1
|
Argyropoulou MI, Xydis VG, Astrakas LG. Functional connectivity of the pediatric brain. Neuroradiology 2024; 66:2071-2082. [PMID: 39230715 DOI: 10.1007/s00234-024-03453-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/14/2024] [Indexed: 09/05/2024]
Abstract
PURPOSE This review highlights the importance of functional connectivity in pediatric neuroscience, focusing on its role in understanding neurodevelopment and potential applications in clinical practice. It discusses various techniques for analyzing brain connectivity and their implications for clinical interventions in neurodevelopmental disorders. METHODS The principles and applications of independent component analysis and seed-based connectivity analysis in pediatric brain studies are outlined. Additionally, the use of graph analysis to enhance understanding of network organization and topology is reviewed, providing a comprehensive overview of connectivity methods across developmental stages, from fetuses to adolescents. RESULTS Findings from the reviewed studies reveal that functional connectivity research has uncovered significant insights into the early formation of brain circuits in fetuses and neonates, particularly the prenatal origins of cognitive and sensory systems. Longitudinal research across childhood and adolescence demonstrates dynamic changes in brain connectivity, identifying critical periods of development and maturation that are essential for understanding neurodevelopmental trajectories and disorders. CONCLUSION Functional connectivity methods are crucial for advancing pediatric neuroscience. Techniques such as independent component analysis, seed-based connectivity analysis, and graph analysis offer valuable perspectives on brain development, creating new opportunities for early diagnosis and targeted interventions in neurodevelopmental disorders, thereby paving the way for personalized therapeutic strategies.
Collapse
Affiliation(s)
- Maria I Argyropoulou
- Department of Radiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, P.O. Box 1186, Ioannina, 45110, Greece.
| | - Vasileios G Xydis
- Department of Radiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, P.O. Box 1186, Ioannina, 45110, Greece
| | - Loukas G Astrakas
- Medical Physics Laboratory, Faculty of Medicine, School of Health Sciences, University of Ioannina, P.O. Box 1186, Ioannina, 45110, Greece
| |
Collapse
|
2
|
Ufkes S, Kennedy E, Poppe T, Miller SP, Thompson B, Guo J, Harding JE, Crowther CA. Prenatal Magnesium Sulfate and Functional Connectivity in Offspring at Term-Equivalent Age. JAMA Netw Open 2024; 7:e2413508. [PMID: 38805222 PMCID: PMC11134217 DOI: 10.1001/jamanetworkopen.2024.13508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/26/2024] [Indexed: 05/29/2024] Open
Abstract
Importance Understanding the effect of antenatal magnesium sulfate (MgSO4) treatment on functional connectivity will help elucidate the mechanism by which it reduces the risk of cerebral palsy and death. Objective To determine whether MgSO4 administered to women at risk of imminent preterm birth at a gestational age between 30 and 34 weeks is associated with increased functional connectivity and measures of functional segregation and integration in infants at term-equivalent age, possibly reflecting a protective mechanism of MgSO4. Design, Setting, and Participants This cohort study was nested within a randomized placebo-controlled trial performed across 24 tertiary maternity hospitals. Participants included infants born to women at risk of imminent preterm birth at a gestational age between 30 and 34 weeks who participated in the MAGENTA (Magnesium Sulphate at 30 to 34 Weeks' Gestational Age) trial and underwent magnetic resonance imaging (MRI) at term-equivalent age. Ineligibility criteria included illness precluding MRI, congenital or genetic disorders likely to affect brain structure, and living more than 1 hour from the MRI center. One hundred and fourteen of 159 eligible infants were excluded due to incomplete or motion-corrupted MRI. Recruitment occurred between October 22, 2014, and October 25, 2017. Participants were followed up to 2 years of age. Analysis was performed from February 1, 2021, to February 27, 2024. Observers were blind to patient groupings during data collection and processing. Exposures Women received 4 g of MgSO4 or isotonic sodium chloride solution given intravenously over 30 minutes. Main Outcomes and Measures Prior to data collection, it was hypothesized that infants who were exposed to MgSO4 would show enhanced functional connectivity compared with infants who were not exposed. Results A total of 45 infants were included in the analysis: 24 receiving MgSO4 treatment and 21 receiving placebo; 23 (51.1%) were female and 22 (48.9%) were male; and the median gestational age at scan was 40.0 (IQR, 39.1-41.1) weeks. Treatment with MgSO4 was associated with greater voxelwise functional connectivity in the temporal and occipital lobes and deep gray matter structures and with significantly greater clustering coefficients (Hedge g, 0.47 [95% CI, -0.13 to 1.07]), transitivity (Hedge g, 0.51 [95% CI, -0.10 to 1.11]), local efficiency (Hedge g, 0.40 [95% CI, -0.20 to 0.99]), and global efficiency (Hedge g, 0.31 [95% CI, -0.29 to 0.90]), representing enhanced functional segregation and integration. Conclusions and Relevance In this cohort study, infants exposed to MgSO4 had greater voxelwise functional connectivity and functional segregation, consistent with increased brain maturation. Enhanced functional connectivity is a possible mechanism by which MgSO4 protects against cerebral palsy and death.
Collapse
Affiliation(s)
- Steven Ufkes
- Department of Pediatrics, British Columbia Children’s Hospital, Vancouver, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Eleanor Kennedy
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Tanya Poppe
- Centre for the Developing Brain, Department of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Steven P. Miller
- Department of Pediatrics, British Columbia Children’s Hospital, Vancouver, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Benjamin Thompson
- Liggins Institute, University of Auckland, Auckland, New Zealand
- School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
- Centre for Eye and Vision Research, Hong Kong
| | - Jessie Guo
- Neurosciences and Mental Health, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Jane E. Harding
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
3
|
农 绍, 余 卫, 李 翠, 周 晓. [Preventive early intervention strategies for neurodevelopmental disorders of high-risk infants]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2024; 26:297-301. [PMID: 38557383 PMCID: PMC10986381 DOI: 10.7499/j.issn.1008-8830.2310107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/16/2024] [Indexed: 04/04/2024]
Abstract
Neurodevelopmental disorders in children have become a significant global public health concern, impacting child health worldwide. In China, the current intervention model for high-risk infants involves early diagnosis and early treatment. However, in recent years, overseas studies have explored novel preventive early intervention strategies for neurodevelopmental disorders in high-risk infants, achieving promising results. This article provides a comprehensive review of the optimal timing, methods, and intervention models of the preventive early intervention strategies for neurodevelopmental disorders in high-risk infants. The aim is to enhance the awareness and knowledge of healthcare professionals regarding preventive early intervention strategies for neurodevelopmental disorders in high-risk infants, facilitate clinical research and application of such interventions in China, and ultimately reduce the incidence of neurodevelopmental disorders in this high-risk population.
Collapse
Affiliation(s)
| | - 卫红 余
- 云南省文山壮族苗族自治州人民医院新生儿科,云南文山663000
| | - 翠红 李
- 云南省文山壮族苗族自治州人民医院新生儿科,云南文山663000
| | - 晓光 周
- 中山大学附属第八医院新生儿科, 广东深圳518033
| |
Collapse
|
4
|
Hadaya L, Dimitrakopoulou K, Vanes LD, Kanel D, Fenn-Moltu S, Gale-Grant O, Counsell SJ, Edwards AD, Saqi M, Batalle D, Nosarti C. Parsing brain-behavior heterogeneity in very preterm born children using integrated similarity networks. Transl Psychiatry 2023; 13:108. [PMID: 37012252 PMCID: PMC10070645 DOI: 10.1038/s41398-023-02401-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
Very preterm birth (VPT; ≤32 weeks' gestation) is associated with altered brain development and cognitive and behavioral difficulties across the lifespan. However, heterogeneity in outcomes among individuals born VPT makes it challenging to identify those most vulnerable to neurodevelopmental sequelae. Here, we aimed to stratify VPT children into distinct behavioral subgroups and explore between-subgroup differences in neonatal brain structure and function. 198 VPT children (98 females) previously enrolled in the Evaluation of Preterm Imaging Study (EudraCT 2009-011602-42) underwent Magnetic Resonance Imaging at term-equivalent age and neuropsychological assessments at 4-7 years. Using an integrative clustering approach, we combined neonatal socio-demographic, clinical factors and childhood socio-emotional and executive function outcomes, to identify distinct subgroups of children based on their similarity profiles in a multidimensional space. We characterized resultant subgroups using domain-specific outcomes (temperament, psychopathology, IQ and cognitively stimulating home environment) and explored between-subgroup differences in neonatal brain volumes (voxel-wise Tensor-Based-Morphometry), functional connectivity (voxel-wise degree centrality) and structural connectivity (Tract-Based-Spatial-Statistics). Results showed two- and three-cluster data-driven solutions. The two-cluster solution comprised a 'resilient' subgroup (lower psychopathology and higher IQ, executive function and socio-emotional scores) and an 'at-risk' subgroup (poorer behavioral and cognitive outcomes). No neuroimaging differences between the resilient and at-risk subgroups were found. The three-cluster solution showed an additional third 'intermediate' subgroup, displaying behavioral and cognitive outcomes intermediate between the resilient and at-risk subgroups. The resilient subgroup had the most cognitively stimulating home environment and the at-risk subgroup showed the highest neonatal clinical risk, while the intermediate subgroup showed the lowest clinical, but the highest socio-demographic risk. Compared to the intermediate subgroup, the resilient subgroup displayed larger neonatal insular and orbitofrontal volumes and stronger orbitofrontal functional connectivity, while the at-risk group showed widespread white matter microstructural alterations. These findings suggest that risk stratification following VPT birth is feasible and could be used translationally to guide personalized interventions aimed at promoting children's resilience.
Collapse
Affiliation(s)
- Laila Hadaya
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, Faculty of Life Sciences & Medicine, King's College London, London, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Konstantina Dimitrakopoulou
- Translational Bioinformatics Platform, NIHR Biomedical Research Centre, Guy's and St. Thomas' NHS Foundation Trust and King's College London, London, UK
| | - Lucy D Vanes
- Centre for Neuroimaging Sciences, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Dana Kanel
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, Faculty of Life Sciences & Medicine, King's College London, London, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Sunniva Fenn-Moltu
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, Faculty of Life Sciences & Medicine, King's College London, London, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Oliver Gale-Grant
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, Faculty of Life Sciences & Medicine, King's College London, London, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Serena J Counsell
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - A David Edwards
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Mansoor Saqi
- Translational Bioinformatics Platform, NIHR Biomedical Research Centre, Guy's and St. Thomas' NHS Foundation Trust and King's College London, London, UK
| | - Dafnis Batalle
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, Faculty of Life Sciences & Medicine, King's College London, London, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Chiara Nosarti
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, Faculty of Life Sciences & Medicine, King's College London, London, UK.
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
5
|
Solis-Urra P, Esteban-Cornejo I, Rodriguez-Ayllon M, Verdejo-Román J, Labayen I, Catena A, Ortega FB. Early life factors and white matter microstructure in children with overweight and obesity: The ActiveBrains project. Clin Nutr 2021; 41:40-48. [PMID: 34864454 DOI: 10.1016/j.clnu.2021.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/05/2021] [Accepted: 10/23/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND & AIMS Exposure to a suboptimal environment during the fetal and early infancy period's results in long-term consequences for brain morphology and function. We investigated the associations of early life factors such as anthropometric neonatal data (i.e., birth length, birth weight and birth head circumference) and breastfeeding practices (i.e., exclusive and any breastfeeding) with white matter (WM) microstructure, and ii) we tested whether WM tracts related to early life factors are associated with academic performance in children with overweight/obesity. METHODS 96 overweight/obese children (10.03 ± 1.16 years; 38.7% girls) were included from the ActiveBrains Project. WM microstructure indicators used were fractional anisotropy (FA) and mean diffusivity (MD), derived from Diffusion Tensor Imaging. Academic performance was evaluated with the Battery III Woodcock-Muñoz Tests of Achievement. Regression models were used to examine the associations of the early life factors with tract-specific FA and MD, as well as its association with academic performance. RESULTS Head circumference at birth was positively associated with FA of the inferior fronto-occipital fasciculus tract (0.441; p = 0.005), as well as negatively associated with MD of the cingulate gyrus part of cingulum (-0.470; p = 0.006), corticospinal (-0.457; p = 0.005) and superior thalamic radiation tract (-0.476; p = 0.001). Association of birth weight, birth length and exclusive breastfeeding with WM microstructure did not remain significant after false discovery rate correction. None tract related to birth head circumference was associated with academic performance (all p > 0.05). CONCLUSIONS Our results highlighted the importance of the perinatal growth in WM microstructure later in life, although its possible academic implications remain inconclusive.
Collapse
Affiliation(s)
- Patricio Solis-Urra
- PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Spain; Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar, Chile.
| | - Irene Esteban-Cornejo
- PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Spain
| | - María Rodriguez-Ayllon
- PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Spain
| | - Juan Verdejo-Román
- Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain; Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Center for Biomedical Technology (CTB), Madrid, Spain
| | - Idoia Labayen
- Institute for Innovation & Sustainable Development in Food Chain (IS-FOOD), Public University of Navarra, Pamplona, Spain
| | - Andrés Catena
- Department of Experimental Psychology, Mind, Brain and Behaviour Research Centre (CIMCYC), University of Granada, Granada, Spain
| | - Francisco B Ortega
- PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Spain; Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.
| |
Collapse
|
6
|
Argyropoulou MI, Xydis VG, Drougia A, Giantsouli AS, Giapros V, Astrakas LG. Structural and functional brain connectivity in moderate-late preterm infants with low-grade intraventricular hemorrhage. Neuroradiology 2021; 64:197-204. [PMID: 34342681 DOI: 10.1007/s00234-021-02770-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/11/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE Brain functional connectivity (FC) changes and microstructural abnormalities are reported in infants born moderate and late preterm (MLPT). We evaluated the effect of low-grade (grades I, II) intraventricular hemorrhage (IVH) in MLPT babies on brain structural connectivity (SC) and FC. METHODS Babies born MLPT between January 2014 and May 2017 underwent brain ultrasound (US) at 72 h and 7 days after birth, and MRI at around term equivalent. The MRI protocol comprised T1- and T2-weighted sequences, diffusion tensor imaging (DTI), and resting-state functional MRI (fMRI). SC and FC were assessed using graph analysis. RESULTS Of 350 MLPT neonates, 15 showed low-grade IVH on US at 72 h, for which brain MRI was available in 10. These 10 infants, with mean gestational age (GA) 34.0 ± 0.8 weeks, comprised the study group, and 10 MLPT infants of mean GA 33.9 ± 1.1 weeks, with no abnormalities on brain US and MRI, were control subjects. All study subjects presented modularity, small world topology, and rich club organization for both SC and FC. The patients with low-grade IVH had lower FC rich club coefficient and lower SC betweenness centrality in the left frontoparietal operculum, and lower SC rich club coefficient in the right superior orbitofrontal cortex than the control subjects. CONCLUSIONS Topological and functional properties of mature brain connectivity are present in MLPT infants. IVH in these infants was associated with structural and functional abnormalities in the left frontoparietal operculum and right orbitofrontal cortex, regions related to language and cognition.
Collapse
Affiliation(s)
- Maria I Argyropoulou
- Department of Radiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, P.O. Box 1186, 45110, Ioannina, Greece.
| | - Vasileios G Xydis
- Department of Radiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, P.O. Box 1186, 45110, Ioannina, Greece
| | - Aikaterini Drougia
- Neonatal Intensive Care Unit, Child Health Department, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Anastasia S Giantsouli
- Department of Radiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, P.O. Box 1186, 45110, Ioannina, Greece
| | - Vasileios Giapros
- Neonatal Intensive Care Unit, Child Health Department, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Loukas G Astrakas
- Department of Medical Physics, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| |
Collapse
|
7
|
Argyropoulou MI, Astrakas LG, Xydis VG, Drougia A, Mouka V, Goel I, Giapros V, Andronikou S. Is Low-Grade Intraventricular Hemorrhage in Very Preterm Infants an Innocent Condition? Structural and Functional Evaluation of the Brain Reveals Regional Neurodevelopmental Abnormalities. AJNR Am J Neuroradiol 2020; 41:542-547. [PMID: 32054617 DOI: 10.3174/ajnr.a6438] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/04/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND PURPOSE There is increasing evidence of abnormal neurodevelopmental outcomes in very preterm infants with low-grade intraventricular hemorrhage grades I and II. Our purpose was to evaluate the effects of low-grade intraventricular hemorrhage on gray and white matter integrity. MATERIALS AND METHODS MR imaging at around term-equivalent age was performed in 16 very preterm infants (mean gestational age, 28.8 ± 5.3 weeks) with mild intraventricular hemorrhage on brain sonography and 13 control subjects (mean gestational age, 29.6 ± 4.1 weeks) without intraventricular hemorrhage. Structural and functional evaluation of the cortex was performed using regional measurements of surface area, thickness and volume, and resting-state fMRI, respectively, and of WM microstructural integrity, applying Tract-Based Spatial Statistics to diffusion tensor imaging data. RESULTS Compared with the control infants, the infants with low-grade intraventricular hemorrhage had decreases in the following: 1) GM surface area in Brodmann areas 19 left and 9 and 45 right, and GM volume in Brodmann areas 9 and 10 right; 2) fractional anisotropy bilaterally in major WM tracts; and 3) brain activity in the left lower lateral and in the right higher medial somatosensory cortex. CONCLUSIONS Very premature infants with low-grade intraventricular hemorrhage at around term-equivalent age may present with regional abnormalities, appearing on imaging studies as cortical underdevelopment, functional impairment, and microstructural immaturity of major WM tracts.
Collapse
Affiliation(s)
| | | | - V G Xydis
- From the Departments of Radiology (M.I.A., V.G.X., V.M., I.G.)
| | - A Drougia
- Neonatology Unit (A.D., V.G., S.A.), Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - V Mouka
- From the Departments of Radiology (M.I.A., V.G.X., V.M., I.G.)
| | - I Goel
- From the Departments of Radiology (M.I.A., V.G.X., V.M., I.G.)
| | - V Giapros
- Neonatology Unit (A.D., V.G., S.A.), Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - S Andronikou
- Neonatology Unit (A.D., V.G., S.A.), Faculty of Medicine, University of Ioannina, Ioannina, Greece
| |
Collapse
|