1
|
Queirós L, Monteiro L, Marques C, Pereira JL, Gonçalves FJM, Aschner M, Pereira P. Measurement of the Effects of Metals on Taxis-to-Food Behavior in Caenorhabditis elegans. Curr Protoc 2021; 1:e131. [PMID: 33974358 DOI: 10.1002/cpz1.131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Chemosensation in nematodes is linked to processes that affect their ability to survive, such as the search for food and the avoidance of toxic substances. Since the 1970s, numerous studies have assessed chemotaxis in the nematode species Caenorhabditis elegans, focusing on a multitude of agents, including bacteria (food), ions, salts, hormones, volatile organic compounds, and, to a lesser extent, metal-contaminated medium/food. The few studies evaluating metal exposure have reported a variety of responses (neutral, attraction, avoidance), which generally appear to be contaminant and/or concentration specific. Differences in experimental designs, however, hinder appropriate comparison of the findings and attainment of firm conclusions. Therefore, we herein propose and describe a detailed protocol for the assessment of the effects of metals on taxis-to-food behavior in C. elegans. Distinct approaches are proposed in two innovative stages of testing to (1) screen metals' effects on taxis-to-food behavior and (2) classify the behavioral response as attraction/avoidance/indifference or preference. Use of such a standard protocol will allow for easy comparison across studies and direct interpretation of results. Findings using this model system can contribute to a deeper understanding of the real risks of metal contamination to nematodes and how such contaminants could impact ecosystems in general, given the key environmental roles that these organisms play. © 2021 Wiley Periodicals LLC. Basic Protocol: Assessing the effects of metal contamination on taxis-to-food behavior in Caenorhabditis elegans Support Protocol 1: Synchronization of C. elegans by hand-picking gravid worms Support Protocol 2: Synchronization of C. elegans by using a bleaching solution.
Collapse
Affiliation(s)
- Libânia Queirós
- Department of Biology & CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Aveiro, Portugal
| | - Luana Monteiro
- Marine Biology Research Group, Biology Department, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Carlos Marques
- Department of Biology & CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Aveiro, Portugal
| | - Joana L Pereira
- Department of Biology & CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Aveiro, Portugal
| | - Fernando J M Gonçalves
- Department of Biology & CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Aveiro, Portugal
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York
| | - Patrícia Pereira
- Department of Biology & CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Aveiro, Portugal
| |
Collapse
|
2
|
Hellinga JR, Garduño RA, Kormish JD, Tanner JR, Khan D, Buchko K, Jimenez C, Pinette MM, Brassinga AKC. Identification of vacuoles containing extraintestinal differentiated forms of Legionella pneumophila in colonized Caenorhabditis elegans soil nematodes. Microbiologyopen 2015; 4:660-81. [PMID: 26131925 PMCID: PMC4554460 DOI: 10.1002/mbo3.271] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/13/2015] [Accepted: 05/19/2015] [Indexed: 11/24/2022] Open
Abstract
Legionella pneumophila, a causative agent of Legionnaires’ disease, is a facultative intracellular parasite of freshwater protozoa. Legionella pneumophila features a unique developmental network that involves several developmental forms including the infectious cyst forms. Reservoirs of L. pneumophila include natural and man-made freshwater systems; however, recent studies have shown that isolates of L. pneumophila can also be obtained directly from garden potting soil suggesting the presence of an additional reservoir. A previous study employing the metazoan Caenorhabditis elegans, a member of the Rhabditidae family of free-living soil nematodes, demonstrated that the intestinal lumen can be colonized with L. pneumophila. While both replicative forms and differentiated forms were observed in C. elegans, these morphologically distinct forms were initially observed to be restricted to the intestinal lumen. Using live DIC imaging coupled with focused transmission electron microscopy analyses, we report here that L. pneumophila is able to invade and establish Legionella-containing vacuoles (LCVs) in the intestinal cells. In addition, LCVs containing replicative and differentiated cyst forms were observed in the pseudocoelomic cavity and gonadal tissue of nematodes colonized with L. pneumophila. Furthermore, establishment of LCVs in the gonadal tissue was Dot/Icm dependent and required the presence of the endocytic factor RME-1 to gain access to maturing oocytes. Our findings are novel as this is the first report, to our knowledge, of extraintestinal LCVs containing L. pneumophila cyst forms in C. elegans tissues, highlighting the potential of soil-dwelling nematodes as an alternate environmental reservoir for L. pneumophila.
Collapse
Affiliation(s)
- Jacqueline R Hellinga
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2
| | - Rafael A Garduño
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 1X5.,Department of Medicine, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 1X5
| | - Jay D Kormish
- Department of Biological Sciences, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2
| | - Jennifer R Tanner
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2
| | - Deirdre Khan
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2
| | - Kristyn Buchko
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2
| | - Celine Jimenez
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2
| | - Mathieu M Pinette
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2
| | - Ann Karen C Brassinga
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2
| |
Collapse
|
3
|
Pseudomonas fluorescens NZI7 repels grazing by C. elegans, a natural predator. ISME JOURNAL 2013; 7:1126-38. [PMID: 23426012 DOI: 10.1038/ismej.2013.9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The bacteriovorous nematode Caenorhabditis elegans has been used to investigate many aspects of animal biology, including interactions with pathogenic bacteria. However, studies examining C. elegans interactions with bacteria isolated from environments in which it is found naturally are relatively scarce. C. elegans is frequently associated with cultivation of the edible mushroom Agaricus bisporus, and has been reported to increase the severity of bacterial blotch of mushrooms, a disease caused by bacteria from the Pseudomonas fluorescens complex. We observed that pseudomonads isolated from mushroom farms showed differential resistance to nematode predation. Under nutrient poor conditions, in which most pseudomonads were consumed, the mushroom pathogenic isolate P. fluorescens NZI7 was able to repel C. elegans without causing nematode death. A draft genome sequence of NZI7 showed it to be related to the biocontrol strain P. protegens Pf-5. To identify the genetic basis of nematode repellence in NZI7, we developed a grid-based screen for mutants that lacked the ability to repel C. elegans. The mutants isolated in this screen included strains with insertions in the global regulator GacS and in a previously undescribed GacS-regulated gene cluster, 'EDB' ('edible'). Our results suggest that the product of the EDB cluster is a poorly diffusible or cell-associated factor that acts together with other features of NZI7 to provide a novel mechanism to deter nematode grazing. As nematodes interact with NZI7 colonies before being repelled, the EDB factor may enable NZI7 to come into contact with and be disseminated by C. elegans without being subject to intensive predation.
Collapse
|
4
|
Gleason FH, Crawford JW, Neuhauser S, Henderson LE, Lilje O. Resource seeking strategies of zoosporic true fungi in heterogeneous soil habitats at the microscale level. SOIL BIOLOGY & BIOCHEMISTRY 2012; 45:79-88. [PMID: 22308003 PMCID: PMC3261367 DOI: 10.1016/j.soilbio.2011.10.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 10/20/2011] [Accepted: 10/26/2011] [Indexed: 05/16/2023]
Abstract
Zoosporic true fungi have frequently been identified in samples from soil and freshwater ecosystems using baiting and molecular techniques. In fact some species can be components of the dominant groups of microorganisms in particular soil habitats. Yet these microorganisms have not yet been directly observed growing in soil ecosystems. Significant physical characteristics and features of the three-dimensional structures of soils which impact microorganisms at the microscale level are discussed. A thorough knowledge of soil structures is important for studying the distribution of assemblages of these fungi and understanding their ecological roles along spatial and temporal gradients. A number of specific adaptations and resource seeking strategies possibly give these fungi advantages over other groups of microorganisms in soil ecosystems. These include chemotactic zoospores, mechanisms for adhesion to substrates, rhizoids which can penetrate substrates in small spaces, structures which are resistant to environmental extremes, rapid growth rates and simple nutritional requirements. These adaptations are discussed in the context of the characteristics of soils ecosystems. Recent advances in instrumentation have led to the development of new and more precise methods for studying microorganisms in three-dimensional space. New molecular techniques have made identification of microbes possible in environmental samples.
Collapse
Affiliation(s)
- Frank H. Gleason
- School of Biological Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - John W. Crawford
- Faculty of Agriculture Food and Natural Resources, University of Sydney, Sydney, NSW 2006, Australia
| | - Sigrid Neuhauser
- Institute of Microbiology, Leopold Franzens–University Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria
| | - Linda E. Henderson
- School of Biological Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Osu Lilje
- School of Biological Sciences, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
5
|
Wong MS, Chu WC, Sun DS, Huang HS, Chen JH, Tsai PJ, Lin NT, Yu MS, Hsu SF, Wang SL, Chang HH. Visible-light-induced bactericidal activity of a nitrogen-doped titanium photocatalyst against human pathogens. Appl Environ Microbiol 2006; 72:6111-6. [PMID: 16957236 PMCID: PMC1563686 DOI: 10.1128/aem.02580-05] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The antibacterial activity of photocatalytic titanium dioxide (TiO(2)) substrates is induced primarily by UV light irradiation. Recently, nitrogen- and carbon-doped TiO(2) substrates were shown to exhibit photocatalytic activities under visible-light illumination. Their antibacterial activity, however, remains to be quantified. In this study, we demonstrated that nitrogen-doped TiO(2) substrates have superior visible-light-induced bactericidal activity against Escherichia coli compared to pure TiO(2) and carbon-doped TiO(2) substrates. We also found that protein- and light-absorbing contaminants partially reduce the bactericidal activity of nitrogen-doped TiO(2) substrates due to their light-shielding effects. In the pathogen-killing experiment, a significantly higher proportion of all tested pathogens, including Shigella flexneri, Listeria monocytogenes, Vibrio parahaemolyticus, Staphylococcus aureus, Streptococcus pyogenes, and Acinetobacter baumannii, were killed by visible-light-illuminated nitrogen-doped TiO(2) substrates than by pure TiO(2) substrates. These findings suggest that nitrogen-doped TiO(2) has potential application in the development of alternative disinfectants for environmental and medical usages.
Collapse
Affiliation(s)
- Ming-Show Wong
- Department of Materials Science and Engineering, National Dong-Hwa University, Hualien, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Lindblom TH, Dodd AK. Xenobiotic detoxification in the nematode Caenorhabditis elegans. ACTA ACUST UNITED AC 2006; 305:720-30. [PMID: 16902959 PMCID: PMC2656347 DOI: 10.1002/jez.a.324] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The nematode Caenorhabditis elegans is an important model organism for the study of such diverse aspects of animal physiology and behavior as embryonic development, chemoreception, and the genetic control of lifespan. Yet, even though the entire genome sequence of this organism was deposited into public databases several years ago, little is known about xenobiotic metabolism in C. elegans. In part, the paucity of detoxification information may be due to the plush life enjoyed by nematodes raised in the laboratory. In the wild, however, these animals experience a much greater array of chemical assaults. Living in the interstitial water of the soil, populations of C. elegans exhibit a boom and bust lifestyle characterized by prodigious predation of soil microbes punctuated by periods of dispersal as a non-developing alternative larval stage. During the booming periods of population expansion, these animals almost indiscriminately consume everything in their environment including any number of compounds from other animals, microorganisms, plants, and xenobiotics. Several recent studies have identified many genes encoding sensors and enzymes these nematodes may use in their xeno-coping strategies. Here, we will discuss these recent advances, as well as the efforts by our lab and others to utilize the genomic resources of the C. elegans system to elucidate this nematode's molecular defenses against toxins.
Collapse
Affiliation(s)
- Tim H Lindblom
- Division of Science, Lyon College, Batesville, Arkansas 72501, USA.
| | | |
Collapse
|
7
|
Standing D, Knox OGG, Mullins CE, Killham KK, Wilson MJ. Influence of nematodes on resource utilization by bacteria--an in vitro study. MICROBIAL ECOLOGY 2006; 52:444-50. [PMID: 16897294 DOI: 10.1007/s00248-006-9119-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Accepted: 05/22/2006] [Indexed: 05/11/2023]
Abstract
The positive influence of bacterial feeding nematodes on bacterial mediated processes such as organic matter mineralization and nutrient cycling is widely accepted, but the mechanisms of these interactions are not always apparent. Both transport of bacteria by nematodes, and nutritional effects caused by nematode N excretion are thought to be involved, but their relative importance is not known because of the difficulties in studying these interactions in soil. We developed a simple in vitro assay to study complex nematode/bacterial interactions and used it to conduct a series of experiments to determine the potential influence of nematode movement and nutritional effects on bacterial resource use. The system used bacterial feeding and nonfeeding insect parasitic nematodes, and luminescent bacteria marked with metabolic reporter genes. Both nutritional enhancement of bacterial activity and bacterial transport were observed and we hypothesize that in nature, the relative importance of transport is likely to be greater in bulk soil, whereas nematode excretion may have greater impact in the rhizosphere. In both cases, the ability of nematodes to enhance bacterial resource utilization has implications for soil components of biogeochemical cycling.
Collapse
Affiliation(s)
- D Standing
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 3UU, UK
| | | | | | | | | |
Collapse
|