1
|
Till T, Scherkl M, Stranger N, Singer G, Hankel S, Flucher C, Hržić F, Štajduhar I, Tschauner S. Impact of test set composition on AI performance in pediatric wrist fracture detection in X-rays. Eur Radiol 2025:10.1007/s00330-025-11669-z. [PMID: 40379941 DOI: 10.1007/s00330-025-11669-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/24/2025] [Accepted: 04/14/2025] [Indexed: 05/19/2025]
Abstract
OBJECTIVES To evaluate how different test set sampling strategies-random selection and balanced sampling-affect the performance of artificial intelligence (AI) models in pediatric wrist fracture detection using radiographs, aiming to highlight the need for standardization in test set design. MATERIALS AND METHODS This retrospective study utilized the open-sourced GRAZPEDWRI-DX dataset of 6091 pediatric wrist radiographs. Two test sets, each containing 4588 images, were constructed: one using a balanced approach based on case difficulty, projection type, and fracture presence and the other a random selection. EfficientNet and YOLOv11 models were trained and validated on 18,762 radiographs and tested on both sets. Binary classification and object detection tasks were evaluated using metrics such as precision, recall, F1 score, AP50, and AP50-95. Statistical comparisons between test sets were performed using nonparametric tests. RESULTS Performance metrics significantly decreased in the balanced test set with more challenging cases. For example, the precision for YOLOv11 models decreased from 0.95 in the random set to 0.83 in the balanced set. Similar trends were observed for recall, accuracy, and F1 score, indicating that models trained on easy-to-recognize cases performed poorly on more complex ones. These results were consistent across all model variants tested. CONCLUSION AI models for pediatric wrist fracture detection exhibit reduced performance when tested on balanced datasets containing more difficult cases, compared to randomly selected cases. This highlights the importance of constructing representative and standardized test sets that account for clinical complexity to ensure robust AI performance in real-world settings. KEY POINTS Question Do different sampling strategies based on samples' complexity have an influence in deep learning models' performance in fracture detection? Findings AI performance in pediatric wrist fracture detection significantly drops when tested on balanced datasets with more challenging cases, compared to randomly selected cases. Clinical relevance Without standardized and validated test datasets for AI that reflect clinical complexities, performance metrics may be overestimated, limiting the utility of AI in real-world settings.
Collapse
Affiliation(s)
- Tristan Till
- Division of Pediatric Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 34, Graz, 8036, Austria
| | - Mario Scherkl
- Division of Pediatric Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 34, Graz, 8036, Austria
| | - Nikolaus Stranger
- Division of Pediatric Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 34, Graz, 8036, Austria.
| | - Georg Singer
- Department of Pediatric and Adolescent Surgery, Medical University of Graz, Auenbruggerplatz 34, Graz, 8036, Austria
| | - Saskia Hankel
- Department of Pediatric and Adolescent Surgery, Medical University of Graz, Auenbruggerplatz 34, Graz, 8036, Austria
| | - Christina Flucher
- Department of Pediatric and Adolescent Surgery, Medical University of Graz, Auenbruggerplatz 34, Graz, 8036, Austria
| | - Franko Hržić
- Faculty of Engineering, Department of Computer Engineering, University of Rijeka, Vukovarska 58, Rijeka, 51000, Croatia
| | - Ivan Štajduhar
- Faculty of Engineering, Department of Computer Engineering, University of Rijeka, Vukovarska 58, Rijeka, 51000, Croatia
| | - Sebastian Tschauner
- Division of Pediatric Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 34, Graz, 8036, Austria
| |
Collapse
|
2
|
Ziegner M, Pape J, Lacher M, Brandau A, Kelety T, Mayer S, Hirsch FW, Rosolowski M, Gräfe D. Real-life benefit of artificial intelligence-based fracture detection in a pediatric emergency department. Eur Radiol 2025:10.1007/s00330-025-11554-9. [PMID: 40192806 DOI: 10.1007/s00330-025-11554-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/21/2025] [Accepted: 02/24/2025] [Indexed: 05/03/2025]
Abstract
OBJECTIVES This study aimed to evaluate the performance of an artificial intelligence (AI)-based software for fracture detection in pediatric patients within a real-life clinical setting. Specifically, it sought to assess (1) the stand-alone AI performance in real-life cohort and in selected set of medicolegal relevant fractures and (2) its influence on the diagnostic performance of inexperienced emergency room physicians. MATERIALS AND METHODS The retrospective study involved 1672 radiographs of children under 18 years, obtained consecutively (real-life cohort) and selective (medicolegal cohort) in a tertiary pediatric emergency department. On these images, the stand-alone performance of a commercially available, deep learning-based software was determined. Additionally, three pediatric residents independently reviewed the radiographs before and after AI assistance, and the impact on their diagnostic accuracy was assessed. RESULTS In our cohort (median age 10.9 years, 59% male), the AI demonstrated a sensitivity of 92%, specificity of 83%, and accuracy of 87%. For medicolegally relevant fractures, the AI achieved a sensitivity of 100% for proximal tibia fractures, but only 68% for radial condyle fractures. AI assistance improved the residents' patient-wise sensitivity from 84 to 87%, specificity from 91 to 92%, and diagnostic accuracy from 88 to 90%. In 2% of cases, the readers, with the assistance of AI, erroneously discarded their correct diagnosis. CONCLUSION The AI exhibited strong stand-alone performance in a pediatric setting and can modestly enhance the diagnostic accuracy of inexperienced physicians. However, the economic implications must be weighed against the potential benefits in patient safety. KEY POINTS Question Does an artificial intelligence-based software for fracture detection influence inexperienced physicians in a real-life pediatric trauma population? Findings Addition of a well-performing artificial intelligence-based software led to a limited increase in diagnostic accuracy of inexperienced human readers. Clinical relevance Diagnosing fractures in children is especially challenging for less experienced physicians. High-performing artificial intelligence-based software as a "second set of eyes," enhances diagnostic accuracy in a common pediatric emergency room setting.
Collapse
Affiliation(s)
- Maria Ziegner
- Department of Pediatric Surgery, University Hospital, Leipzig, Germany
| | - Johanna Pape
- Department of Pediatric Radiology, University Hospital, Leipzig, Germany
| | - Martin Lacher
- Department of Pediatric Surgery, University Hospital, Leipzig, Germany
| | - Annika Brandau
- Department of Pediatric Surgery, University Hospital, Leipzig, Germany
| | - Tibor Kelety
- Department of Pediatric Surgery, University Hospital, Leipzig, Germany
| | - Steffi Mayer
- Department of Pediatric Surgery, University Hospital, Leipzig, Germany
| | | | - Maciej Rosolowski
- Institute for Medical Informatics, Statistics and Epidemiology, Leipzig University, Leipzig, Germany
| | - Daniel Gräfe
- Department of Pediatric Radiology, University Hospital, Leipzig, Germany.
| |
Collapse
|
3
|
Kraus M, Pertman L, Eshed I. What's new in pediatric musculoskeletal imaging. J Child Orthop 2025; 19:109-118. [PMID: 40093030 PMCID: PMC11907487 DOI: 10.1177/18632521251325122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/13/2025] [Indexed: 03/19/2025] Open
Abstract
The field of pediatric musculoskeletal imaging is undergoing significant advancements due to technological innovations and a growing emphasis on safety and patient-centered care. This review explores recent developments in imaging modalities such as advanced magnetic resonance imaging, ultrasound innovations, and artificial intelligence applications. Highlights include radiation dose-reduction techniques in radiography and computed tomography, enhanced diagnostic tools like contrast-enhanced ultrasound and ultra-high-frequency imaging, and the integration of artificial intelligence for pathology detection and workflow optimization. The adoption of advanced methods like whole-body magnetic resonance imaging and computed tomography-like magnetic resonance imaging sequences has improved diagnostic accuracy, minimized radiation exposure, and expanded the capabilities of noninvasive imaging. Emerging technologies, including photon-counting detector computed tomography and deep learning-based reconstructions, are transforming clinical practices by balancing precision and safety. Artificial intelligence applications are reshaping diagnostic approaches, automating complex assessments, and improving efficiency, although challenges such as external validation and limited scope persist. Functional imaging advancements, such as diffusion-weighted imaging and positron emission tomography-magnetic resonance imaging integration, are enhancing disease characterization and treatment planning. This review underscores the clinical impact of these innovations, emphasizing the need for standardized protocols, interdisciplinary collaboration, and continued research to address unmet needs in radiation safety and artificial intelligence integration. It aims to equip healthcare professionals with the knowledge to leverage these advancements for improved outcomes in pediatric musculoskeletal care.
Collapse
Affiliation(s)
- Matan Kraus
- Division of Diagnostic Imaging, Sheba Medical Center, Ramat Gan, Israel
- Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Lihi Pertman
- Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Diagnostic Imaging, Rabin Medical Center, Beilinson Campus, Petah Tikva, Israel
| | - Iris Eshed
- Division of Diagnostic Imaging, Sheba Medical Center, Ramat Gan, Israel
- Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
4
|
Lo Mastro A, Grassi E, Berritto D, Russo A, Reginelli A, Guerra E, Grassi F, Boccia F. Artificial intelligence in fracture detection on radiographs: a literature review. Jpn J Radiol 2025; 43:551-585. [PMID: 39538068 DOI: 10.1007/s11604-024-01702-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Fractures are one of the most common reasons of admission to emergency department affecting individuals of all ages and regions worldwide that can be misdiagnosed during radiologic examination. Accurate and timely diagnosis of fracture is crucial for patients, and artificial intelligence that uses algorithms to imitate human intelligence to aid or enhance human performs is a promising solution to address this issue. In the last few years, numerous commercially available algorithms have been developed to enhance radiology practice and a large number of studies apply artificial intelligence to fracture detection. Recent contributions in literature have described numerous advantages showing how artificial intelligence performs better than doctors who have less experience in interpreting musculoskeletal X-rays, and assisting radiologists increases diagnostic accuracy and sensitivity, improves efficiency, and reduces interpretation time. Furthermore, algorithms perform better when they are trained with big data on a wide range of fracture patterns and variants and can provide standardized fracture identification across different radiologist, thanks to the structured report. In this review article, we discuss the use of artificial intelligence in fracture identification and its benefits and disadvantages. We also discuss its current potential impact on the field of radiology and radiomics.
Collapse
Affiliation(s)
- Antonio Lo Mastro
- Department of Radiology, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Enrico Grassi
- Department of Orthopaedics, University of Florence, Florence, Italy
| | - Daniela Berritto
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Anna Russo
- Department of Radiology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alfonso Reginelli
- Department of Radiology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Egidio Guerra
- Emergency Radiology Department, "Policlinico Riuniti Di Foggia", Foggia, Italy
| | - Francesca Grassi
- Department of Radiology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesco Boccia
- Department of Radiology, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
5
|
Liu W, Wu Y, Zheng Z, Bittle M, Yu W, Kharrazi H. Enhancing Diagnostic Accuracy of Lung Nodules in Chest Computed Tomography Using Artificial Intelligence: Retrospective Analysis. J Med Internet Res 2025; 27:e64649. [PMID: 39869890 PMCID: PMC11811665 DOI: 10.2196/64649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/10/2024] [Accepted: 12/27/2024] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND Uncertainty in the diagnosis of lung nodules is a challenge for both patients and physicians. Artificial intelligence (AI) systems are increasingly being integrated into medical imaging to assist diagnostic procedures. However, the accuracy of AI systems in identifying and measuring lung nodules on chest computed tomography (CT) scans remains unclear, which requires further evaluation. OBJECTIVE This study aimed to evaluate the impact of an AI-assisted diagnostic system on the diagnostic efficiency of radiologists. It specifically examined the report modification rates and missed and misdiagnosed rates of junior radiologists with and without AI assistance. METHODS We obtained effective data from 12,889 patients in 2 tertiary hospitals in Beijing before and after the implementation of the AI system, covering the period from April 2018 to March 2022. Diagnostic reports written by both junior and senior radiologists were included in each case. Using reports by senior radiologists as a reference, we compared the modification rates of reports written by junior radiologists with and without AI assistance. We further evaluated alterations in lung nodule detection capability over 3 years after the integration of the AI system. Evaluation metrics of this study include lung nodule detection rate, accuracy, false negative rate, false positive rate, and positive predictive value. The statistical analyses included descriptive statistics and chi-square, Cochran-Armitage, and Mann-Kendall tests. RESULTS The AI system was implemented in Beijing Anzhen Hospital (Hospital A) in January 2019 and Tsinghua Changgung Hospital (Hospital C) in June 2021. The modification rate of diagnostic reports in the detection of lung nodules increased from 4.73% to 7.23% (χ21=12.15; P<.001) at Hospital A. In terms of lung nodule detection rates postimplementation, Hospital C increased from 46.19% to 53.45% (χ21=25.48; P<.001) and Hospital A increased from 39.29% to 55.22% (χ21=122.55; P<.001). At Hospital A, the false negative rate decreased from 8.4% to 5.16% (χ21=9.85; P=.002), while the false positive rate increased from 2.36% to 9.77% (χ21=53.48; P<.001). The detection accuracy demonstrated a decrease from 93.33% to 92.23% for Hospital A and from 95.27% to 92.77% for Hospital C. Regarding the changes in lung nodule detection capability over a 3-year period following the integration of the AI system, the detection rates for lung nodules exhibited a modest increase from 54.6% to 55.84%, while the overall accuracy demonstrated a slight improvement from 92.79% to 93.92%. CONCLUSIONS The AI system enhanced lung nodule detection, offering the possibility of earlier disease identification and timely intervention. Nevertheless, the initial reduction in accuracy underscores the need for standardized diagnostic criteria and comprehensive training for radiologists to maximize the effectiveness of AI-enabled diagnostic systems.
Collapse
Affiliation(s)
- Weiqi Liu
- Department of Health Policy and Management, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
- Department of Research, Sophmind Technology (Beijing) Co Ltd, Beijing, China
| | - You Wu
- Institute for Hospital Management, School of Medicine, Tsinghua University, Beijing, China
| | - Zhuozhao Zheng
- Department of Radiology, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Mark Bittle
- Department of Health Policy and Management, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Wei Yu
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Hadi Kharrazi
- Department of Health Policy and Management, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
6
|
Shelmerdine SC, Pauling C, Allan E, Langan D, Ashworth E, Yung KW, Barber J, Haque S, Rosewarne D, Woznitza N, Ather S, Novak A, Theivendran K, Arthurs OJ. Artificial intelligence (AI) for paediatric fracture detection: a multireader multicase (MRMC) study protocol. BMJ Open 2024; 14:e084448. [PMID: 39645256 PMCID: PMC11628946 DOI: 10.1136/bmjopen-2024-084448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 10/25/2024] [Indexed: 12/09/2024] Open
Abstract
INTRODUCTION Paediatric fractures are common but can be easily missed on radiography leading to potentially serious implications including long-term pain, disability and missed opportunities for safeguarding in cases of inflicted injury. Artificial intelligence (AI) tools to assist fracture detection in adult patients exist, although their efficacy in children is less well known. This study aims to evaluate whether a commercially available AI tool (certified for paediatric use) improves healthcare professionals (HCPs) detection of fractures, and how this may impact patient care in a retrospective simulated study design. METHODS AND ANALYSIS Using a multicentric dataset of 500 paediatric radiographs across four body parts, the diagnostic performance of HCPs will be evaluated across two stages-first without, followed by with the assistance of an AI tool (BoneView, Gleamer) after an interval 4-week washout period. The dataset will contain a mixture of normal and abnormal cases. HCPs will be recruited across radiology, orthopaedics and emergency medicine. We will aim for 40 readers, with ~14 in each subspecialty, half being experienced consultants. For each radiograph HCPs will evaluate presence of a fracture, their confidence level and a suitable simulated management plan. Diagnostic accuracy will be judged against a consensus interpretation by an expert panel of two paediatric radiologists (ground truth). Multilevel logistic modelling techniques will analyse and report diagnostic accuracy outcome measures for fracture detection. Descriptive statistics will evaluate changes in simulated patient management. ETHICS AND DISSEMINATION This study was granted approval by National Health Service Health Research Authority and Health and Care Research Wales (REC Reference: 22/PR/0334). IRAS Project ID is 274 278. Funding has been provided by the National Institute for Heath and Care Research (NIHR) (Grant ID: NIHR-301322). Findings from this study will be disseminated through peer-reviewed publications, conferences and non-peer-reviewed media and social media outlets. TRIAL REGISTRATION NUMBER ISRCTN12921105.
Collapse
Affiliation(s)
- Susan C Shelmerdine
- Clinical Radiology, Great Ormond Street Hospital for Children, London, UK
- UCL Great Ormond Street Institute of Child Health, London, UK
- Great Ormond Street Hospital NIHR Biomedical Research Centre, London, UK
| | - Cato Pauling
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Emma Allan
- Clinical Radiology, Great Ormond Street Hospital for Children, London, UK
| | - Dean Langan
- UCL Great Ormond Street Institute of Child Health, London, UK
- Centre of Applied Statistics Courses, University College London, London, UK
| | - Emily Ashworth
- Clinical Radiology, Great Ormond Street Hospital for Children, London, UK
| | - Ka-Wai Yung
- Wellcome/ EPSRC Centre for Interventional and Surgical Sciences, London, UK
| | - Joy Barber
- Clinical Radiology, St George's Healthcare NHS Trust, London, UK
| | - Saira Haque
- Clinical Radiology, Kings College Hospital NHS Foundation Trust, London, UK
| | - David Rosewarne
- Clinical Radiology, Royal Wolverhampton Hospitals NHS Trust, Wolverhampton, UK
| | - Nick Woznitza
- School of Allied Health Professions, Faculty of Medicine, Health and Social Care, Canterbury Christ Church University, Canterbury, UK
- Clinical Radiology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Sarim Ather
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Alex Novak
- Emergency Medicine Research Oxford, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Kanthan Theivendran
- Orthopaedic Surgery, Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, UK
| | - Owen J Arthurs
- Clinical Radiology, Great Ormond Street Hospital for Children, London, UK
- UCL Great Ormond Street Institute of Child Health, London, UK
- Great Ormond Street Hospital NIHR Biomedical Research Centre, London, UK
| |
Collapse
|
7
|
M Yogendra P, Goh AGW, Yee SY, Jawan F, Koh KKN, Tan TSE, Woon TK, Yeap PM, Tan MO. Accuracy of radiologists and radiology residents in detection of paediatric appendicular fractures with and without artificial intelligence. BMJ Health Care Inform 2024; 31:e101091. [PMID: 39638562 PMCID: PMC11624698 DOI: 10.1136/bmjhci-2024-101091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
OBJECTIVES We aim to evaluate the accuracy of radiologists and radiology residents in the detection of paediatric appendicular fractures with and without the help of a commercially available fracture detection artificial intelligence (AI) solution in the hopes of showing potential clinical benefits in a general hospital setting. METHODS This was a retrospective study involving three associate consultants (AC) and three senior residents (SR) in radiology, who acted as readers. One reader from each human group interpreted the radiographs with the aid of AI. Cases were categorised into concordant and discordant cases between each interpreting group. Discordant cases were further evaluated by three independent subspecialty radiology consultants to determine the final diagnosis. A total of 500 anonymised paediatric patient cases (aged 2-15 years) who presented to a tertiary general hospital with a Children's emergency were retrospectively collected. Main outcome measures include the presence of fracture, accuracy of readers with and without AI, and total time taken to interpret the radiographs. RESULTS The AI solution alone showed the highest accuracy (area under the receiver operating characteristic curve 0.97; AC: 95% CI -0.055 to 0.320, p=0; SR: 95% CI 0.244 to 0.598, p=0). The two readers aided with AI had higher area under curves compared with readers without AI support (AC: 95% CI -0.303 to 0.465, p=0; SR: 95% CI -0.154 to 0.331, p=0). These differences were statistically significant. CONCLUSION Our study demonstrates excellent results in the detection of paediatric appendicular fractures using a commercially available AI solution. There is potential for the AI solution to function autonomously.
Collapse
Affiliation(s)
- Praveen M Yogendra
- Department of Radiology, Sengkang General Hospital, Singapore, Singapore
| | | | - Sze Ying Yee
- Department of Radiology, Sengkang General Hospital, Singapore, Singapore
| | - Freda Jawan
- Department of Radiology, Sengkang General Hospital, Singapore, Singapore
| | | | - Timothy Shao Ern Tan
- Department of Diagnostic and Interventional Imaging, KK Women’s and Children’s Hospital, Singapore, Singapore
| | - Tian Kai Woon
- Department of Diagnostic and Interventional Imaging, KK Women’s and Children’s Hospital, Singapore, Singapore
| | - Phey Ming Yeap
- Department of Radiology, Sengkang General Hospital, Singapore, Singapore
| | - Min On Tan
- Department of Radiology, Sengkang General Hospital, Singapore, Singapore
| |
Collapse
|
8
|
Lee L, Salami RK, Martin H, Shantharam L, Thomas K, Ashworth E, Allan E, Yung KW, Pauling C, Leyden D, Arthurs OJ, Shelmerdine SC. "How I would like AI used for my imaging": children and young persons' perspectives. Eur Radiol 2024; 34:7751-7764. [PMID: 38900281 PMCID: PMC11557655 DOI: 10.1007/s00330-024-10839-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/11/2024] [Accepted: 04/27/2024] [Indexed: 06/21/2024]
Abstract
OBJECTIVES Artificial intelligence (AI) tools are becoming more available in modern healthcare, particularly in radiology, although less attention has been paid to applications for children and young people. In the development of these, it is critical their views are heard. MATERIALS AND METHODS A national, online survey was publicised to UK schools, universities and charity partners encouraging any child or young adult to participate. The survey was "live" for one year (June 2022 to 2023). Questions about views of AI in general, and in specific circumstances (e.g. bone fractures) were asked. RESULTS One hundred and seventy-one eligible responses were received, with a mean age of 19 years (6-23 years) with representation across all 4 UK nations. Most respondents agreed or strongly agreed they wanted to know the accuracy of an AI tool that was being used (122/171, 71.3%), that accuracy was more important than speed (113/171, 66.1%), and that AI should be used with human oversight (110/171, 64.3%). Many respondents (73/171, 42.7%) felt AI would be more accurate at finding problems on bone X-rays than humans, with almost all respondents who had sustained a missed fracture strongly agreeing with that sentiment (12/14, 85.7%). CONCLUSIONS Children and young people in our survey had positive views regarding AI, and felt it should be integrated into modern healthcare, but expressed a preference for a "medical professional in the loop" and accuracy of findings over speed. Key themes regarding information on AI performance and governance were raised and should be considered prior to future AI implementation for paediatric healthcare. CLINICAL RELEVANCE STATEMENT Artificial intelligence (AI) integration into clinical practice must consider all stakeholders, especially paediatric patients who have largely been ignored. Children and young people favour AI involvement with human oversight, seek assurances for safety, accuracy, and clear accountability in case of failures. KEY POINTS Paediatric patient's needs and voices are often overlooked in AI tool design and deployment. Children and young people approved of AI, if paired with human oversight and reliability. Children and young people are stakeholders for developing and deploying AI tools in paediatrics.
Collapse
Affiliation(s)
- Lauren Lee
- Young Persons Advisory Group (YPAG), Great Ormond Street Hospital for Children, London, WC1H 3JH, UK
| | | | - Helena Martin
- Guy's and St Thomas' NHS Foundation Trust, London, UK
| | | | - Kate Thomas
- Royal Hospital for Children & Young People, Edinburgh, Scotland, UK
| | - Emily Ashworth
- St George's Hospital, Blackshaw Road, Tooting London, London, UK
| | - Emma Allan
- Department of Clinical Radiology, Great Ormond Street Hospital for Children, London, WC1H 3JH, UK
| | - Ka-Wai Yung
- Wellcome/ EPSRC Centre for Interventional and Surgical Sciences, Charles Bell House, 43-45 Foley Street, London, W1W 7TY, UK
| | - Cato Pauling
- University College London, Gower Street, London, WC1E 6BT, UK.
| | - Deirdre Leyden
- Young Persons Advisory Group (YPAG), Great Ormond Street Hospital for Children, London, WC1H 3JH, UK
| | - Owen J Arthurs
- Department of Clinical Radiology, Great Ormond Street Hospital for Children, London, WC1H 3JH, UK
- UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children, London, UK, WC1N 1EH, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, 30 Guilford Street, Bloomsbury, London, WC1N 1EH, UK
| | - Susan Cheng Shelmerdine
- Department of Clinical Radiology, Great Ormond Street Hospital for Children, London, WC1H 3JH, UK
- UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children, London, UK, WC1N 1EH, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, 30 Guilford Street, Bloomsbury, London, WC1N 1EH, UK
| |
Collapse
|
9
|
Xie X, Xiao YF, Yang H, Peng X, Li JJ, Zhou YY, Fan CQ, Meng RP, Huang BB, Liao XP, Chen YY, Zhong TT, Lin H, Koulaouzidis A, Yang SM. A new artificial intelligence system for both stomach and small-bowel capsule endoscopy. Gastrointest Endosc 2024; 100:878.e1-878.e14. [PMID: 38851456 DOI: 10.1016/j.gie.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND AND AIMS Despite the benefits of artificial intelligence in small-bowel (SB) capsule endoscopy (CE) image reading, information on its application in the stomach and SB CE is lacking. METHODS In this multicenter, retrospective diagnostic study, gastric imaging data were added to the deep learning-based SmartScan (SS), which has been described previously. A total of 1069 magnetically controlled GI CE examinations (comprising 2,672,542 gastric images) were used in the training phase for recognizing gastric pathologies, producing a new artificial intelligence algorithm named SS Plus. A total of 342 fully automated, magnetically controlled CE examinations were included in the validation phase. The performance of both senior and junior endoscopists with both the SS Plus-assisted reading (SSP-AR) and conventional reading (CR) modes was assessed. RESULTS SS Plus was designed to recognize 5 types of gastric lesions and 17 types of SB lesions. SS Plus reduced the number of CE images required for review to 873.90 (median, 1000; interquartile range [IQR], 814.50-1000) versus 44,322.73 (median, 42,393; IQR, 31,722.75-54,971.25) for CR. Furthermore, with SSP-AR, endoscopists took 9.54 minutes (median, 8.51; IQR, 6.05-13.13) to complete the CE video reading. In the 342 CE videos, SS Plus identified 411 gastric and 422 SB lesions, whereas 400 gastric and 368 intestinal lesions were detected with CR. Moreover, junior endoscopists remarkably improved their CE image reading ability with SSP-AR. CONCLUSIONS Our study shows that the newly upgraded deep learning-based algorithm SS Plus can detect GI lesions and help improve the diagnostic performance of junior endoscopists in interpreting CE videos.
Collapse
Affiliation(s)
- Xia Xie
- Department of Gastroenterology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Yu-Feng Xiao
- Department of Gastroenterology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Huan Yang
- Department of Gastroenterology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Xue Peng
- Department of Gastroenterology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Jian-Jun Li
- Department of Gastroenterology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Yuan-Yuan Zhou
- Department of Gastroenterology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Chao-Qiang Fan
- Department of Gastroenterology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Rui-Ping Meng
- Department of Gastroenterology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Bao-Bao Huang
- Department of Gastroenterology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Xi-Ping Liao
- Department of Gastroenterology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Yu-Yang Chen
- Department of Gastroenterology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Ting-Ting Zhong
- Department of Gastroenterology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Hui Lin
- Department of Gastroenterology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China; Department of Epidemiology, the Third Military Medical University, Chongqing, China.
| | - Anastasios Koulaouzidis
- Department of Clinical Research University of Southern Denmark, Odense, Denmark; Centre for Clinical Implementation of Capsule Endoscopy, Store Adenomer Tidlige Cancere Centre, Svendborg, Denmark.
| | - Shi-Ming Yang
- Department of Gastroenterology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China.
| |
Collapse
|
10
|
Husarek J, Hess S, Razaeian S, Ruder TD, Sehmisch S, Müller M, Liodakis E. Artificial intelligence in commercial fracture detection products: a systematic review and meta-analysis of diagnostic test accuracy. Sci Rep 2024; 14:23053. [PMID: 39367147 PMCID: PMC11452402 DOI: 10.1038/s41598-024-73058-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 09/12/2024] [Indexed: 10/06/2024] Open
Abstract
Conventional radiography (CR) is primarily utilized for fracture diagnosis. Artificial intelligence (AI) for CR is a rapidly growing field aimed at enhancing efficiency and increasing diagnostic accuracy. However, the diagnostic performance of commercially available AI fracture detection solutions (CAAI-FDS) for CR in various anatomical regions, their synergy with human assessment, as well as the influence of industry funding on reported accuracy are unknown. Peer-reviewed diagnostic test accuracy (DTA) studies were identified through a systematic review on Pubmed and Embase. Diagnostic performance measures were extracted especially for different subgroups such as product, type of rater (stand-alone AI, human unaided, human aided), funding, and anatomical region. Pooled measures were obtained with a bivariate random effects model. The impact of rater was evaluated with comparative meta-analysis. Seventeen DTA studies of seven CAAI-FDS analyzing 38,978 x-rays with 8,150 fractures were included. Stand-alone AI studies (n = 15) evaluated five CAAI-FDS; four with good sensitivities (> 90%) and moderate specificities (80-90%) and one with very poor sensitivity (< 60%) and excellent specificity (> 95%). Pooled sensitivities were good to excellent, and specificities were moderate to good in all anatomical regions (n = 7) apart from ribs (n = 4; poor sensitivity / moderate specificity) and spine (n = 4; excellent sensitivity / poor specificity). Funded studies (n = 4) had higher sensitivity (+ 5%) and lower specificity (-4%) than non-funded studies (n = 11). Sensitivity did not differ significantly between stand-alone AI and human AI aided ratings (p = 0.316) but specificity was significantly higher the latter group (p < 0.001). Sensitivity was significant lower in human unaided compared to human AI aided respectively stand-alone AI ratings (both p ≤ 0.001); specificity was higher in human unaided ratings compared to stand-alone AI (p < 0.001) and showed no significant differences AI aided ratings (p = 0.316). The study demonstrates good diagnostic accuracy across most CAAI-FDS and anatomical regions, with the highest performance achieved when used in conjunction with human assessment. Diagnostic accuracy appears lower for spine and rib fractures. The impact of industry funding on reported performance is small.
Collapse
Affiliation(s)
- Julius Husarek
- Department of Orthopaedic Surgery and Traumatology, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland
- University of Bern, Bern, Switzerland
- Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Silvan Hess
- Department of Orthopaedic Surgery and Traumatology, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland
| | - Sam Razaeian
- Department for Trauma, Hand and Reconstructive Surgery, Saarland University, Kirrberger Str. 100, 66421, Homburg, Germany
| | - Thomas D Ruder
- Interventional and Pediatric Radiology, Inselspital, Bern University Hospital, University Institute of Diagnostic, University of Bern, Bern, Switzerland
| | - Stephan Sehmisch
- Department of Trauma Surgery, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Martin Müller
- Department of Emergency Medicine, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland
| | - Emmanouil Liodakis
- Department for Trauma, Hand and Reconstructive Surgery, Saarland University, Kirrberger Str. 100, 66421, Homburg, Germany.
| |
Collapse
|
11
|
Liu W, Wu Y, Zheng Z, Yu W, Bittle MJ, Kharrazi H. Evaluating artificial intelligence's role in lung nodule diagnostics: A survey of radiologists in two pilot tertiary hospitals in China. J Clin Imaging Sci 2024; 14:31. [PMID: 39246733 PMCID: PMC11380818 DOI: 10.25259/jcis_72_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 07/13/2024] [Indexed: 09/10/2024] Open
Abstract
Objectives This study assesses the perceptions and attitudes of Chinese radiologists concerning the application of artificial intelligence (AI) in the diagnosis of lung nodules. Material and Methods An anonymous questionnaire, consisting of 26 questions addressing the usability of AI systems and comprehensive evaluation of AI technology, was distributed to all radiologists affiliated with Beijing Anzhen Hospital and Beijing Tsinghua Changgung Hospital. The data collection was conducted between July 19, and 21, 2023. Results Of the 90 respondents, the majority favored the AI system's convenience and usability, reflected in "good" system usability scale (SUS) scores (Mean ± standard deviation [SD]: 74.3 ± 11.9). General usability was similarly well-received (Mean ± SD: 76.0 ± 11.5), while learnability was rated as "acceptable" (Mean ± SD: 67.5 ± 26.4). Most radiologists noted increased work efficiency (Mean Likert scale score: 4.6 ± 0.6) and diagnostic accuracy (Mean Likert scale score: 4.2 ± 0.8) with the AI system. Views on AI's future impact on radiology careers varied (Mean ± SD: 3.2 ± 1.4), with a consensus that AI is unlikely to replace radiologists entirely in the foreseeable future (Mean ± SD: 2.5 ± 1.1). Conclusion Radiologists at two leading Beijing hospitals generally perceive the AI-assisted lung nodule diagnostic system positively, citing its user-friendliness and effectiveness. However, the system's learnability requires enhancement. While AI is seen as beneficial for work efficiency and diagnostic accuracy, its long-term career implications remain a topic of debate.
Collapse
Affiliation(s)
- Weiqi Liu
- Department of Health Policy and Management, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, United States
| | - You Wu
- Institute for Hospital Management, School of Medicine, Tsinghua University, Beijing, China
| | - Zhuozhao Zheng
- Department of Radiology, School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Wei Yu
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Mark J Bittle
- Department of Health Policy and Management, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, United States
| | - Hadi Kharrazi
- Department of Health Policy and Management, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
12
|
Martín-Noguerol T, López-Úbeda P, Luna A. AI in radiology: Legal responsibilities and the car paradox. Eur J Radiol 2024; 175:111462. [PMID: 38608500 DOI: 10.1016/j.ejrad.2024.111462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
The integration of AI in radiology raises significant legal questions about responsibility for errors. Radiologists fear AI may introduce new legal challenges, despite its potential to enhance diagnostic accuracy. AI tools, even those approved by regulatory bodies like the FDA or CE, are not perfect, posing a risk of failure. The key issue is how AI is implemented: as a stand-alone diagnostic tool or as an aid to radiologists. The latter approach could reduce undesired side effects. However, it's unclear who should be held liable for AI failures, with potential candidates ranging from engineers and radiologists involved in AI development to companies and department heads who integrate these tools into clinical practice. The EU's AI Act, recognizing AI's risks, categorizes applications by risk level, with many radiology-related AI tools considered high risk. Legal precedents in autonomous vehicles offer some guidance on assigning responsibility. Yet, the existing legal challenges in radiology, such as diagnostic errors, persist. AI's potential to improve diagnostics raises questions about the legal implications of not using available AI tools. For instance, an AI tool improving the detection of pediatric fractures could reduce legal risks. This situation parallels innovations like car turn signals, where ignoring available safety enhancements could lead to legal problems. The debate underscores the need for further research and regulation to clarify AI's role in radiology, balancing innovation with legal and ethical considerations.
Collapse
Affiliation(s)
| | | | - Antonio Luna
- MRI Unit, Radiology Department, HT Medica, Jaén, Spain.
| |
Collapse
|
13
|
Suresh V, Singh KK, Vaish E, Gurjar M, Ambuli Nambi A, Khulbe Y, Muzaffar S. Artificial Intelligence in the Intensive Care Unit: Current Evidence on an Inevitable Future Tool. Cureus 2024; 16:e59797. [PMID: 38846182 PMCID: PMC11154024 DOI: 10.7759/cureus.59797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2024] [Indexed: 06/09/2024] Open
Abstract
Artificial intelligence (AI) is a technique that attempts to replicate human intelligence, analytical behavior, and decision-making ability. This includes machine learning, which involves the use of algorithms and statistical techniques to enhance the computer's ability to make decisions more accurately. Due to AI's ability to analyze, comprehend, and interpret considerable volumes of data, it has been increasingly used in the field of healthcare. In critical care medicine, where most of the patient load requires timely interventions due to the perilous nature of the condition, AI's ability to monitor, analyze, and predict unfavorable outcomes is an invaluable asset. It can significantly improve timely interventions and prevent unfavorable outcomes, which, otherwise, is not always achievable owing to the constrained human ability to multitask with optimum efficiency. AI has been implicated in intensive care units over the past many years. In addition to its advantageous applications, this article discusses its disadvantages, prospects, and the changes needed to train future critical care professionals. A comprehensive search of electronic databases was performed using relevant keywords. Data from articles pertinent to the topic was assimilated into this review article.
Collapse
Affiliation(s)
- Vinay Suresh
- General Medicine and Surgery, King George's Medical University, Lucknow, IND
| | - Kaushal K Singh
- General Medicine, King George's Medical University, Lucknow, IND
| | - Esha Vaish
- Internal Medicine, Mount Sinai Morningside West, New York, USA
| | - Mohan Gurjar
- Critical Care Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, IND
| | | | - Yashita Khulbe
- General Medicine and Surgery, King George's Medical University, Lucknow, IND
| | - Syed Muzaffar
- Critical Care Medicine, King George's Medical University, Lucknow, IND
| |
Collapse
|
14
|
Dell’Aria A, Tack D, Saddiki N, Makdoud S, Alexiou J, De Hemptinne FX, Berkenbaum I, Neugroschl C, Tacelli N. Radiographic Detection of Post-Traumatic Bone Fractures: Contribution of Artificial Intelligence Software to the Analysis of Senior and Junior Radiologists. J Belg Soc Radiol 2024; 108:44. [PMID: 38680721 PMCID: PMC11049681 DOI: 10.5334/jbsr.3574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 04/08/2024] [Indexed: 05/01/2024] Open
Abstract
Objectives The aims of this study were: (a) to evaluate the performance of an artificial intelligence (AI) software package (Boneview Trauma, Gleamer) for the detection of post-traumatic bone fractures in radiography as a standalone; (b) used by two radiologists (osteoarticular senior and junior); and (c) to determine to whom AI would be most helpful. Materials and Methods Within 14 days of a trauma, 101 consecutive patients underwent radiographic examination of the upper or lower limbs. The definite diagnosis for identifying fractures was: (a) radio-clinical consensus between the radiologist on-call who analyzed the images and the orthopedist (Group 1); (b) Cone Beam computed tomography (CBCT) exploration of the area of interest, in case of doubts or absence of consensus (Group 2). Independently of this diagnosis for both groups, the radiographic images were separately analyzed by two radiologists (osteoarticular senior: SR; junior: JR) prior without, and thereafter with the results of AI. Results AI performed better than the radiologists in detecting common fractures (Group 1), but not subtle fractures (Group 2). In association with AI, both radiologists increased their overall performances in both groups, whereas this increase was significantly higher for the JR (p < 0.05). Conclusion AI is reliable for common radiographic fracture identification and is a useful learning tool for radiologists in training. However, the software's overall performance does not exceed that of an osteoarticular senior radiologist, particularly in case of subtle lesions.
Collapse
Affiliation(s)
- Andrea Dell’Aria
- Department of Radiology, Hôpitaux Iris-Sud (HIS), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Denis Tack
- Department of Radiology, Centre Hospitalier EpiCURA, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Najat Saddiki
- Department of Radiology, Hôpitaux Iris-Sud (HIS), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Sonia Makdoud
- Department of Radiology, Hôpitaux Iris-Sud (HIS), Université d’Alger 1- Faculté de Médecine d’Alger-Ziania, Algiers, Algeria
| | - Jean Alexiou
- Department of Radiology, Hôpitaux Iris-Sud (HIS), Université libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Ivan Berkenbaum
- Department of Orthopaedic Surgery, Hôpitaux Iris-Sud (HIS), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Carine Neugroschl
- Department of Radiology, Hôpitaux Iris-Sud (HIS), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Nunzia Tacelli
- Department of Radiology, Hôpitaux Iris-Sud (HIS), Université libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
15
|
Pham TD, Holmes SB, Coulthard P. A review on artificial intelligence for the diagnosis of fractures in facial trauma imaging. Front Artif Intell 2024; 6:1278529. [PMID: 38249794 PMCID: PMC10797131 DOI: 10.3389/frai.2023.1278529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
Patients with facial trauma may suffer from injuries such as broken bones, bleeding, swelling, bruising, lacerations, burns, and deformity in the face. Common causes of facial-bone fractures are the results of road accidents, violence, and sports injuries. Surgery is needed if the trauma patient would be deprived of normal functioning or subject to facial deformity based on findings from radiology. Although the image reading by radiologists is useful for evaluating suspected facial fractures, there are certain challenges in human-based diagnostics. Artificial intelligence (AI) is making a quantum leap in radiology, producing significant improvements of reports and workflows. Here, an updated literature review is presented on the impact of AI in facial trauma with a special reference to fracture detection in radiology. The purpose is to gain insights into the current development and demand for future research in facial trauma. This review also discusses limitations to be overcome and current important issues for investigation in order to make AI applications to the trauma more effective and realistic in practical settings. The publications selected for review were based on their clinical significance, journal metrics, and journal indexing.
Collapse
Affiliation(s)
- Tuan D. Pham
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | | | | |
Collapse
|
16
|
Jung J, Dai J, Liu B, Wu Q. Artificial intelligence in fracture detection with different image modalities and data types: A systematic review and meta-analysis. PLOS DIGITAL HEALTH 2024; 3:e0000438. [PMID: 38289965 PMCID: PMC10826962 DOI: 10.1371/journal.pdig.0000438] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 12/25/2023] [Indexed: 02/01/2024]
Abstract
Artificial Intelligence (AI), encompassing Machine Learning and Deep Learning, has increasingly been applied to fracture detection using diverse imaging modalities and data types. This systematic review and meta-analysis aimed to assess the efficacy of AI in detecting fractures through various imaging modalities and data types (image, tabular, or both) and to synthesize the existing evidence related to AI-based fracture detection. Peer-reviewed studies developing and validating AI for fracture detection were identified through searches in multiple electronic databases without time limitations. A hierarchical meta-analysis model was used to calculate pooled sensitivity and specificity. A diagnostic accuracy quality assessment was performed to evaluate bias and applicability. Of the 66 eligible studies, 54 identified fractures using imaging-related data, nine using tabular data, and three using both. Vertebral fractures were the most common outcome (n = 20), followed by hip fractures (n = 18). Hip fractures exhibited the highest pooled sensitivity (92%; 95% CI: 87-96, p< 0.01) and specificity (90%; 95% CI: 85-93, p< 0.01). Pooled sensitivity and specificity using image data (92%; 95% CI: 90-94, p< 0.01; and 91%; 95% CI: 88-93, p < 0.01) were higher than those using tabular data (81%; 95% CI: 77-85, p< 0.01; and 83%; 95% CI: 76-88, p < 0.01), respectively. Radiographs demonstrated the highest pooled sensitivity (94%; 95% CI: 90-96, p < 0.01) and specificity (92%; 95% CI: 89-94, p< 0.01). Patient selection and reference standards were major concerns in assessing diagnostic accuracy for bias and applicability. AI displays high diagnostic accuracy for various fracture outcomes, indicating potential utility in healthcare systems for fracture diagnosis. However, enhanced transparency in reporting and adherence to standardized guidelines are necessary to improve the clinical applicability of AI. Review Registration: PROSPERO (CRD42021240359).
Collapse
Affiliation(s)
- Jongyun Jung
- Department of Biomedical Informatics (Dr. Qing Wu, Jongyun Jung, and Jingyuan Dai), College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Jingyuan Dai
- Department of Biomedical Informatics (Dr. Qing Wu, Jongyun Jung, and Jingyuan Dai), College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Bowen Liu
- Department of Mathematics and Statistics, Division of Computing, Analytics, and Mathematics, School of Science and Engineering (Bowen Liu), University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Qing Wu
- Department of Biomedical Informatics (Dr. Qing Wu, Jongyun Jung, and Jingyuan Dai), College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
17
|
Altmann-Schneider I, Kellenberger CJ, Pistorius SM, Saladin C, Schäfer D, Arslan N, Fischer HL, Seiler M. Artificial intelligence-based detection of paediatric appendicular skeletal fractures: performance and limitations for common fracture types and locations. Pediatr Radiol 2024; 54:136-145. [PMID: 38099929 PMCID: PMC10776701 DOI: 10.1007/s00247-023-05822-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Research into artificial intelligence (AI)-based fracture detection in children is scarce and has disregarded the detection of indirect fracture signs and dislocations. OBJECTIVE To assess the diagnostic accuracy of an existing AI-tool for the detection of fractures, indirect fracture signs, and dislocations. MATERIALS AND METHODS An AI software, BoneView (Gleamer, Paris, France), was assessed for diagnostic accuracy of fracture detection using paediatric radiology consensus diagnoses as reference. Radiographs from a single emergency department were enrolled retrospectively going back from December 2021, limited to 1,000 radiographs per body part. Enrolment criteria were as follows: suspected fractures of the forearm, lower leg, or elbow; age 0-18 years; and radiographs in at least two projections. RESULTS Lower leg radiographs showed 607 fractures. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were high (87.5%, 87.5%, 98.3%, 98.3%, respectively). Detection rate was low for toddler's fractures, trampoline fractures, and proximal tibial Salter-Harris-II fractures. Forearm radiographs showed 1,137 fractures. Sensitivity, specificity, PPV, and NPV were high (92.9%, 98.1%, 98.4%, 91.7%, respectively). Radial and ulnar bowing fractures were not reliably detected (one out of 11 radial bowing fractures and zero out of seven ulnar bowing fractures were correctly detected). Detection rate was low for styloid process avulsions, proximal radial buckle, and complete olecranon fractures. Elbow radiographs showed 517 fractures. Sensitivity and NPV were moderate (80.5%, 84.7%, respectively). Specificity and PPV were high (94.9%, 93.3%, respectively). For joint effusion, sensitivity, specificity, PPV, and NPV were moderate (85.1%, 85.7%, 89.5%, 80%, respectively). For elbow dislocations, sensitivity and PPV were low (65.8%, 50%, respectively). Specificity and NPV were high (97.7%, 98.8%, respectively). CONCLUSIONS The diagnostic performance of BoneView is promising for forearm and lower leg fractures. However, improvement is mandatory before clinicians can rely solely on AI-based paediatric fracture detection using this software.
Collapse
Affiliation(s)
- Irmhild Altmann-Schneider
- Department of Diagnostic Imaging, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland.
- Paediatric Emergency Department, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland.
| | - Christian J Kellenberger
- Department of Diagnostic Imaging, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland
- Paediatric Emergency Department, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland
| | - Sarah-Maria Pistorius
- Department of Diagnostic Imaging, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland
- Paediatric Emergency Department, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland
| | - Camilla Saladin
- Department of Diagnostic Imaging, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland
- Paediatric Emergency Department, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland
| | - Debora Schäfer
- Children's Research Centre, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland
| | - Nidanur Arslan
- Children's Research Centre, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland
| | - Hanna L Fischer
- Children's Research Centre, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland
| | - Michelle Seiler
- Paediatric Emergency Department, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland
- Children's Research Centre, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland
| |
Collapse
|
18
|
Guermazi A, Omoumi P, Tordjman M, Fritz J, Kijowski R, Regnard NE, Carrino J, Kahn CE, Knoll F, Rueckert D, Roemer FW, Hayashi D. How AI May Transform Musculoskeletal Imaging. Radiology 2024; 310:e230764. [PMID: 38165245 PMCID: PMC10831478 DOI: 10.1148/radiol.230764] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/18/2023] [Accepted: 07/11/2023] [Indexed: 01/03/2024]
Abstract
While musculoskeletal imaging volumes are increasing, there is a relative shortage of subspecialized musculoskeletal radiologists to interpret the studies. Will artificial intelligence (AI) be the solution? For AI to be the solution, the wide implementation of AI-supported data acquisition methods in clinical practice requires establishing trusted and reliable results. This implementation will demand close collaboration between core AI researchers and clinical radiologists. Upon successful clinical implementation, a wide variety of AI-based tools can improve the musculoskeletal radiologist's workflow by triaging imaging examinations, helping with image interpretation, and decreasing the reporting time. Additional AI applications may also be helpful for business, education, and research purposes if successfully integrated into the daily practice of musculoskeletal radiology. The question is not whether AI will replace radiologists, but rather how musculoskeletal radiologists can take advantage of AI to enhance their expert capabilities.
Collapse
Affiliation(s)
- Ali Guermazi
- From the Department of Radiology, Boston University School of
Medicine, Boston, Mass (A.G., F.W.R., D.H.); Department of Radiology, VA Boston
Healthcare System, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132 (A.G.);
Department of Radiology, Lausanne University Hospital and University of
Lausanne, Lausanne, Switzerland (P.O.); Department of Radiology, Hotel Dieu
Hospital and University Paris Cité, Paris, France (M.T.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.,
R.K.); Gleamer, Paris, France (N.E.R.); Réseau d’Imagerie Sud
Francilien, Clinique du Mousseau Ramsay Santé, Evry, France (N.E.R.);
Pôle Médical Sénart, Lieusaint, France (N.E.R.); Department
of Radiology and Imaging, Hospital for Special Surgery and Weill Cornell
Medicine, New York, NY (J.C.); Department of Radiology and Institute for
Biomedical Informatics, University of Pennsylvania, Philadelphia, Penn (C.E.K.);
Departments of Artificial Intelligence in Biomedical Engineering (F.K.) and
Radiology (F.W.R.), Universitätsklinikum Erlangen &
Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen,
Germany (F.K.); School of Medicine & Computation, Information and
Technology Klinikum rechts der Isar, Technical University Munich,
München, Germany (D.R.); Department of Computing, Imperial College
London, London, England (D.R.); and Department of Radiology, Tufts Medical
Center, Tufts University School of Medicine, Boston, Mass (D.H.)
| | - Patrick Omoumi
- From the Department of Radiology, Boston University School of
Medicine, Boston, Mass (A.G., F.W.R., D.H.); Department of Radiology, VA Boston
Healthcare System, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132 (A.G.);
Department of Radiology, Lausanne University Hospital and University of
Lausanne, Lausanne, Switzerland (P.O.); Department of Radiology, Hotel Dieu
Hospital and University Paris Cité, Paris, France (M.T.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.,
R.K.); Gleamer, Paris, France (N.E.R.); Réseau d’Imagerie Sud
Francilien, Clinique du Mousseau Ramsay Santé, Evry, France (N.E.R.);
Pôle Médical Sénart, Lieusaint, France (N.E.R.); Department
of Radiology and Imaging, Hospital for Special Surgery and Weill Cornell
Medicine, New York, NY (J.C.); Department of Radiology and Institute for
Biomedical Informatics, University of Pennsylvania, Philadelphia, Penn (C.E.K.);
Departments of Artificial Intelligence in Biomedical Engineering (F.K.) and
Radiology (F.W.R.), Universitätsklinikum Erlangen &
Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen,
Germany (F.K.); School of Medicine & Computation, Information and
Technology Klinikum rechts der Isar, Technical University Munich,
München, Germany (D.R.); Department of Computing, Imperial College
London, London, England (D.R.); and Department of Radiology, Tufts Medical
Center, Tufts University School of Medicine, Boston, Mass (D.H.)
| | - Mickael Tordjman
- From the Department of Radiology, Boston University School of
Medicine, Boston, Mass (A.G., F.W.R., D.H.); Department of Radiology, VA Boston
Healthcare System, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132 (A.G.);
Department of Radiology, Lausanne University Hospital and University of
Lausanne, Lausanne, Switzerland (P.O.); Department of Radiology, Hotel Dieu
Hospital and University Paris Cité, Paris, France (M.T.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.,
R.K.); Gleamer, Paris, France (N.E.R.); Réseau d’Imagerie Sud
Francilien, Clinique du Mousseau Ramsay Santé, Evry, France (N.E.R.);
Pôle Médical Sénart, Lieusaint, France (N.E.R.); Department
of Radiology and Imaging, Hospital for Special Surgery and Weill Cornell
Medicine, New York, NY (J.C.); Department of Radiology and Institute for
Biomedical Informatics, University of Pennsylvania, Philadelphia, Penn (C.E.K.);
Departments of Artificial Intelligence in Biomedical Engineering (F.K.) and
Radiology (F.W.R.), Universitätsklinikum Erlangen &
Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen,
Germany (F.K.); School of Medicine & Computation, Information and
Technology Klinikum rechts der Isar, Technical University Munich,
München, Germany (D.R.); Department of Computing, Imperial College
London, London, England (D.R.); and Department of Radiology, Tufts Medical
Center, Tufts University School of Medicine, Boston, Mass (D.H.)
| | - Jan Fritz
- From the Department of Radiology, Boston University School of
Medicine, Boston, Mass (A.G., F.W.R., D.H.); Department of Radiology, VA Boston
Healthcare System, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132 (A.G.);
Department of Radiology, Lausanne University Hospital and University of
Lausanne, Lausanne, Switzerland (P.O.); Department of Radiology, Hotel Dieu
Hospital and University Paris Cité, Paris, France (M.T.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.,
R.K.); Gleamer, Paris, France (N.E.R.); Réseau d’Imagerie Sud
Francilien, Clinique du Mousseau Ramsay Santé, Evry, France (N.E.R.);
Pôle Médical Sénart, Lieusaint, France (N.E.R.); Department
of Radiology and Imaging, Hospital for Special Surgery and Weill Cornell
Medicine, New York, NY (J.C.); Department of Radiology and Institute for
Biomedical Informatics, University of Pennsylvania, Philadelphia, Penn (C.E.K.);
Departments of Artificial Intelligence in Biomedical Engineering (F.K.) and
Radiology (F.W.R.), Universitätsklinikum Erlangen &
Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen,
Germany (F.K.); School of Medicine & Computation, Information and
Technology Klinikum rechts der Isar, Technical University Munich,
München, Germany (D.R.); Department of Computing, Imperial College
London, London, England (D.R.); and Department of Radiology, Tufts Medical
Center, Tufts University School of Medicine, Boston, Mass (D.H.)
| | - Richard Kijowski
- From the Department of Radiology, Boston University School of
Medicine, Boston, Mass (A.G., F.W.R., D.H.); Department of Radiology, VA Boston
Healthcare System, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132 (A.G.);
Department of Radiology, Lausanne University Hospital and University of
Lausanne, Lausanne, Switzerland (P.O.); Department of Radiology, Hotel Dieu
Hospital and University Paris Cité, Paris, France (M.T.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.,
R.K.); Gleamer, Paris, France (N.E.R.); Réseau d’Imagerie Sud
Francilien, Clinique du Mousseau Ramsay Santé, Evry, France (N.E.R.);
Pôle Médical Sénart, Lieusaint, France (N.E.R.); Department
of Radiology and Imaging, Hospital for Special Surgery and Weill Cornell
Medicine, New York, NY (J.C.); Department of Radiology and Institute for
Biomedical Informatics, University of Pennsylvania, Philadelphia, Penn (C.E.K.);
Departments of Artificial Intelligence in Biomedical Engineering (F.K.) and
Radiology (F.W.R.), Universitätsklinikum Erlangen &
Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen,
Germany (F.K.); School of Medicine & Computation, Information and
Technology Klinikum rechts der Isar, Technical University Munich,
München, Germany (D.R.); Department of Computing, Imperial College
London, London, England (D.R.); and Department of Radiology, Tufts Medical
Center, Tufts University School of Medicine, Boston, Mass (D.H.)
| | - Nor-Eddine Regnard
- From the Department of Radiology, Boston University School of
Medicine, Boston, Mass (A.G., F.W.R., D.H.); Department of Radiology, VA Boston
Healthcare System, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132 (A.G.);
Department of Radiology, Lausanne University Hospital and University of
Lausanne, Lausanne, Switzerland (P.O.); Department of Radiology, Hotel Dieu
Hospital and University Paris Cité, Paris, France (M.T.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.,
R.K.); Gleamer, Paris, France (N.E.R.); Réseau d’Imagerie Sud
Francilien, Clinique du Mousseau Ramsay Santé, Evry, France (N.E.R.);
Pôle Médical Sénart, Lieusaint, France (N.E.R.); Department
of Radiology and Imaging, Hospital for Special Surgery and Weill Cornell
Medicine, New York, NY (J.C.); Department of Radiology and Institute for
Biomedical Informatics, University of Pennsylvania, Philadelphia, Penn (C.E.K.);
Departments of Artificial Intelligence in Biomedical Engineering (F.K.) and
Radiology (F.W.R.), Universitätsklinikum Erlangen &
Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen,
Germany (F.K.); School of Medicine & Computation, Information and
Technology Klinikum rechts der Isar, Technical University Munich,
München, Germany (D.R.); Department of Computing, Imperial College
London, London, England (D.R.); and Department of Radiology, Tufts Medical
Center, Tufts University School of Medicine, Boston, Mass (D.H.)
| | - John Carrino
- From the Department of Radiology, Boston University School of
Medicine, Boston, Mass (A.G., F.W.R., D.H.); Department of Radiology, VA Boston
Healthcare System, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132 (A.G.);
Department of Radiology, Lausanne University Hospital and University of
Lausanne, Lausanne, Switzerland (P.O.); Department of Radiology, Hotel Dieu
Hospital and University Paris Cité, Paris, France (M.T.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.,
R.K.); Gleamer, Paris, France (N.E.R.); Réseau d’Imagerie Sud
Francilien, Clinique du Mousseau Ramsay Santé, Evry, France (N.E.R.);
Pôle Médical Sénart, Lieusaint, France (N.E.R.); Department
of Radiology and Imaging, Hospital for Special Surgery and Weill Cornell
Medicine, New York, NY (J.C.); Department of Radiology and Institute for
Biomedical Informatics, University of Pennsylvania, Philadelphia, Penn (C.E.K.);
Departments of Artificial Intelligence in Biomedical Engineering (F.K.) and
Radiology (F.W.R.), Universitätsklinikum Erlangen &
Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen,
Germany (F.K.); School of Medicine & Computation, Information and
Technology Klinikum rechts der Isar, Technical University Munich,
München, Germany (D.R.); Department of Computing, Imperial College
London, London, England (D.R.); and Department of Radiology, Tufts Medical
Center, Tufts University School of Medicine, Boston, Mass (D.H.)
| | - Charles E. Kahn
- From the Department of Radiology, Boston University School of
Medicine, Boston, Mass (A.G., F.W.R., D.H.); Department of Radiology, VA Boston
Healthcare System, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132 (A.G.);
Department of Radiology, Lausanne University Hospital and University of
Lausanne, Lausanne, Switzerland (P.O.); Department of Radiology, Hotel Dieu
Hospital and University Paris Cité, Paris, France (M.T.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.,
R.K.); Gleamer, Paris, France (N.E.R.); Réseau d’Imagerie Sud
Francilien, Clinique du Mousseau Ramsay Santé, Evry, France (N.E.R.);
Pôle Médical Sénart, Lieusaint, France (N.E.R.); Department
of Radiology and Imaging, Hospital for Special Surgery and Weill Cornell
Medicine, New York, NY (J.C.); Department of Radiology and Institute for
Biomedical Informatics, University of Pennsylvania, Philadelphia, Penn (C.E.K.);
Departments of Artificial Intelligence in Biomedical Engineering (F.K.) and
Radiology (F.W.R.), Universitätsklinikum Erlangen &
Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen,
Germany (F.K.); School of Medicine & Computation, Information and
Technology Klinikum rechts der Isar, Technical University Munich,
München, Germany (D.R.); Department of Computing, Imperial College
London, London, England (D.R.); and Department of Radiology, Tufts Medical
Center, Tufts University School of Medicine, Boston, Mass (D.H.)
| | - Florian Knoll
- From the Department of Radiology, Boston University School of
Medicine, Boston, Mass (A.G., F.W.R., D.H.); Department of Radiology, VA Boston
Healthcare System, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132 (A.G.);
Department of Radiology, Lausanne University Hospital and University of
Lausanne, Lausanne, Switzerland (P.O.); Department of Radiology, Hotel Dieu
Hospital and University Paris Cité, Paris, France (M.T.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.,
R.K.); Gleamer, Paris, France (N.E.R.); Réseau d’Imagerie Sud
Francilien, Clinique du Mousseau Ramsay Santé, Evry, France (N.E.R.);
Pôle Médical Sénart, Lieusaint, France (N.E.R.); Department
of Radiology and Imaging, Hospital for Special Surgery and Weill Cornell
Medicine, New York, NY (J.C.); Department of Radiology and Institute for
Biomedical Informatics, University of Pennsylvania, Philadelphia, Penn (C.E.K.);
Departments of Artificial Intelligence in Biomedical Engineering (F.K.) and
Radiology (F.W.R.), Universitätsklinikum Erlangen &
Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen,
Germany (F.K.); School of Medicine & Computation, Information and
Technology Klinikum rechts der Isar, Technical University Munich,
München, Germany (D.R.); Department of Computing, Imperial College
London, London, England (D.R.); and Department of Radiology, Tufts Medical
Center, Tufts University School of Medicine, Boston, Mass (D.H.)
| | - Daniel Rueckert
- From the Department of Radiology, Boston University School of
Medicine, Boston, Mass (A.G., F.W.R., D.H.); Department of Radiology, VA Boston
Healthcare System, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132 (A.G.);
Department of Radiology, Lausanne University Hospital and University of
Lausanne, Lausanne, Switzerland (P.O.); Department of Radiology, Hotel Dieu
Hospital and University Paris Cité, Paris, France (M.T.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.,
R.K.); Gleamer, Paris, France (N.E.R.); Réseau d’Imagerie Sud
Francilien, Clinique du Mousseau Ramsay Santé, Evry, France (N.E.R.);
Pôle Médical Sénart, Lieusaint, France (N.E.R.); Department
of Radiology and Imaging, Hospital for Special Surgery and Weill Cornell
Medicine, New York, NY (J.C.); Department of Radiology and Institute for
Biomedical Informatics, University of Pennsylvania, Philadelphia, Penn (C.E.K.);
Departments of Artificial Intelligence in Biomedical Engineering (F.K.) and
Radiology (F.W.R.), Universitätsklinikum Erlangen &
Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen,
Germany (F.K.); School of Medicine & Computation, Information and
Technology Klinikum rechts der Isar, Technical University Munich,
München, Germany (D.R.); Department of Computing, Imperial College
London, London, England (D.R.); and Department of Radiology, Tufts Medical
Center, Tufts University School of Medicine, Boston, Mass (D.H.)
| | - Frank W. Roemer
- From the Department of Radiology, Boston University School of
Medicine, Boston, Mass (A.G., F.W.R., D.H.); Department of Radiology, VA Boston
Healthcare System, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132 (A.G.);
Department of Radiology, Lausanne University Hospital and University of
Lausanne, Lausanne, Switzerland (P.O.); Department of Radiology, Hotel Dieu
Hospital and University Paris Cité, Paris, France (M.T.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.,
R.K.); Gleamer, Paris, France (N.E.R.); Réseau d’Imagerie Sud
Francilien, Clinique du Mousseau Ramsay Santé, Evry, France (N.E.R.);
Pôle Médical Sénart, Lieusaint, France (N.E.R.); Department
of Radiology and Imaging, Hospital for Special Surgery and Weill Cornell
Medicine, New York, NY (J.C.); Department of Radiology and Institute for
Biomedical Informatics, University of Pennsylvania, Philadelphia, Penn (C.E.K.);
Departments of Artificial Intelligence in Biomedical Engineering (F.K.) and
Radiology (F.W.R.), Universitätsklinikum Erlangen &
Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen,
Germany (F.K.); School of Medicine & Computation, Information and
Technology Klinikum rechts der Isar, Technical University Munich,
München, Germany (D.R.); Department of Computing, Imperial College
London, London, England (D.R.); and Department of Radiology, Tufts Medical
Center, Tufts University School of Medicine, Boston, Mass (D.H.)
| | - Daichi Hayashi
- From the Department of Radiology, Boston University School of
Medicine, Boston, Mass (A.G., F.W.R., D.H.); Department of Radiology, VA Boston
Healthcare System, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132 (A.G.);
Department of Radiology, Lausanne University Hospital and University of
Lausanne, Lausanne, Switzerland (P.O.); Department of Radiology, Hotel Dieu
Hospital and University Paris Cité, Paris, France (M.T.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.,
R.K.); Gleamer, Paris, France (N.E.R.); Réseau d’Imagerie Sud
Francilien, Clinique du Mousseau Ramsay Santé, Evry, France (N.E.R.);
Pôle Médical Sénart, Lieusaint, France (N.E.R.); Department
of Radiology and Imaging, Hospital for Special Surgery and Weill Cornell
Medicine, New York, NY (J.C.); Department of Radiology and Institute for
Biomedical Informatics, University of Pennsylvania, Philadelphia, Penn (C.E.K.);
Departments of Artificial Intelligence in Biomedical Engineering (F.K.) and
Radiology (F.W.R.), Universitätsklinikum Erlangen &
Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen,
Germany (F.K.); School of Medicine & Computation, Information and
Technology Klinikum rechts der Isar, Technical University Munich,
München, Germany (D.R.); Department of Computing, Imperial College
London, London, England (D.R.); and Department of Radiology, Tufts Medical
Center, Tufts University School of Medicine, Boston, Mass (D.H.)
| |
Collapse
|
19
|
Pauling C, Kanber B, Arthurs OJ, Shelmerdine SC. Commercially available artificial intelligence tools for fracture detection: the evidence. BJR Open 2024; 6:tzad005. [PMID: 38352182 PMCID: PMC10860511 DOI: 10.1093/bjro/tzad005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 09/20/2023] [Accepted: 09/30/2023] [Indexed: 02/16/2024] Open
Abstract
Missed fractures are a costly healthcare issue, not only negatively impacting patient lives, leading to potential long-term disability and time off work, but also responsible for high medicolegal disbursements that could otherwise be used to improve other healthcare services. When fractures are overlooked in children, they are particularly concerning as opportunities for safeguarding may be missed. Assistance from artificial intelligence (AI) in interpreting medical images may offer a possible solution for improving patient care, and several commercial AI tools are now available for radiology workflow implementation. However, information regarding their development, evidence for performance and validation as well as the intended target population is not always clear, but vital when evaluating a potential AI solution for implementation. In this article, we review the range of available products utilizing AI for fracture detection (in both adults and children) and summarize the evidence, or lack thereof, behind their performance. This will allow others to make better informed decisions when deciding which product to procure for their specific clinical requirements.
Collapse
Affiliation(s)
- Cato Pauling
- UCL Great Ormond Street Institute of Child Health, University College London, London WC1E 6BT, United Kingdom
| | - Baris Kanber
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, University College London (UCL) Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London WC1N 3BG, United Kingdom
- Department of Medical Physics and Biomedical Engineering, Centre for Medical Image Computing, University College London, London WC1E 6BT, United Kingdom
| | - Owen J Arthurs
- UCL Great Ormond Street Institute of Child Health, University College London, London WC1E 6BT, United Kingdom
- Department of Clinical Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, United Kingdom
- NIHR Great Ormond Street Hospital Biomedical Research Centre, Bloomsbury, London WC1N 1EH, United Kingdom
| | - Susan C Shelmerdine
- UCL Great Ormond Street Institute of Child Health, University College London, London WC1E 6BT, United Kingdom
- Department of Clinical Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, United Kingdom
- NIHR Great Ormond Street Hospital Biomedical Research Centre, Bloomsbury, London WC1N 1EH, United Kingdom
| |
Collapse
|
20
|
Jan F, Rahman A, Busaleh R, Alwarthan H, Aljaser S, Al-Towailib S, Alshammari S, Alhindi KR, Almogbil A, Bubshait DA, Ahmed MIB. Assessing Acetabular Index Angle in Infants: A Deep Learning-Based Novel Approach. J Imaging 2023; 9:242. [PMID: 37998088 PMCID: PMC10672484 DOI: 10.3390/jimaging9110242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
Developmental dysplasia of the hip (DDH) is a disorder characterized by abnormal hip development that frequently manifests in infancy and early childhood. Preventing DDH from occurring relies on a timely and accurate diagnosis, which requires careful assessment by medical specialists during early X-ray scans. However, this process can be challenging for medical personnel to achieve without proper training. To address this challenge, we propose a computational framework to detect DDH in pelvic X-ray imaging of infants that utilizes a pipelined deep learning-based technique consisting of two stages: instance segmentation and keypoint detection models to measure acetabular index angle and assess DDH affliction in the presented case. The main aim of this process is to provide an objective and unified approach to DDH diagnosis. The model achieved an average pixel error of 2.862 ± 2.392 and an error range of 2.402 ± 1.963° for the acetabular angle measurement relative to the ground truth annotation. Ultimately, the deep-learning model will be integrated into the fully developed mobile application to make it easily accessible for medical specialists to test and evaluate. This will reduce the burden on medical specialists while providing an accurate and explainable DDH diagnosis for infants, thereby increasing their chances of successful treatment and recovery.
Collapse
Affiliation(s)
- Farmanullah Jan
- Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia (K.R.A.)
| | - Atta Rahman
- Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia (K.R.A.)
| | - Roaa Busaleh
- Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia (K.R.A.)
| | - Haya Alwarthan
- Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia (K.R.A.)
| | - Samar Aljaser
- Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia (K.R.A.)
| | - Sukainah Al-Towailib
- Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia (K.R.A.)
| | - Safiyah Alshammari
- Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia (K.R.A.)
| | - Khadeejah Rasheed Alhindi
- Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia (K.R.A.)
| | - Asrar Almogbil
- Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia (K.R.A.)
| | - Dalal A. Bubshait
- Department of Orthopedics, College of Medicine, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mohammed Imran Basheer Ahmed
- Department of Computer Engineering, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
21
|
Gasmi I, Calinghen A, Parienti JJ, Belloy F, Fohlen A, Pelage JP. Comparison of diagnostic performance of a deep learning algorithm, emergency physicians, junior radiologists and senior radiologists in the detection of appendicular fractures in children. Pediatr Radiol 2023; 53:1675-1684. [PMID: 36877239 DOI: 10.1007/s00247-023-05621-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 11/21/2022] [Accepted: 01/30/2023] [Indexed: 03/07/2023]
Abstract
BACKGROUND Advances have been made in the use of artificial intelligence (AI) in the field of diagnostic imaging, particularly in the detection of fractures on conventional radiographs. Studies looking at the detection of fractures in the pediatric population are few. The anatomical variations and evolution according to the child's age require specific studies of this population. Failure to diagnose fractures early in children may lead to serious consequences for growth. OBJECTIVE To evaluate the performance of an AI algorithm based on deep neural networks toward detecting traumatic appendicular fractures in a pediatric population. To compare sensitivity, specificity, positive predictive value and negative predictive value of different readers and the AI algorithm. MATERIALS AND METHODS This retrospective study conducted on 878 patients younger than 18 years of age evaluated conventional radiographs obtained after recent non-life-threatening trauma. All radiographs of the shoulder, arm, elbow, forearm, wrist, hand, leg, knee, ankle and foot were evaluated. The diagnostic performance of a consensus of radiology experts in pediatric imaging (reference standard) was compared with those of pediatric radiologists, emergency physicians, senior residents and junior residents. The predictions made by the AI algorithm and the annotations made by the different physicians were compared. RESULTS The algorithm predicted 174 fractures out of 182, corresponding to a sensitivity of 95.6%, a specificity of 91.64% and a negative predictive value of 98.76%. The AI predictions were close to that of pediatric radiologists (sensitivity 98.35%) and that of senior residents (95.05%) and were above those of emergency physicians (81.87%) and junior residents (90.1%). The algorithm identified 3 (1.6%) fractures not initially seen by pediatric radiologists. CONCLUSION This study suggests that deep learning algorithms can be useful in improving the detection of fractures in children.
Collapse
Affiliation(s)
- Idriss Gasmi
- Department of Radiology, Caen University Medical Center, 14033 Cedex 9, Caen, France
| | - Arvin Calinghen
- Department of Radiology, Caen University Medical Center, 14033 Cedex 9, Caen, France
| | - Jean-Jacques Parienti
- GRAM 2.0 EA2656 UNICAEN Normandie, University Hospital, Caen, France
- Department of Clinical Research, Caen University Hospital, Caen, France
| | - Frederique Belloy
- Department of Radiology, Caen University Medical Center, 14033 Cedex 9, Caen, France
| | - Audrey Fohlen
- Department of Radiology, Caen University Medical Center, 14033 Cedex 9, Caen, France
- UNICAEN CEA CNRS ISTCT- CERVOxy, Normandie University, 14000, Caen, France
| | - Jean-Pierre Pelage
- Department of Radiology, Caen University Medical Center, 14033 Cedex 9, Caen, France.
- UNICAEN CEA CNRS ISTCT- CERVOxy, Normandie University, 14000, Caen, France.
| |
Collapse
|
22
|
ROZWAG C, VALENTINI F, COTTEN A, DEMONDION X, PREUX P, JACQUES T. Elbow trauma in children: development and evaluation of radiological artificial intelligence models. RESEARCH IN DIAGNOSTIC AND INTERVENTIONAL IMAGING 2023; 6:100029. [PMID: 39077546 PMCID: PMC11265386 DOI: 10.1016/j.redii.2023.100029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/24/2023] [Indexed: 07/31/2024]
Abstract
Rationale and Objectives To develop a model using artificial intelligence (A.I.) able to detect post-traumatic injuries on pediatric elbow X-rays then to evaluate its performances in silico and its impact on radiologists' interpretation in clinical practice. Material and Methods A total of 1956 pediatric elbow radiographs performed following a trauma were retrospectively collected from 935 patients aged between 0 and 18 years. Deep convolutional neural networks were trained on these X-rays. The two best models were selected then evaluated on an external test set involving 120 patients, whose X-rays were performed on a different radiological equipment in another time period. Eight radiologists interpreted this external test set without then with the help of the A.I. models . Results Two models stood out: model 1 had an accuracy of 95.8% and an AUROC of 0.983 and model 2 had an accuracy of 90.5% and an AUROC of 0.975. On the external test set, model 1 kept a good accuracy of 82.5% and AUROC of 0.916 while model 2 had a loss of accuracy down to 69.2% and of AUROC to 0.793. Model 1 significantly improved radiologist's sensitivity (0.82 to 0.88, P = 0.016) and accuracy (0.86 to 0.88, P = 0,047) while model 2 significantly decreased specificity of readers (0.86 to 0.83, P = 0.031). Conclusion End-to-end development of a deep learning model to assess post-traumatic injuries on elbow X-ray in children was feasible and showed that models with close metrics in silico can unpredictably lead radiologists to either improve or lower their performances in clinical settings.
Collapse
Affiliation(s)
- Clémence ROZWAG
- Université de Lille , Lille, France
- Centre hospitalier universitaire de Lille, Lille, France
| | - Franck VALENTINI
- Université de Lille , Lille, France
- Inria Lille – Nord Europe, équipe Scool, Lille, France
- CNRS UMR 9189 – CRIStAL, Lille, France
- École Centrale de Lille, Lille, France
| | - Anne COTTEN
- Université de Lille , Lille, France
- Centre hospitalier universitaire de Lille, Lille, France
| | - Xavier DEMONDION
- Université de Lille , Lille, France
- Centre hospitalier universitaire de Lille, Lille, France
| | - Philippe PREUX
- Université de Lille , Lille, France
- Inria Lille – Nord Europe, équipe Scool, Lille, France
- CNRS UMR 9189 – CRIStAL, Lille, France
- École Centrale de Lille, Lille, France
| | - Thibaut JACQUES
- Université de Lille , Lille, France
- Centre hospitalier universitaire de Lille, Lille, France
| |
Collapse
|
23
|
Nguyen T, Hermann AL, Ventre J, Ducarouge A, Pourchot A, Marty V, Regnard NE, Guermazi A. High performance for bone age estimation with an artificial intelligence solution. Diagn Interv Imaging 2023:S2211-5684(23)00075-X. [PMID: 37095034 DOI: 10.1016/j.diii.2023.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/26/2023]
Abstract
PURPOSE The purpose of this study was to compare the performance of an artificial intelligence (AI) solution to that of a senior general radiologist for bone age assessment. MATERIAL AND METHODS Anteroposterior hand radiographs of eight boys and eight girls from each age interval between five and 17 year-old from four different radiology departments were retrospectively collected. Two board-certified pediatric radiologists with knowledge of the sex and chronological age of the patients independently estimated the Greulich and Pyle bone age to determine the standard of reference. A senior general radiologist not specialized in pediatric radiology (further referred to as "the reader") then determined the bone age with knowledge of the sex and chronological age. The results of the reader were then compared to those of the AI solution using mean absolute error (MAE) in age estimation. RESULTS The study dataset included a total of 206 patients (102 boys of mean chronological age of 10.9 ± 3.7 [SD] years, 104 girls of mean chronological age of 11 ± 3.7 [SD] years). For both sexes, the AI algorithm showed a significantly lower MAE than the reader (P < 0.007). In boys, the MAE was 0.488 years (95% confidence interval [CI]: 0.28-0.44; r2 = 0.978) for the AI algorithm and 0.771 years (95% CI: 0.64-0.90; r2 = 0.94) for the reader. In girls, the MAE was 0.494 years (95% CI: 0.41-0.56; r2 = 0.973) for the AI algorithm and 0.673 years (95% CI: 0.54-0.81; r2 = 0.934) for the reader. CONCLUSION The AI solution better estimates the Greulich and Pyle bone age than a general radiologist does.
Collapse
Affiliation(s)
- Toan Nguyen
- Department of Pediatric Radiology, Hôpital Armand Trousseau AP-HP, 75012 Paris, France; Gleamer, 75010 Paris, France.
| | - Anne-Laure Hermann
- Department of Pediatric Radiology, Hôpital Armand Trousseau AP-HP, 75012 Paris, France
| | | | | | | | | | - Nor-Eddine Regnard
- Gleamer, 75010 Paris, France; Réseau Imagerie Sud Francilien, 77127 Lieusaint, France
| | - Ali Guermazi
- Department of Radiology, Boston University School of Medicine, VA Boston Healthcare System, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132, United States of America
| |
Collapse
|
24
|
'Assessment of an artificial intelligence aid for the detection of appendicular skeletal fractures in children and young adults by senior and junior radiologists': reply to Sammer et al. Pediatr Radiol 2023; 53:341-342. [PMID: 36472646 DOI: 10.1007/s00247-022-05554-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
|
25
|
Sammer MBK, Farmakis SG, Sher AC, Taragin BH, Towbin AJ. Re: 'Assessment of an artificial intelligence aid for the detection of appendicular skeletal fractures in children and young adults by senior and junior radiologists'. Pediatr Radiol 2023; 53:339-340. [PMID: 36477625 DOI: 10.1007/s00247-022-05553-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 10/21/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Marla B K Sammer
- Singleton Department of Radiology, Texas Children's Hospital, 6701 Fannin St., TX 77030, Houston, USA. .,Department of Radiology, Baylor College of Medicine, Houston, TX, USA.
| | - Shannon G Farmakis
- Department of Radiology, Mercy Children's Hospital, St. Louis, MO, USA.,West County Radiological Group, St. Louis, MO, USA
| | - Andrew C Sher
- Singleton Department of Radiology, Texas Children's Hospital, 6701 Fannin St., TX 77030, Houston, USA.,Department of Radiology, Baylor College of Medicine, Houston, TX, USA
| | - Benjamin H Taragin
- Department of Pediatric Radiology, Samson Assuta Ashdod University Hospital, Ashdod, Israel.,Medical School for International Health, Ben Gurion University, Be'er Sheva, Israel
| | - Alexander J Towbin
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
26
|
A Prospective Approach to Integration of AI Fracture Detection Software in Radiographs into Clinical Workflow. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010223. [PMID: 36676172 PMCID: PMC9864518 DOI: 10.3390/life13010223] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Gleamer BoneView© is a commercially available AI algorithm for fracture detection in radiographs. We aim to test if the algorithm can assist in better sensitivity and specificity for fracture detection by residents with prospective integration into clinical workflow. Radiographs with inquiry for fracture initially reviewed by two residents were randomly assigned and included. A preliminary diagnosis of a possible fracture was made. Thereafter, the AI decision on presence and location of possible fractures was shown and changes to diagnosis could be made. Final diagnosis of fracture was made by a board-certified radiologist with over eight years of experience, or if available, cross-sectional imaging. Sensitivity and specificity of the human report, AI diagnosis, and assisted report were calculated in comparison to the final expert diagnosis. 1163 exams in 735 patients were included, with a total of 367 fractures (31.56%). Pure human sensitivity was 84.74%, and AI sensitivity was 86.92%. Thirty-five changes were made after showing AI results, 33 of which resulted in the correct diagnosis, resulting in 25 additionally found fractures. This resulted in a sensitivity of 91.28% for the assisted report. Specificity was 97.11, 84.67, and 97.36%, respectively. AI assistance showed an increase in sensitivity for both residents, without a loss of specificity.
Collapse
|