1
|
Wang Y, Lv Y, Yao J, Ding H, Li G, Li J, Chen L. Incremental yield of prenatal exome sequencing in fetuses with skeletal system abnormalities: A systematic review and meta-analysis. Acta Obstet Gynecol Scand 2025; 104:604-614. [PMID: 39611236 PMCID: PMC11919707 DOI: 10.1111/aogs.15025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/17/2024] [Accepted: 11/12/2024] [Indexed: 11/30/2024]
Abstract
INTRODUCTION Fetal skeletal abnormalities can be caused by various factors and genetic cause plays an important role. Prenatal exome sequencing (ES) has been shown to be a powerful approach for accurate prenatal molecular diagnoses. Diagnostic yield of ES in fetal skeletal abnormalities varies significantly across studies. This study aimed to perform a systematic review of the literature and meta-analysis to assess the incremental yield of ES in fetuses with different kinds of skeletal abnormalities and a negative result on chromosome microarray or karyotyping. MATERIAL AND METHODS The PubMed, Embase, Web of Science, and Cochrane Library databases were systematically searched up to November 26, 2022. Relevant data were collected from observational studies containing five or more cases of skeletal abnormalities who underwent ES. The incremental yield of ES was evaluated by single proportion analysis and 95% confidence interval (CI), both according to the article features and individual phenotypes. This study was registered on PROSPERO as CRD42022382800. RESULTS Twenty-six studies including 524 individuals met the inclusion criteria. The pooled incremental yield was 60.2% (95% CI, 53.4%-66.9%) for all fetuses with skeletal abnormalities. In subgroup analysis, the additional diagnostic yield was 83.9% (95% CI, 76.4%-90.4%) in isolated dysplasia cases (group I), 52.0% (95% CI, 32.9%-70.9%) in dysplasia with non-skeletal abnormalities cases (group II), 33.3% (95% CI, 19.3%-48.6%) in isolate dysostoses cases (group III), 47.8% (95 % CI, 35.8%-60.0%) in dysostoses with non-skeletal abnormalities cases (group IV), 83.0% (95% CI, 63.7%-97.1%) in combination of the two phenotypes without non-skeletal abnormalities cases (group V), 74.5% (95% CI, 54.9%-90.9%) in combination of the two phenotypes with non-skeletal abnormalities cases (group VI). The origin of the pathogenic variations differed among the groups. Most causative variants were de novo in groups I (97/133, 72.9%), V (14/23, 60.9%), and VI (15/26, 57.7%). Meanwhile, pathogenic variations in III (18/25, 72.0%) and IV (37/67, 55.2%) were more often inherited from a parent. CONCLUSIONS ES had a favorable incremental yield in fetuses with skeletal abnormalities. The common pathogenic variations and genetic patterns of skeletal abnormalities vary among different subtypes. Interpreting this difference is beneficial for personalized clinical consultation.
Collapse
Affiliation(s)
- Yan Wang
- Department of UltrasoundShengjing Hospital of China Medical UniversityShenyangChina
| | - Yuan Lv
- Department of Obstetrics and GynecologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Jia Yao
- Department of UltrasoundShengjing Hospital of China Medical UniversityShenyangChina
| | - Hao Ding
- Department of UltrasoundShengjing Hospital of China Medical UniversityShenyangChina
| | - Gang Li
- Department of UltrasoundShengjing Hospital of China Medical UniversityShenyangChina
| | - Jianmin Li
- Department of UltrasoundShengjing Hospital of China Medical UniversityShenyangChina
| | - Lizhu Chen
- Department of UltrasoundShengjing Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing HospitalChina Medical UniversityShenyangChina
| |
Collapse
|
2
|
Sofia C, Aertsen M, Garel C, Cassart M. Standardised and structured reporting in fetal magnetic resonance imaging: recommendations from the Fetal Task Force of the European Society of Paediatric Radiology. Pediatr Radiol 2024; 54:1566-1578. [PMID: 39085531 DOI: 10.1007/s00247-024-06010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024]
Abstract
Over the last decades, magnetic resonance imaging (MRI) has emerged as a valuable adjunct to prenatal ultrasound for evaluating fetal malformations. Several radiological societies advocate for standardised and structured reporting practices to enhance the uniformity of imaging language. Compared to narrative formats, standardised and structured reports offer enhanced content quality, minimise reader variability, have the potential to save reporting time, and streamline the communication between specialists by employing a shared lexicon. Structured reporting holds promise for mitigating medico-legal liability, while also facilitating rigorous scientific data analyses and the development of standardised databases. While structured reporting templates for fetal MRI are already in use in some centres, specific recommendations and/or guidelines from international societies are scarce in the literature. The purpose of this paper is to propose a standardised and structured reporting template for fetal MRI to assist radiologists, particularly those with less experience, in delivering systematic reports. Additionally, the paper aims to offer an overview of the anatomical structures that necessitate reporting and the prevalent normative values for fetal biometrics found in current literature.
Collapse
Affiliation(s)
- Carmelo Sofia
- Department of Biomedical Sciences and Morphologic and Functional Imaging, University of Messina, Policlinico "G. Martino", Via Consolare Valeria 1, 98100, Messina, Italy.
| | - Michael Aertsen
- Department of Radiology, University Hospitals Katholieke Universiteit (KU), Louvain, Belgium
| | - Catherine Garel
- Department of Radiology, Armand-Trousseau Hospital, APHP, Sorbonne University, Paris, France
| | - Marie Cassart
- Department of Radiology and Fetal Medicine, Iris South Hospitals, Brussels, Belgium
| |
Collapse
|
3
|
Gendler L, Alizai H, Zoga AC, Nguyen JC. Imaging Assessment of the Pediatric Elbow: Developmental Variants and Common Pathologies. Semin Musculoskelet Radiol 2024; 28:396-407. [PMID: 39074723 DOI: 10.1055/s-0044-1787121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
The pediatric elbow is a complex joint that undergoes rapid growth and development. The normal anatomy of the elbow varies depending on the age of the patient, which can be challenging for imaging interpretation. This article reviews developmental variants and common pathologies of the pediatric elbow, with a focus on their radiologic features. Normal anatomy and development of the pediatric elbow are discussed, including the six ossification centers and elbow alignment. Congenital anomalies such as longitudinal deficiencies of the upper extremity are reviewed. Some common injuries that affect the elbow, such as supracondylar fracture, lateral condyle fracture, medial epicondyle avulsion, and radial head dislocation are also described.
Collapse
Affiliation(s)
- Liya Gendler
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hamza Alizai
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Adam C Zoga
- Division of Musculoskeletal Imaging and Interventions, Department of Radiology, Thomas Jefferson University Hospital, Sidney Kimmel Medical College at Jefferson, Philadelphia, Pennsylvania
| | - Jie C Nguyen
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
4
|
Kline-Fath BM. Fetal Skeletal Dysplasia. Magn Reson Imaging Clin N Am 2024; 32:497-511. [PMID: 38944437 DOI: 10.1016/j.mric.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Skeletal dysplasias (SDs) are a diverse group of genetic disorders. Diagnosis can be difficult as many are rare and with varied presentations, but with knowledge of the most common SDs presenting prenatal and with an algorithm that uses both sonographic and MR imaging techniques, directed genetic testing and counseling can be provided for many families.
Collapse
Affiliation(s)
- Beth M Kline-Fath
- Department of Radiology, M.L. 5031, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| |
Collapse
|
5
|
Jia Y, Liang X, Liu L, Ma H, Xu C, Zeng J, Xu R, Ye L, Xie L. Trends in research related to fetal therapy from 2012 to 2022: a bibliometric analysis. Front Pediatr 2024; 11:1288660. [PMID: 38293659 PMCID: PMC10826513 DOI: 10.3389/fped.2023.1288660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/13/2023] [Indexed: 02/01/2024] Open
Abstract
Background The development of prenatal diagnosis technology allows prompt detection of severe fetal diseases. To address adverse factors that threaten fetal survival, fetal therapy came into existence, which aims to preserve the function after birth to a higher degree and improve the quality of life. Objective To conduct a comprehensive bibliometric analysis of studies on fetal therapy in the past decade and explore the research trends and hotspots in this field. Methods We conducted a systematic search on the Web of Science Core Collection to retrieve studies related to fetal therapy published from 2012 to 2022. VOSviewer and CiteSpace were used to analyze the key features of studies, including annual output, countries/regions, institutions, authors, references, research hotspots, and frontiers. Results A total of 9,715 articles were included after eliminating duplicates. The annual distribution of the number of articles showed that the number of articles published in fetal therapy had increased in the past decade. Countries and institutions showed that fetal therapy is more mature in the United States. Author analysis showed the core investigators in the field. Keyword analysis showed the clustering and emergence frequency, which helped summarize the research results and frontier hotspots in this field. The cocited references were sorted out to determine the literature with a high ranking of fetal therapy in recent years, and the research trend in recent years was analyzed. Conclusions This study reveals that countries, institutions, and researchers should promote wider cooperation and establish multicenter research cooperation in fetal therapy research. Moreover, fetal therapy has been gradually explored from traditional surgical treatment to gene therapy and stem cell therapy. In recent years, fetoscopic laser surgery, guideline, and magnetic resonance imaging have become the research hotspots in the field.
Collapse
Affiliation(s)
- Yang Jia
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoling Liang
- Department of Ultrasound, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, Sichuan, China
| | - Lini Liu
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huixi Ma
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chenhao Xu
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Jingyuan Zeng
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Rong Xu
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lu Ye
- Department of Ultrasound, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Linjun Xie
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Machado-Rivas F, Cortes-Albornoz MC, Afacan O, Bedoya MA, Calixto C, Choi JJ, Ruggiero M, Gholipour A, Jaimes C. Fetal MRI at 3 T: Principles to Optimize Success. Radiographics 2023; 43:e220141. [PMID: 36995947 PMCID: PMC10091224 DOI: 10.1148/rg.220141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 03/31/2023]
Abstract
Fetal MRI has emerged as a cornerstone of prenatal imaging, helping to establish the correct diagnosis in pregnancies affected by congenital anomalies. In the past decade, 3 T imaging was introduced as an alternative to increase the signal-to-noise ratio (SNR) of the pulse sequences and improve anatomic detail. However, imaging at a higher field strength is not without challenges. Many artifacts that are barely appreciable at 1.5 T are amplified at 3 T. A systematic approach to imaging at 3 T that incorporates appropriate patient positioning, a thoughtful protocol design, and sequence optimization minimizes the impact of these artifacts and allows radiologists to reap the benefits of the increased SNR. The sequences used are the same at both field strengths and include single-shot T2-weighted, balanced steady-state free-precession, three-dimensional T1-weighted spoiled gradient-echo, and echo-planar imaging. Synergistic use of these acquisitions to sample various tissue contrasts and in various planes provides valuable information about fetal anatomy and pathologic conditions. In the authors' experience, fetal imaging at 3 T outperforms imaging at 1.5 T for most indications when performed under optimal circumstances. The authors condense the cumulative experience of fetal imaging specialists and MRI technologists who practice at a large referral center into a guideline covering all major aspects of fetal MRI at 3 T, from patient preparation to image interpretation. © RSNA, 2023 Quiz questions for this article are available in the supplemental material.
Collapse
Affiliation(s)
- Fedel Machado-Rivas
- From the Department of Radiology, Boston Children’s Hospital,
300 Longwood Ave, Boston, MA 02215 (F.M.R., M.C.C.A., O.A., M.A.B., C.C., M.R.,
A.G., C.J.); Department of Radiology, Harvard Medical School, Boston, Mass
(J.J.C.); and Department of Radiology, Cincinnati Children’s Hospital,
Cincinnati, Ohio (F.M.R., M.C.C.A., O.A., M.A.B., C.C., A.G., C.J.)
| | - Maria Camila Cortes-Albornoz
- From the Department of Radiology, Boston Children’s Hospital,
300 Longwood Ave, Boston, MA 02215 (F.M.R., M.C.C.A., O.A., M.A.B., C.C., M.R.,
A.G., C.J.); Department of Radiology, Harvard Medical School, Boston, Mass
(J.J.C.); and Department of Radiology, Cincinnati Children’s Hospital,
Cincinnati, Ohio (F.M.R., M.C.C.A., O.A., M.A.B., C.C., A.G., C.J.)
| | - Onur Afacan
- From the Department of Radiology, Boston Children’s Hospital,
300 Longwood Ave, Boston, MA 02215 (F.M.R., M.C.C.A., O.A., M.A.B., C.C., M.R.,
A.G., C.J.); Department of Radiology, Harvard Medical School, Boston, Mass
(J.J.C.); and Department of Radiology, Cincinnati Children’s Hospital,
Cincinnati, Ohio (F.M.R., M.C.C.A., O.A., M.A.B., C.C., A.G., C.J.)
| | - Maria Alejandra Bedoya
- From the Department of Radiology, Boston Children’s Hospital,
300 Longwood Ave, Boston, MA 02215 (F.M.R., M.C.C.A., O.A., M.A.B., C.C., M.R.,
A.G., C.J.); Department of Radiology, Harvard Medical School, Boston, Mass
(J.J.C.); and Department of Radiology, Cincinnati Children’s Hospital,
Cincinnati, Ohio (F.M.R., M.C.C.A., O.A., M.A.B., C.C., A.G., C.J.)
| | - Camilo Calixto
- From the Department of Radiology, Boston Children’s Hospital,
300 Longwood Ave, Boston, MA 02215 (F.M.R., M.C.C.A., O.A., M.A.B., C.C., M.R.,
A.G., C.J.); Department of Radiology, Harvard Medical School, Boston, Mass
(J.J.C.); and Department of Radiology, Cincinnati Children’s Hospital,
Cincinnati, Ohio (F.M.R., M.C.C.A., O.A., M.A.B., C.C., A.G., C.J.)
| | - Jungwhan John Choi
- From the Department of Radiology, Boston Children’s Hospital,
300 Longwood Ave, Boston, MA 02215 (F.M.R., M.C.C.A., O.A., M.A.B., C.C., M.R.,
A.G., C.J.); Department of Radiology, Harvard Medical School, Boston, Mass
(J.J.C.); and Department of Radiology, Cincinnati Children’s Hospital,
Cincinnati, Ohio (F.M.R., M.C.C.A., O.A., M.A.B., C.C., A.G., C.J.)
| | - Matthew Ruggiero
- From the Department of Radiology, Boston Children’s Hospital,
300 Longwood Ave, Boston, MA 02215 (F.M.R., M.C.C.A., O.A., M.A.B., C.C., M.R.,
A.G., C.J.); Department of Radiology, Harvard Medical School, Boston, Mass
(J.J.C.); and Department of Radiology, Cincinnati Children’s Hospital,
Cincinnati, Ohio (F.M.R., M.C.C.A., O.A., M.A.B., C.C., A.G., C.J.)
| | - Ali Gholipour
- From the Department of Radiology, Boston Children’s Hospital,
300 Longwood Ave, Boston, MA 02215 (F.M.R., M.C.C.A., O.A., M.A.B., C.C., M.R.,
A.G., C.J.); Department of Radiology, Harvard Medical School, Boston, Mass
(J.J.C.); and Department of Radiology, Cincinnati Children’s Hospital,
Cincinnati, Ohio (F.M.R., M.C.C.A., O.A., M.A.B., C.C., A.G., C.J.)
| | - Camilo Jaimes
- From the Department of Radiology, Boston Children’s Hospital,
300 Longwood Ave, Boston, MA 02215 (F.M.R., M.C.C.A., O.A., M.A.B., C.C., M.R.,
A.G., C.J.); Department of Radiology, Harvard Medical School, Boston, Mass
(J.J.C.); and Department of Radiology, Cincinnati Children’s Hospital,
Cincinnati, Ohio (F.M.R., M.C.C.A., O.A., M.A.B., C.C., A.G., C.J.)
| |
Collapse
|
7
|
Papaioannou G, Caro-Domínguez P, Klein WM, Garel C, Cassart M. Indications for magnetic resonance imaging of the fetal body (extra-central nervous system): recommendations from the European Society of Paediatric Radiology Fetal Task Force. Pediatr Radiol 2023; 53:297-312. [PMID: 36161506 DOI: 10.1007/s00247-022-05495-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/06/2022] [Accepted: 08/25/2022] [Indexed: 02/04/2023]
Abstract
The indications for fetal body MRI are amplifying because of the expanding possibilities of fetal and perinatal therapy. However, huge heterogeneity regarding the indications for fetal body MRI is seen among different European countries that is mostly related to local use of US, but also to local fetal MRI expertise and legislation on pregnancy termination. The purpose of this article is to summarize the precise indications for fetal MRI, excluding the central nervous system. MRI indications arise from the sonographic findings, based on the operator's experience and the various practices in the countries and institutions represented on the European Society of Paediatric Radiology Fetal Task Force. We also highlight the strengths and weaknesses of fetal US and MRI of the fetal body.
Collapse
Affiliation(s)
- Georgia Papaioannou
- Department of Pediatric Radiology, Mitera Maternity and Children's Hospital, 6 Erythrou Stavrou str, Maroussi 15123, Athens, Greece.
| | - Pablo Caro-Domínguez
- Pediatric Imaging Unit, Department of Radiology, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Willemijn M Klein
- Department of Medical Imaging, Radiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Catherine Garel
- Department of Radiology, Armand-Trousseau Hospital, Paris, France
| | - Marie Cassart
- Department of Radiology and Fetal Medicine, Iris South Hospitals, Brussels, Belgium
| |
Collapse
|
8
|
Powers AM, White C, Neuberger I, Maloney JA, Stence NV, Mirsky D. Fetal MRI Neuroradiology: Indications. Clin Perinatol 2022; 49:573-586. [PMID: 36113923 DOI: 10.1016/j.clp.2022.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Fetal MRI is a safe, noninvasive examination of the fetus and placenta, a complement to ultrasonography. MRI provides detailed CNS evaluation, including depicting parenchymal architecture and posterior fossa morphology, and is key in prenatal assessment of spinal dysraphism, neck masses, and ventriculomegaly. Fetal MRI is typically performed after 22 weeks gestation, and ultrafast T1 and T2-weighted MRI sequences are the core of the exam, with advanced sequences such as diffusion weighted imaging used for specific questions. The fetal brain grows and develops rapidly, and familiarity with gestational age specific norms is essential to MRI interpretation.
Collapse
Affiliation(s)
- Andria M Powers
- Children's Hospital and Medical Center, University of Nebraska Medical Center, 8200 Dodge Street, Omaha, NE 68114, USA.
| | - Christina White
- Department of Radiology, Children's Hospital Colorado, University of Colorado, 13123 E. 16th Avenue, Box 125, Aurora, CO, 80045, USA
| | - Ilana Neuberger
- Department of Radiology, Children's Hospital Colorado, University of Colorado, 13123 E. 16th Avenue, Box 125, Aurora, CO, 80045, USA
| | - John A Maloney
- Department of Radiology, Children's Hospital Colorado, University of Colorado, 13123 E. 16th Avenue, Box 125, Aurora, CO, 80045, USA
| | - Nicholas V Stence
- Department of Radiology, Children's Hospital Colorado, University of Colorado, 13123 E. 16th Avenue, Box 125, Aurora, CO, 80045, USA
| | - David Mirsky
- Department of Radiology, Children's Hospital Colorado, University of Colorado, 13123 E. 16th Avenue, Box 125, Aurora, CO, 80045, USA
| |
Collapse
|
9
|
Affiliation(s)
- Nancy A Chauvin
- Department of Pediatric Radiology, Penn State Health Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA.
| |
Collapse
|