside. In this review, we describe recent technological advancements in these neurodiagnostic modalities and elaborate on their current and potential utility in the detection and management of acute brain injury.
Collapse
Affiliation(s)
- Tiffany S Ko
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, USA.
| | - Eva Catennacio
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Samuel S Shin
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, USA
| | - Joseph Stern
- Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, USA
| | - Shavonne L Massey
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Todd J Kilbaugh
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Misun Hwang
- Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
10
|
Tierradentro-García LO, Saade-Lemus S, Freeman C, Kirschen M, Huang H, Vossough A, Hwang M. Cerebral Blood Flow of the Neonatal Brain after Hypoxic-Ischemic Injury. Am J Perinatol 2023; 40:475-488. [PMID: 34225373 PMCID: PMC8974293 DOI: 10.1055/s-0041-1731278] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Hypoxic-ischemic encephalopathy (HIE) in infants can have long-term adverse neurodevelopmental effects and markedly reduce quality of life. Both the initial hypoperfusion and the subsequent rapid reperfusion can cause deleterious effects in brain tissue. Cerebral blood flow (CBF) assessment in newborns with HIE can help detect abnormalities in brain perfusion to guide therapy and prognosticate patient outcomes. STUDY DESIGN The review will provide an overview of the pathophysiological implications of CBF derangements in neonatal HIE, current and emerging techniques for CBF quantification, and the potential to utilize CBF as a physiologic target in managing neonates with acute HIE. CONCLUSION The alterations of CBF in infants during hypoxia-ischemia have been studied by using different neuroimaging techniques, including nitrous oxide and xenon clearance, transcranial Doppler ultrasonography, contrast-enhanced ultrasound, arterial spin labeling MRI, 18F-FDG positron emission tomography, near-infrared spectroscopy (NIRS), functional NIRS, and diffuse correlation spectroscopy. Consensus is lacking regarding the clinical significance of CBF estimations detected by these different modalities. Heterogeneity in the imaging modality used, regional versus global estimations of CBF, time for the scan, and variables impacting brain perfusion and cohort clinical characteristics should be considered when translating the findings described in the literature to routine practice and implementation of therapeutic interventions. KEY POINTS · Hypoxic-ischemic injury in infants can result in adverse long-term neurologic sequelae.. · Cerebral blood flow is a useful biomarker in neonatal hypoxic-ischemic injury.. · Imaging modality, variables affecting cerebral blood flow, and patient characteristics affect cerebral blood flow assessment..
Collapse
Affiliation(s)
| | - Sandra Saade-Lemus
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Neurology, Brigham and Women’s Hospital & Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Colbey Freeman
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Matthew Kirschen
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Hao Huang
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Arastoo Vossough
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Misun Hwang
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
11
|
Hwang M, Tierradentro-Garcia LO. A concise guide to transtemporal contrast-enhanced ultrasound in children. J Ultrasound 2023; 26:229-237. [PMID: 35567704 PMCID: PMC10063699 DOI: 10.1007/s40477-022-00690-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/22/2022] [Indexed: 12/27/2022] Open
Abstract
Brain contrast-enhanced ultrasound offers insights into the brain beyond the anatomic information offered by conventional grayscale ultrasound. In infants, the open fontanelles serve as acoustic windows. In children, whose fontanelles are closed, the temporal bone serves as the ideal acoustic window due to its relatively smaller thickness than the other skull bones. Diagnosis of common neurologic diseases such as stroke, hemorrhage, and hydrocephalus has been performed using the technique. Transtemporal ultrasound and contrast-enhanced ultrasound, however, are rarely used in children due to the prevalent notion that the limited acoustic penetrance degrades diagnostic quality. This review seeks to provide guidelines for the use of transtemporal brain contrast-enhanced ultrasound in children.
Collapse
Affiliation(s)
- Misun Hwang
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
| | | |
Collapse
|
12
|
Slak P, Pušnik L, Plut D. Contrast-Enhanced Ultrasound (CEUS) as an Ancillary Imaging Test for Confirmation of Brain Death in an Infant: A Case Report. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9101525. [PMID: 36291460 PMCID: PMC9600316 DOI: 10.3390/children9101525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/27/2022]
Abstract
The practices for determining brain death are based on clinical criteria and vary immensely across countries. Cerebral angiography and perfusion scintigraphy are the most commonly used ancillary imaging tests for brain death confirmation in children; however, they both share similar shortcomings. Hence, contrast-enhanced ultrasound (CEUS) as a relatively inexpensive, easily accessible, and easy-to-perform technique has been proposed as an ancillary imaging test for brain death confirmation. CEUS has established itself as a favourable and widely used diagnostic imaging method in many different areas, but its application in delineating brain pathologies still necessities further validation. Herein, we present a case report of a 1-year-old polytraumatised patient in whom CEUS was applied as an ancillary imaging test for confirmation of brain death. As CEUS has not been validated as an ancillary test for brain death confirmation, the diagnosis was additionally confirmed with cerebral perfusion scintigraphy.
Collapse
Affiliation(s)
- Peter Slak
- Clinical Radiology Institute, University Medical Centre Ljubljana, Ljubljana 1000, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Luka Pušnik
- Faculty of Medicine, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Domen Plut
- Clinical Radiology Institute, University Medical Centre Ljubljana, Ljubljana 1000, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana 1000, Slovenia
- Correspondence:
| |
Collapse
|
13
|
Hwang M, Zhang Z, Katz J, Freeman C, Kilbaugh T. Brain contrast-enhanced ultrasonography and elastography in infants. Ultrasonography 2022; 41:633-649. [PMID: 35879109 PMCID: PMC9532200 DOI: 10.14366/usg.21224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/20/2022] [Accepted: 03/30/2022] [Indexed: 11/19/2022] Open
Abstract
Advanced ultrasound techniques, including brain contrast-enhanced ultrasonography and elastography, are increasingly being explored to better understand infant brain health. While conventional brain ultrasonography provides a convenient, noninvasive means of assessing major intracranial pathologies, its value in revealing functional and physiologic insights into the brain lags behind advanced imaging techniques such as magnetic resonance imaging. In this regard, contrast-enhanced ultrasonography provides highly precise functional information on macrovascular and microvascular perfusion, while brain elastography offers information on brain stiffness that may be associated with relevant physiological factors of diagnostic, therapeutic, and/or prognostic utility. This review details the technical background, current understanding and utility, and future directions of these two emerging advanced ultrasound techniques for neonatal brain applications.
Collapse
Affiliation(s)
- Misun Hwang
- Department of Radiology, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zeng Zhang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Joseph Katz
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Colbey Freeman
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Todd Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
14
|
Hwang M, Sridharan A, Freeman CW, Viaene AN, Kilbaugh TJ. Contrast-Enhanced Ultrasound of Brain Perfusion in Cardiopulmonary Resuscitation. Ultrasound Q 2022; 38:257-261. [PMID: 35221316 PMCID: PMC9402813 DOI: 10.1097/ruq.0000000000000596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT To evaluate the feasibility and potential utility of contrast-enhanced ultrasound for real-time imaging of whole-brain perfusion during cardiopulmonary resuscitation (CPR), cardiac arrest was induced in 8- to 7-week-old 10-kg piglets ( Sus scrofa domesticus ). Contrast-enhanced ultrasound was performed through a parietal cranial window in the coronal plane visualizing the thalami during hemodynamic-directed CPR. Whole-brain mean and maximum pixel intensities in each slice during resuscitation were calculated. Piglets were monitored for 24 hours postarrest. Seven piglets achieved return of spontaneous circulation and 6 survived to 24 hours. Of the 6 surviving piglets, 2 piglets demonstrated greater intra-CPR brain enhancement at maximum 73.2% and 42.1% and mean 36.7% and 31.9% enhancement above background, respectively, compared with maximum 5.8%, 22.9%, 6.0%, and 26.6% and mean 5.1%, 8.9%, 2.9%, and 6.6% above background, respectively, in the other 4. Intra-CPR average mean arterial pressures were similar between all 6 surviving piglets. One piglet achieved return of spontaneous circulation but expired 10 minutes later with enhancement maximum 45.2% and mean 18.9% enhancement above background. The final piglet did not achieve return of spontaneous circulation and exhibited minimal enhancement at maximum 2.8% and mean 0.9% enhancement above background. Contrast-enhanced ultrasound can detect brain perfusion during CPR, identifying a spectrum of cerebral blood flow responses in the brain despite similar systemic hemodynamics. This novel application can form the basis for future large animal model studies and eventually human clinical studies to further explore the neurologic implications of cerebral blood flow responses during resuscitation and stimulate novel strategies for optimizing brain perfusion restoration.
Collapse
Affiliation(s)
- Misun Hwang
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Anush Sridharan
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Colbey W. Freeman
- Department of Radiology, University of Pennsylvania Health System, Philadelphia, PA
| | - Angela N. Viaene
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Health System, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Todd J. Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
| |
Collapse
|
15
|
Hwang M, Haddad S, Tierradentro-Garcia LO, Alves CA, Taylor GA, Darge K. Current understanding and future potential applications of cerebral microvascular imaging in infants. Br J Radiol 2022; 95:20211051. [PMID: 35143338 PMCID: PMC10993979 DOI: 10.1259/bjr.20211051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/16/2021] [Accepted: 01/28/2022] [Indexed: 01/09/2023] Open
Abstract
Microvascular imaging is an advanced Doppler ultrasound technique that detects slow flow in microvessels by suppressing clutter signal and motion-related artifacts. The technique has been applied in several conditions to assess organ perfusion and lesion characteristics. In this pictorial review, we aim to describe current knowledge of the technique, particularly its diagnostic utility in the infant brain, and expand on the unexplored but promising clinical applications of microvascular imaging in the brain with case illustrations.
Collapse
Affiliation(s)
- Misun Hwang
- Department of Radiology, Children’s Hospital of
Philadelphia, Philadelphia,
USA
- Department of Radiology, Perelman School of Medicine,
University of Pennsylvania,
Philadelphia, USA
| | - Sophie Haddad
- Department of Radiology, Children’s Hospital of
Philadelphia, Philadelphia,
USA
| | | | - Cesar Augusto Alves
- Department of Radiology, Children’s Hospital of
Philadelphia, Philadelphia,
USA
| | - George A. Taylor
- Department of Radiology, Children’s Hospital of
Philadelphia, Philadelphia,
USA
- Department of Radiology, Perelman School of Medicine,
University of Pennsylvania,
Philadelphia, USA
- Department of Radiology, Boston Children’s
Hospital, Boston,
USA
| | - Kassa Darge
- Department of Radiology, Children’s Hospital of
Philadelphia, Philadelphia,
USA
- Department of Radiology, Perelman School of Medicine,
University of Pennsylvania,
Philadelphia, USA
| |
Collapse
|
16
|
Gumus M, Oommen KC, Squires JH. Contrast-enhanced ultrasound of the neonatal brain. Pediatr Radiol 2022; 52:837-846. [PMID: 34333692 DOI: 10.1007/s00247-021-05157-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/03/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022]
Abstract
Cranial US is an integral component of evaluating the neonatal brain, especially in the setting of critically ill infants and in the emergency setting, because cranial US can be performed portably at the bedside, is safe, and can be repeated whenever needed. Contrast-enhanced ultrasound (CEUS) involves intravenously injecting microbubbles to allow for improved visibility of large and small vessels to assess vascularity and is becoming a widespread technique to improve diagnostic performance of US across a broad spectrum of applications. CEUS has the potential to add value to routine brain US and become a useful adjunct to MRI in infants in need of bedside imaging. In this review we describe the basics of US contrast agents and CEUS technique, including safety considerations, and detail the potential clinical uses of brain CEUS.
Collapse
Affiliation(s)
- Memduha Gumus
- Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Kevin C Oommen
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Judy H Squires
- Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
- Department of Pediatric Radiology, UPMC Children's Hospital of Pittsburgh, 2nd Floor Radiology, 4401 Penn Ave., Pittsburgh, PA, 15224, USA.
| |
Collapse
|
17
|
Hwang M, Tierradentro-García LO, Hussaini SH, Cajigas-Loyola SC, Kaplan SL, Otero HJ, Bellah RD. Ultrasound imaging of preterm brain injury: fundamentals and updates. Pediatr Radiol 2022; 52:817-836. [PMID: 34648071 DOI: 10.1007/s00247-021-05191-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/22/2021] [Accepted: 08/12/2021] [Indexed: 11/25/2022]
Abstract
Neurosonography has become an essential tool for diagnosis and serial monitoring of preterm brain injury. Preterm infants are at significantly higher risk of hypoxic-ischemic injury, intraventricular hemorrhage, periventricular leukomalacia and post-hemorrhagic hydrocephalus. Neonatologists have become increasingly dependent on neurosonography to initiate medical and surgical interventions because it can be used at the bedside. While brain MRI is regarded as the gold standard for detecting preterm brain injury, neurosonography offers distinct advantages such as its cost-effectiveness, diagnostic utility and convenience. Neurosonographic signatures associated with poor long-term outcomes shape decisions regarding supportive care, medical or behavioral interventions, and family members' expectations. Within the last decade substantial progress has been made in neurosonography techniques, prompting an updated review of the topic. In addition to the up-to-date summary of neurosonography, this review discusses the potential roles of emerging neurosonography techniques that offer new functional insights into the brain, such as superb microvessel imaging, elastography, three-dimensional ventricular volume assessment, and contrast-enhanced US.
Collapse
Affiliation(s)
- Misun Hwang
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA.
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Luis O Tierradentro-García
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
| | - Syed H Hussaini
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephanie C Cajigas-Loyola
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Summer L Kaplan
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hansel J Otero
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Richard D Bellah
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
18
|
Yi HM, Lowerison MR, Song PF, Zhang W. A Review of Clinical Applications for Super-resolution Ultrasound Localization Microscopy. Curr Med Sci 2022; 42:1-16. [PMID: 35167000 DOI: 10.1007/s11596-021-2459-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/11/2021] [Indexed: 12/21/2022]
Abstract
Microvascular structure and hemodynamics are important indicators for the diagnosis and assessment of many diseases and pathologies. The structural and functional imaging of tissue microvasculature in vivo is a clinically significant objective for the development of many imaging modalities. Contrast-enhanced ultrasound (CEUS) is a popular clinical tool for characterizing tissue microvasculature, due to the moderate cost, wide accessibility, and absence of ionizing radiation of ultrasound. However, in practice, it remains challenging to demonstrate microvasculature using CEUS, due to the resolution limit of conventional ultrasound imaging. In addition, the quantification of tissue perfusion by CEUS remains hindered by high operator-dependency and poor reproducibility. Inspired by super-resolution optical microscopy, super-resolution ultrasound localization microscopy (ULM) was recently developed. ULM uses the same ultrasound contrast agent (i.e. microbubbles) in CEUS. However, different from CEUS, ULM uses the location of the microbubbles to construct images, instead of using the backscattering intensity of microbubbles. Hence, ULM overcomes the classic compromise between imaging resolution and penetration, allowing for the visualization of capillary-scale microvasculature deep within tissues. To date, many in vivo ULM results have been reported, including both animal (kidney, brain, spinal cord, xenografted tumor, and ear) and human studies (prostate, tibialis anterior muscle, and breast cancer tumors). Furthermore, a variety of useful biomarkers have been derived from using ULM for different preclinical and clinical applications. Due to the high spatial resolution and accurate blood flow speed estimation (approximately 1 mm/s to several cm/s), ULM presents as an enticing alternative to CEUS for characterizing tissue microvasculature in vivo. This review summarizes the principles and present applications of CEUS and ULM, and discusses areas where ULM can potentially provide a better alternative to CEUS in clinical practice and areas where ULM may not be a better alternative. The objective of the study is to provide clinicians with an up-to-date review of ULM technology, and a practical guide for implementing ULM in clinical research and practice.
Collapse
Affiliation(s)
- Hui-Ming Yi
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, 61801, USA.,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, 61801, USA
| | - Matthew R Lowerison
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, 61801, USA.,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, 61801, USA
| | - Peng-Fei Song
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, 61801, USA.,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, 61801, USA
| | - Wei Zhang
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, 61801, USA. .,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, 61801, USA.
| |
Collapse
|
19
|
Zhang Z, Hwang M, Kilbaugh TJ, Sridharan A, Katz J. Cerebral microcirculation mapped by echo particle tracking velocimetry quantifies the intracranial pressure and detects ischemia. Nat Commun 2022; 13:666. [PMID: 35115552 PMCID: PMC8814032 DOI: 10.1038/s41467-022-28298-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/14/2022] [Indexed: 12/26/2022] Open
Abstract
Affecting 1.1‰ of infants, hydrocephalus involves abnormal accumulation of cerebrospinal fluid, resulting in elevated intracranial pressure (ICP). It is the leading cause for brain surgery in newborns, often causing long-term neurologic disabilities or even death. Since conventional invasive ICP monitoring is risky, early neurosurgical interventions could benefit from noninvasive techniques. Here we use clinical contrast-enhanced ultrasound (CEUS) imaging and intravascular microbubble tracking algorithms to map the cerebral blood flow in hydrocephalic pediatric porcine models. Regional microvascular perfusions are quantified by the cerebral microcirculation (CMC) parameter, which accounts for the concentration of micro-vessels and flow velocity in them. Combining CMC with hemodynamic parameters yields functional relationships between cortical micro-perfusion and ICP, with correlation coefficients exceeding 0.85. For cerebral ischemia cases, the nondimensionalized cortical micro-perfusion decreases by an order of magnitude when ICP exceeds 50% of the MAP. These findings suggest that CEUS-based CMC measurement is a plausible noninvasive method for assessing the ICP and detecting ischemia.
Collapse
Affiliation(s)
- Zeng Zhang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Misun Hwang
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Todd J Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Anush Sridharan
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Joseph Katz
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
20
|
Freeman CW, Hwang M. Advanced Ultrasound Techniques for Neuroimaging in Pediatric Critical Care: A Review. CHILDREN (BASEL, SWITZERLAND) 2022; 9:170. [PMID: 35204891 PMCID: PMC8870205 DOI: 10.3390/children9020170] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/31/2022]
Abstract
Because of its portability, safety profile, and accessibility, ultrasound has been integral in pediatric neuroimaging. While conventional B-mode and Doppler ultrasound provide anatomic and limited flow information, new and developing advanced ultrasound techniques are facilitating real-time visualization of brain perfusion, microvascular flow, and changes in tissue stiffness in the brain. These techniques, which include contrast-enhanced ultrasound, microvascular imaging, and elastography, are providing new insights into and new methods of evaluating pathologies affecting children requiring critical care, including hypoxic-ischemic encephalopathy, stroke, and hydrocephalus. This review introduces advanced neurosonography techniques and their clinical applications in pediatric neurocritical care.
Collapse
Affiliation(s)
- Colbey W. Freeman
- Department of Radiology, University of Pennsylvania Health System, Philadelphia, PA 19104, USA;
| | - Misun Hwang
- Department of Radiology, University of Pennsylvania Health System, Philadelphia, PA 19104, USA;
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|
21
|
Lawrence KM, Coons BE, Sridharan A, Davey MG, Flake AW, Didier RA. Contrast-Enhanced Brain Ultrasound Perfusion Metrics in the EXTra-Uterine Environment for Neonatal Development (EXTEND): Correlation With Hemodynamic Parameters. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2021; 40:2571-2579. [PMID: 33512029 DOI: 10.1002/jum.15642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/31/2020] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVES Contrast-enhanced ultrasound (CEUS) can provide quantitative perfusion metrics and may be useful to detect cerebral pathology in neonates and premature infants, particularly in extrauterine environments. The effect of hemodynamics on cerebral perfusion metrics is unknown, which limits the clinical application of this technology. We aimed to determine associations between systemic hemodynamics and concurrently measured brain perfusion parameters in an animal model of extrauterine support. METHODS Nine fetal lambs were transferred to an extrauterine support device. Lumason® ultrasound contrast (0.1-0.3 ml) was administered via the umbilical vein and 90-second cine clips were obtained. Time-intensity-curves (TICs) were generated and time-dependent and area-under-curve (AUC) parameters were derived. Associations between brain perfusion metrics and hemodynamics including heart rate (HR) and mean arterial pressure (MAP) were evaluated by multilevel linear mixed-effects models. RESULTS Eighty-six ultrasound examinations were performed and 72 examinations were quantifiable. Time-dependent measurements were independent of all hemodynamic parameters (all p ≥.05). Oxygen delivery and mean blood flow were correlated with AUC measurements (all p ≤.01). Physiologic HR and MAP were not correlated with any measurements (all p ≥.05). CONCLUSION Detected aberrations in time-dependent CEUS measurements are not correlated with hemodynamic parameters and are thought to reflect the changes in cerebral blood flow, thus providing a promising tool for evaluation of brain perfusion. CEUS brain perfusion parameters are not correlated with physiologic HR and MAP, but AUC-dependent measurements are correlated with oxygen delivery and blood flow, suggesting that CEUS offers additional value over standard monitoring. Overall, these findings enhance the applicability of this technology.
Collapse
Affiliation(s)
- Kendall M Lawrence
- Center for Fetal Research, Department of Surgery, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Barbara E Coons
- Center for Fetal Research, Department of Surgery, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Anush Sridharan
- Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Marcus G Davey
- Center for Fetal Research, Department of Surgery, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Alan W Flake
- Center for Fetal Research, Department of Surgery, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ryne A Didier
- Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
22
|
Hwang M, Barnewolt CE, Jüngert J, Prada F, Sridharan A, Didier RA. Contrast-enhanced ultrasound of the pediatric brain. Pediatr Radiol 2021; 51:2270-2283. [PMID: 33599780 PMCID: PMC11458139 DOI: 10.1007/s00247-021-04974-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/10/2020] [Accepted: 01/14/2021] [Indexed: 12/16/2022]
Abstract
Brain contrast-enhanced ultrasound (CEUS) is an emerging application that can complement gray-scale US and yield additional insights into cerebral flow dynamics. CEUS uses intravenous injection of ultrasound contrast agents (UCAs) to highlight tissue perfusion and thus more clearly delineate cerebral pathologies including stroke, hypoxic-ischemic injury and focal lesions such as tumors and vascular malformations. It can be applied not only in infants with open fontanelles but also in older children and adults via a transtemporal window or surgically created acoustic window. Advancements in CEUS technology and post-processing methods for quantitative analysis of UCA kinetics further elucidate cerebral microcirculation. In this review article we discuss the CEUS examination protocol for brain imaging in children, current clinical applications and future directions for research and clinical uses of brain CEUS.
Collapse
Affiliation(s)
- Misun Hwang
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA.
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Carol E Barnewolt
- Department of Radiology, Boston Children's Hospital, Harvard University, Boston, MA, USA
| | - Jörg Jüngert
- Department of Pediatrics, Friedrich-Alexander University Erlangen - Nürnberg, Erlangen, Germany
| | - Francesco Prada
- Acoustic Neuroimaging and Therapy Laboratory, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Neurological Surgery, University of Virginia School of Medicine, Charlottesville, VA, USA
- Focused Ultrasound Foundation, Charlottesville, VA, USA
| | - Anush Sridharan
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
| | - Ryne A Didier
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
23
|
Shin SS, Hwang M, Diaz-Arrastia R, Kilbaugh TJ. Inhalational Gases for Neuroprotection in Traumatic Brain Injury. J Neurotrauma 2021; 38:2634-2651. [PMID: 33940933 PMCID: PMC8820834 DOI: 10.1089/neu.2021.0053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Despite multiple prior pharmacological trials in traumatic brain injury (TBI), the search for an effective, safe, and practical treatment of these patients remains ongoing. Given the ease of delivery and rapid absorption into the systemic circulation, inhalational gases that have neuroprotective properties will be an invaluable resource in the clinical management of TBI patients. In this review, we perform a systematic review of both pre-clinical and clinical reports describing inhalational gas therapy in the setting of TBI. Hyperbaric oxygen, which has been investigated for many years, and some of the newest developments are reviewed. Also, promising new therapies such as hydrogen gas, hydrogen sulfide gas, and nitric oxide are discussed. Moreover, novel therapies such as xenon and argon gases and delivery methods using microbubbles are explored.
Collapse
Affiliation(s)
- Samuel S. Shin
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Misun Hwang
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Todd J. Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
24
|
Prada F, Vetrano IG, Gennari AG, Mauri G, Martegani A, Solbiati L, Sconfienza LM, Quaia E, Kearns KN, Kalani MYS, Park MS, DiMeco F, Dietrich C. How to Perform Intra-Operative Contrast-Enhanced Ultrasound of the Brain-A WFUMB Position Paper. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:2006-2016. [PMID: 34045096 DOI: 10.1016/j.ultrasmedbio.2021.04.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 04/11/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Intra-operative ultrasound has become a relevant imaging modality in neurosurgical procedures. While B-mode, with its intrinsic limitations, is still considered the primary ultrasound modality, intra-operative contrast-enhanced ultrasound (ioCEUS) has more recently emerged as a powerful tool in neurosurgery. Though still not used on a large scale, ioCEUS has proven its utility in defining tumor boundaries, identifying lesion vascular supply and mapping neurovascular architecture. Here we propose a step-by-step procedure for performing ioCEUS analysis of the brain, highlighting its neurosurgical applications. Moreover, we provide practical advice on the use of ultrasound contrast agents and review technical ultrasound parameters influencing ioCEUS imaging.
Collapse
Affiliation(s)
- Francesco Prada
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy; Department of Neurological Surgery, University of Virginia Health Science Center, Charlottesville, VA, USA; Focused Ultrasound Foundation, Charlottesville, VA, USA.
| | - Ignazio G Vetrano
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Antonio G Gennari
- Department of Neuropediatrics, MR Research Center, University Children's Hospital, Zurich, Switzerland
| | - Giovanni Mauri
- Division of Interventional Radiology, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Luigi Solbiati
- Division of Radiology, Humanitas Research Hospital, Rozzano, Italy
| | | | - Emilio Quaia
- Radiology Institute, Department of Medicine-DIMED, University of Padova, Padova, Italy
| | - Kathryn N Kearns
- Department of Neurological Surgery, University of Virginia Health Science Center, Charlottesville, VA, USA
| | - M Yashar S Kalani
- University of Oklahoma School of Medicine, St. John's Neuroscience Institute, Tulsa, OK, USA
| | - Min S Park
- Department of Neurological Surgery, University of Virginia Health Science Center, Charlottesville, VA, USA
| | - Francesco DiMeco
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Department of Neurological Surgery, Johns Hopkins Medical School, Baltimore, MD, USA
| | - Christoph Dietrich
- Department of Internal Medicine, Caritas Krankenhaus Bad Mergentheim, Bern, Switzerland
| |
Collapse
|
25
|
Hwang M. Gray-scale ultrasound findings of hypoxic-ischemic injury in term infants. Pediatr Radiol 2021; 51:1738-1747. [PMID: 33687495 DOI: 10.1007/s00247-021-04983-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/10/2020] [Accepted: 01/25/2021] [Indexed: 12/29/2022]
Abstract
Brain ultrasound has become a critical tool for bedside screening and monitoring of hypoxic-ischemic injury in infants. Transfontanellar ultrasound in infants allows delineation of anatomical structures of the brain and posterior fossa. The technique's low cost, lack of ionizing radiation and repeatability make it a popular alternative to magnetic resonance imaging. The published literature on interpreting hypoxic-ischemic injury on brain ultrasound is wide and varied, yet diagnostic challenges remain when detecting subtle or diffuse changes. This pictorial essay summarizes and illustrates the spectrum of sonographic findings of hypoxic-ischemic injuries in term infants.
Collapse
Affiliation(s)
- Misun Hwang
- Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA.
| |
Collapse
|
26
|
Wood JR, Pedersen RC, Rooks VJ. Neuroimaging for the Primary Care Provider: A Review of Modalities, Indications, and Pitfalls. Pediatr Clin North Am 2021; 68:715-725. [PMID: 34247704 DOI: 10.1016/j.pcl.2021.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
When evaluating a child with a potential neurologic or neurodevelopmental disorder, identifying indications for imaging and the correct imaging modality to order can be challenging. This article provides an overview of computed tomography, MRI, ultrasonography, and radiography with an emphasis on indications for use, pitfalls to be avoided, and recent advances. A discussion of the appropriate use of ionizing radiation, intravenous contrast, and sedation is also provided.
Collapse
Affiliation(s)
- Jonathan R Wood
- Department of Radiology, Tripler Army Medical Center, 1 Jarrett White Road, MCHK-DR, Honolulu, HI 96859, USA.
| | - Robert C Pedersen
- Department of Pediatrics, Hawaii Permanente Medical Group, 2828 Paa Street, Honolulu, HI 96819, USA
| | - Veronica J Rooks
- Department of Radiology, Tripler Army Medical Center, 1 Jarrett White Road, MCHK-DR, Honolulu, HI 96859, USA
| |
Collapse
|
27
|
Editorial Comment: Contrast-Enhanced Ultrasound of the Brain-Potential Applications in the Neonatal ICU. AJR Am J Roentgenol 2021; 218:162. [PMID: 34286597 DOI: 10.2214/ajr.21.26570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Feasibility and Safety of Neonatal Brain Contrast-Enhanced Ultrasound: A Prospective Study Using MRI as Reference Standard. AJR Am J Roentgenol 2021; 218:152-161. [PMID: 34286594 DOI: 10.2214/ajr.21.26274] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background: MRI is the gold standard for neonatal brain imaging but is expensive, time-consuming, potentially limited by availability and accessibility, and may be contraindicated in some patients. Transfontanelle neonatal head ultrasound is an excellent alternative but may be less sensitive and specific than MRI. Contrast-enhanced ultrasound (CEUS) has the potential to improve ultrasound's capabilities. Objective: To prospectively evaluate the feasibility, safety, and diagnostic performance of transfontanelle neonatal brain contrast-enhanced ultrasound (CEUS), using MRI as the reference standard. Methods: Neonates in the institutional neonatal ICU undergoing MRI as part of clinical care were prospectively recruited to undergo portable brain ultrasound and CEUS for research purposes. Brain ultrasound and CEUS were performed portably, without moving the patient from the isolette or crib in the NICU. Adverse events were recorded. Two radiologists independently evaluated ultrasound and CEUS images for abnormalities and then reached consensus for discrepancies. A separate radiologist reviewed MRI examinations. Sensitivity, specificity, and inter-reader agreement were evaluated, using MRI as reference. Qualitative post hoc image review was performed. Results: Twenty-six neonates (9 boys, 17 girls; mean age 15.2 ± 14.0 days) were included. No significant alteration in patient vital signs or adverse reaction to the ultrasound contrast agent (UCA) occurred. Mean examination duration was significantly shorter for CEUS than MRI (21 ± 4.7 minutes vs 74 ± 34.8 minutes, p<.001). Inter-rater agreement for any abnormality was almost perfect for both ultrasound and CEUS (k= 0.92 and 0.85, respectively). Sensitivity for any abnormality was 86.7% for ultrasound and 93.0% for CEUS; specificity was 100.0% for both. CEUS exhibited sensitivity of 87.5% for acute or subacute ischemia and 100.0% for chronic ischemia, and specificity of 100.0% for acute or subacute ischemia and chronic ischemia. Sensitivity for subdural and intraparenchymal hemorrhage was poor (22.2%-50.0%) at both ultrasound and CEUS. Post hoc review demonstrated a case of post-ischemic hyperperfusion, confirmed by subsequent contrast-enhanced CT, on CEUS but not on MRI. Conclusion: Portable brain CEUS in neonates is feasible, safe, and more rapid than MRI. Clinical Impact: The potential diagnostic utility of brain neonatal CEUS relative to conventional ultrasound, particularly for ischemia, warrants further investigation.
Collapse
|
29
|
Baranger J, Villemain O, Wagner M, Vargas-Gutierrez M, Seed M, Baud O, Ertl-Wagner B, Aguet J. Brain perfusion imaging in neonates. NEUROIMAGE-CLINICAL 2021; 31:102756. [PMID: 34298475 PMCID: PMC8319803 DOI: 10.1016/j.nicl.2021.102756] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 06/21/2021] [Accepted: 07/03/2021] [Indexed: 02/07/2023]
Abstract
MRI is the modality of choice to image and quantify cerebral perfusion. Imaging of neonatal brain perfusion is possible using MRI and ultrasound. Novel ultrafast ultrasound imaging allows for excellent spatiotemporal resolution. Understanding cerebral hemodynamic changes of neonatal adaptation is key.
Abnormal variations of the neonatal brain perfusion can result in long-term neurodevelopmental consequences and cerebral perfusion imaging can play an important role in diagnostic and therapeutic decision-making. To identify at-risk situations, perfusion imaging of the neonatal brain must accurately evaluate both regional and global perfusion. To date, neonatal cerebral perfusion assessment remains challenging. The available modalities such as magnetic resonance imaging (MRI), ultrasound imaging, computed tomography (CT), near-infrared spectroscopy or nuclear imaging have multiple compromises and limitations. Several promising methods are being developed to achieve better diagnostic accuracy and higher robustness, in particular using advanced MRI and ultrasound techniques. The objective of this state-of-the-art review is to analyze the methodology and challenges of neonatal brain perfusion imaging, to describe the currently available modalities, and to outline future perspectives.
Collapse
Affiliation(s)
- Jérôme Baranger
- Department of Pediatrics, Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, Ontario, Canada; Translation Medicine Department, SickKids Research Institute, Toronto, Ontario, Canada
| | - Olivier Villemain
- Department of Pediatrics, Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, Ontario, Canada; Translation Medicine Department, SickKids Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Matthias Wagner
- Department of Diagnostic Imaging, Division of Neuroradiology, The Hospital for Sick Children, Toronto, Canada
| | | | - Mike Seed
- Department of Pediatrics, Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, Ontario, Canada; Translation Medicine Department, SickKids Research Institute, Toronto, Ontario, Canada; Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada
| | - Olivier Baud
- Division of Neonatology and Pediatric Intensive Care, Children's University Hospital of Geneva and University of Geneva, Geneva, Switzerland
| | - Birgit Ertl-Wagner
- Department of Diagnostic Imaging, Division of Neuroradiology, The Hospital for Sick Children, Toronto, Canada
| | - Julien Aguet
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada.
| |
Collapse
|
30
|
Hwang M, Khaw K, Sridharan A, Poznick L, Hallowell T, Delso N, Roberts AL, Kilbaugh TJ. Brain Contrast-Enhanced Ultrasound Evaluation of a Pediatric Swine Model. Ultrasound Q 2020; 38:31-35. [PMID: 34264586 PMCID: PMC11459365 DOI: 10.1097/ruq.0000000000000544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Brain injury remains a leading cause of morbidity and mortality in children. We evaluated the feasibility of using a pediatric swine model to develop contrast-enhanced ultrasound (CEUS)-based measures of brain perfusion for clinical application in various types of brain injury monitoring. Six-week-old, 10-kg swine (N = 10) were anesthetized, and an acoustic window was created in the right frontal cranium to provide visualization of an oblique coronal plane and bilateral thalami. Ultrasound contrast agent was administered via a femoral venous catheter as a weight-based (0.03 mL/kg) bolus. After localization of the imaging plane, CEUS cine clips were acquired for 90 seconds. Bolus injection of contrast agent provided global visualization of cerebral perfusion and highlighted microvasculature in the brain. Preliminary evaluation of bolus kinetics in piglets showed a central gray nuclei-to-cortex ratio similar to human infants with a steep wash-in that crossed and remained above the 1.0 threshold for most of the enhancement period. We demonstrated the similarity in brain perfusion between piglets and human infants, specifically central gray nuclei-to-cortex ratio, showing preliminary feasibility of its use as a pediatric model of brain perfusion. Contrast-enhanced ultrasound can be performed at the bedside as a minimally invasive procedure, and quantitative CEUS may provide critical information regarding changes in brain perfusion as a result of injury or as a response to therapy.
Collapse
Affiliation(s)
- Misun Hwang
- Department of Radiology, Hospital of the University of Pennsylvania
- Department of Radiology, Children’s Hospital of Philadelphia
| | - Kristina Khaw
- School of Engineering, Department of Bioengineering, University of Pennsylvania
| | - Anush Sridharan
- Department of Radiology, Children’s Hospital of Philadelphia
| | - Laura Poznick
- Department of Radiology, Children’s Hospital of Philadelphia
| | - Thomas Hallowell
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Nile Delso
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Anna L. Roberts
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Todd J. Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
| |
Collapse
|
31
|
Contrast enhanced ultrasound (CEUS) applications in neurosurgical and neurological settings – New scenarios for brain and spinal cord ultrasonography. A systematic review. Clin Neurol Neurosurg 2020; 198:106105. [DOI: 10.1016/j.clineuro.2020.106105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022]
|
32
|
Abstract
Abnormal brain perfusion is a key mechanism underlying neonatal brain injury. Understanding the mechanisms leading to brain perfusion changes in high-risk neonates and how these alterations may influence brain development is key to improve therapeutic strategies preventing brain injury and the neurodevelopmental outcome of these infants. To date, several studies demonstrated that Arterial Spin Labeling is a reliable tool to accurately and non-invasively analyze brain perfusion, facilitating the understanding of normal and pathological mechanisms underlying neonatal brain maturation and injury. This paper provides an overview of the normal pattern of brain perfusion on Arterial Spin Labeling in term and preterm neonates, and reviews perfusion abnormalities associated with common neonatal neurological disorders.
Collapse
Affiliation(s)
- Domenico Tortora
- Neuroradiology Unit IRCCS, Istituto Giannina Gaslini, Genoa, Italy.
| | | | - Andrea Rossi
- Neuroradiology Unit IRCCS, Istituto Giannina Gaslini, Genoa, Italy; Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy.
| |
Collapse
|
33
|
Zheng Q, Martin-Saavedra JS, Saade-Lemus S, Vossough A, Zuccoli G, Gonçalves FG, Freeman CW, Ouyang M, Singh V, Padula MA, Demauro SB, Flibotte J, Eichenwald EC, Detre JA, Sze RW, Huang H, Hwang M. Cerebral Pulsed Arterial Spin Labeling Perfusion Weighted Imaging Predicts Language and Motor Outcomes in Neonatal Hypoxic-Ischemic Encephalopathy. Front Pediatr 2020; 8:576489. [PMID: 33102411 PMCID: PMC7546822 DOI: 10.3389/fped.2020.576489] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/21/2020] [Indexed: 12/17/2022] Open
Abstract
Rationale and Objectives: To compare cerebral pulsed arterial spin labeling (PASL) perfusion among controls, hypoxic ischemic encephalopathy (HIE) neonates with normal conventional MRI(HIE/MRI⊕), and HIE neonates with abnormal conventional MRI(HIE/MRI⊖). To create a predictive machine learning model of neurodevelopmental outcomes using cerebral PASL perfusion. Materials and Methods: A total of 73 full-term neonates were evaluated. The cerebral perfusion values were compared by permutation test to identify brain regions with significant perfusion changes among 18 controls, 40 HIE/MRI⊖ patients, and 15 HIE/MRI⊕ patients. A machine learning model was developed to predict neurodevelopmental outcomes using the averaged perfusion in those identified brain regions. Results: Significantly decreased PASL perfusion in HIE/MRI⊖ group, when compared with controls, were found in the anterior corona radiata, caudate, superior frontal gyrus, precentral gyrus. Both significantly increased and decreased cerebral perfusion changes were detected in HIE/MRI⊕ group, when compared with HIE/MRI⊖ group. There were no significant perfusion differences in the cerebellum, brainstem and deep structures of thalamus, putamen, and globus pallidus among the three groups. The machine learning model demonstrated significant correlation (p < 0.05) in predicting language(r = 0.48) and motor(r = 0.57) outcomes in HIE/MRI⊖ patients, and predicting language(r = 0.76), and motor(r = 0.53) outcomes in an additional group combining HIE/MRI⊖ and HIE/MRI⊕. Conclusion: Perfusion MRI can play an essential role in detecting HIE regardless of findings on conventional MRI and predicting language and motor outcomes in HIE survivors. The perfusion changes may also reveal important insights into the reperfusion response and intrinsic autoregulatory mechanisms. Our results suggest that perfusion imaging may be a useful adjunct to conventional MRI in the evaluation of HIE in clinical practice.
Collapse
Affiliation(s)
| | | | | | - Arastoo Vossough
- Children's Hospital of Philadelphia, Philadelphia, PA, United States.,University of Pennsylvania, Philadelphia, PA, United States
| | - Giulio Zuccoli
- Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | | | | | - Minhui Ouyang
- Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Varun Singh
- Thomas Jefferson University, Philadelphia, PA, United States
| | - Michael A Padula
- Children's Hospital of Philadelphia, Philadelphia, PA, United States.,University of Pennsylvania, Philadelphia, PA, United States
| | - Sara B Demauro
- Children's Hospital of Philadelphia, Philadelphia, PA, United States.,University of Pennsylvania, Philadelphia, PA, United States
| | - John Flibotte
- Children's Hospital of Philadelphia, Philadelphia, PA, United States.,University of Pennsylvania, Philadelphia, PA, United States
| | - Eric C Eichenwald
- Children's Hospital of Philadelphia, Philadelphia, PA, United States.,University of Pennsylvania, Philadelphia, PA, United States
| | - John A Detre
- University of Pennsylvania, Philadelphia, PA, United States
| | - Raymond Wang Sze
- Children's Hospital of Philadelphia, Philadelphia, PA, United States.,University of Pennsylvania, Philadelphia, PA, United States
| | - Hao Huang
- Children's Hospital of Philadelphia, Philadelphia, PA, United States.,University of Pennsylvania, Philadelphia, PA, United States
| | - Misun Hwang
- Children's Hospital of Philadelphia, Philadelphia, PA, United States.,University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|