1
|
Zhang Q, Wang X, Zeng W, Xu S, Li D, Yu S, Zhou J. De novo biosynthesis of carminic acid in Saccharomyces cerevisiae. Metab Eng 2023; 76:50-62. [PMID: 36634840 DOI: 10.1016/j.ymben.2023.01.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
Carminic acid is a natural red dye extracted from the insect Dactylopius coccus. Due to its ideal dying effect and high safety, it is widely used in food and cosmetics industries. Previous study showed that introduction of polyketide synthase (OKS) from Aloe arborescens, cyclase (ZhuI) and aromatase (ZhuJ) from Streptomyces sp. R1128, and C-glucosyltransferase (UGT2) from D. coccus into Aspergillus nidulans could achieve trace amounts of de novo production. These four genes were introduced into Saccharomyces cerevisiae, but carminic acid was not detected. Analysis of the genome of A. nidulans revealed that 4'-phosphopantetheinyl transferase (NpgA) and monooxygenase (AptC) are essential for de novo biosynthesis of carminic acid in S. cerevisiae. Additionally, endogenous hydroxylase (Cat5) from S. cerevisiae was found to be responsible for hydroxylation of flavokermesic acid to kermesic acid. Therefore, all enzymes and their functions in the biosynthesis of carminic acid were explored and reconstructed in S. cerevisiae. Through systematic pathway engineering, including regulating enzyme expression, enhancing precursor supply, and modifying the β-oxidation pathway, the carminic acid titer in a 5 L bioreactor reached 7580.9 μg/L, the highest yet reported for a microorganism. Heterologous reconstruction of the carminic acid biosynthetic pathway in S. cerevisiae has great potential for de novo biosynthesis of anthraquinone dye.
Collapse
Affiliation(s)
- Qian Zhang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu, 214122, China
| | - Xinglong Wang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu, 214122, China
| | - Weizhu Zeng
- School of Biotechnology, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu, 214122, China
| | - Sha Xu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Dong Li
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu, 214122, China
| | - Shiqin Yu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu, 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu, 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu, 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu, 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
2
|
Zhang R, Miao Y, Chen L, Yi S, Tan N. De Novo Transcriptome Analysis Reveals Putative Genes Involved in Anthraquinone Biosynthesis in Rubia yunnanensis. Genes (Basel) 2022; 13:521. [PMID: 35328075 PMCID: PMC8954821 DOI: 10.3390/genes13030521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Rubia yunnanensis Diels (R. yunnanensis), a Chinese perennial plant, is well-known for its medicinal values such as rheumatism, contusion, and anemia. It is rich in bioactive anthraquinones, but the biosynthetic pathways of anthraquinones in R. yunnanensis remain unknown. To investigate genes involved in anthraquinone biosynthesis in R. yunnanensis, we generated a de novo transcriptome of R. yunnanensis using the Illumina HiSeq 2500 sequencing platform. A total of 636,198 transcripts were obtained, in which 140,078 transcripts were successfully annotated. A differential gene expression analysis identified 15 putative genes involved in anthraquinone biosynthesis. Additionally, the hairy roots of R. yunnanensis were treated with 200 µM Methyl Jasmonate (MeJA). The contents of six bioactive anthraquinones and gene expression levels of 15 putative genes were measured using ultra performance liquid chromatography coupled with mass spectrometry (UPLC-MS/MS) and real-time quantitative polymerase chain reaction (RT-qPCR), respectively. The results showed that the expressions levels for 11 of the 15 genes and the contents of two of six anthraquinones significantly increased by MeJA treatment. Pearson's correlation analyses indicated that the expressions of 4 of the 15 putative genes were positively correlated with the contents of rubiquinone (Q3) and rubiquinone-3-O-β-d-xylopranosyl-(1→6)-β-d-glucopyranoside (Q20). This study reported the first de novo transcriptome of R. yunnanensis and shed light on the anthraquinone biosynthesis and genetic information for R. yunnanensis.
Collapse
Affiliation(s)
- Rongfei Zhang
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (R.Z.); (Y.M.); (L.C.)
| | - Yuanyuan Miao
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (R.Z.); (Y.M.); (L.C.)
| | - Lingyun Chen
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (R.Z.); (Y.M.); (L.C.)
| | - Shanyong Yi
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (R.Z.); (Y.M.); (L.C.)
- Department of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China
| | - Ninghua Tan
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (R.Z.); (Y.M.); (L.C.)
| |
Collapse
|
3
|
Sanaei E, Lin YP, Cook LG, Engelstädter J. Wolbachia in scale insects: a distinct pattern of infection frequencies and potential transfer routes via ant associates. Environ Microbiol 2021; 24:1326-1339. [PMID: 34792280 DOI: 10.1111/1462-2920.15833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/05/2021] [Accepted: 10/29/2021] [Indexed: 11/28/2022]
Abstract
Wolbachia is one of the most successful endosymbiotic bacteria of arthropods. Known as the 'master of manipulation', Wolbachia can induce a wide range of phenotypes in its host that can have far-reaching ecological and evolutionary consequences and may be exploited for disease and pest control. However, our knowledge of Wolbachia's distribution and the infection rate is unevenly distributed across arthropod groups such as scale insects. We fitted a distribution of within-species prevalence of Wolbachia to our data and compared it to distributions fitted to an up-to-date dataset compiled from surveys across all arthropods. The estimated distribution parameters indicate a Wolbachia infection frequency of 43.6% (at a 10% prevalence threshold) in scale insects. Prevalence of Wolbachia in scale insects follows a distribution similar to exponential decline (most species are predicted to have low prevalence infections), in contrast to the U-shaped distribution estimated for other taxa (most species have a very low or very high prevalence). We observed no significant associations between Wolbachia infection and scale insect traits. Finally, we screened for Wolbachia in scale insect's ecological associates. We found a positive correlation between Wolbachia infection in scale insects and their ant associates, pointing to a possible route of horizontal transfer of Wolbachia.
Collapse
Affiliation(s)
- Ehsan Sanaei
- School of Biological Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Yen-Po Lin
- Department of Plant Medicine, College of Agriculture, National Chiayi University, Chiayi City, 60004, Taiwan
| | - Lyn G Cook
- School of Biological Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Jan Engelstädter
- School of Biological Sciences, The University of Queensland, Brisbane, 4072, Australia
| |
Collapse
|
4
|
Vera-Ponce León A, Dominguez-Mirazo M, Bustamante-Brito R, Higareda-Alvear V, Rosenblueth M, Martínez-Romero E. Functional genomics of a Spiroplasma associated with the carmine cochineals Dactylopius coccus and Dactylopius opuntiae. BMC Genomics 2021; 22:240. [PMID: 33823812 PMCID: PMC8025503 DOI: 10.1186/s12864-021-07540-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 03/18/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Spiroplasma is a widely distributed endosymbiont of insects, arthropods, and plants. In insects, Spiroplasma colonizes the gut, hemolymph, and reproductive organs of the host. Previous metagenomic surveys of the domesticated carmine cochineal Dactylopius coccus and the wild cochineal D. opuntiae reported sequences of Spiroplasma associated with these insects. However, there is no analysis of the genomic capabilities and the interaction of this Spiroplasma with Dactylopius. RESULTS Here we present three Spiroplasma genomes independently recovered from metagenomes of adult males and females of D. coccus, from two different populations, as well as from adult females of D. opuntiae. Single-copy gene analysis showed that these genomes were > 92% complete. Phylogenomic analyses classified these genomes as new members of Spiroplasma ixodetis. Comparative genome analysis indicated that they exhibit fewer genes involved in amino acid and carbon catabolism compared to other spiroplasmas. Moreover, virulence factor-encoding genes (i.e., glpO, spaid and rip2) were found incomplete in these S. ixodetis genomes. We also detected an enrichment of genes encoding the type IV secretion system (T4SS) in S. ixodetis genomes of Dactylopius. A metratranscriptomic analysis of D. coccus showed that some of these T4SS genes (i.e., traG, virB4 and virD4) in addition to the superoxide dismutase sodA of S. ixodetis were overexpressed in the ovaries. CONCLUSION The symbiont S. ixodetis is a new member of the bacterial community of D. coccus and D. opuntiae. The recovery of incomplete virulence factor-encoding genes in S. ixodetis of Dactylopius suggests that this bacterium is a non-pathogenic symbiont. A high number of genes encoding the T4SS, in the S. ixodetis genomes and the overexpression of these genes in the ovary and hemolymph of the host suggest that S. ixodetis use the T4SS to interact with the Dactylopius cells. Moreover, the transcriptional differences of S. ixodetis among the gut, hemolymph and ovary tissues of D. coccus indicate that this bacterium can respond and adapt to the different conditions (e.g., oxidative stress) present within the host. All this evidence proposes that there is a strong interaction and molecular signaling in the symbiosis between S. ixodetis and the carmine cochineal Dactylopius.
Collapse
Affiliation(s)
- Arturo Vera-Ponce León
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico. .,Present Address: Faculty of Biotechnology, Chemistry and Food Science, Norwegian University of Life Sciences, 1433, Ås, Norway.
| | - Marian Dominguez-Mirazo
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico.,Present Address: School of Biology, Georgia Institute of Technology, Atlanta, GA, USA
| | - Rafael Bustamante-Brito
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Víctor Higareda-Alvear
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Mónica Rosenblueth
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Esperanza Martínez-Romero
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
5
|
Paniagua Voirol LR, Valsamakis G, Yu M, Johnston PR, Hilker M. How the 'kitome' influences the characterization of bacterial communities in lepidopteran samples with low bacterial biomass. J Appl Microbiol 2020; 130:1780-1793. [PMID: 33128818 DOI: 10.1111/jam.14919] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/02/2020] [Accepted: 10/23/2020] [Indexed: 12/26/2022]
Abstract
AIMS We aimed to elucidate whether the DNA extraction kit and bacteria therein affect the characterization of bacterial communities associated with butterfly samples harbouring different bacterial abundancies. METHODS AND RESULTS We analysed bacteria associated with eggs of Pieris brassicae and with adults of this butterfly, which were either untreated or treated with antibiotics (ABs). Three DNA extraction kits were used. Regardless of the extraction kit used, PCR amplification of the bacterial 16S rRNA gene detected very low bacterial presence in eggs and AB-treated butterflies. In untreated butterflies, bacterial signal intensity varied according to the kit and primers used. Sequencing (MiSeq) of the bacterial communities in untreated and AB-treated butterflies revealed a low alpha diversity in untreated butterflies because of the dominance of few bacteria genera, which were detectable regardless of the kit. However, a significantly greater alpha diversity was found in AB-treated butterflies, evidencing a true bias of the results due to bacterial contaminants in the kit. CONCLUSIONS The so-called 'kitome' can impact the profiling of Lepidoptera-associated bacteria in samples with low bacterial biomass. SIGNIFICANCE AND IMPACT OF THE STUDY Our study highlights the necessity of method testing and analysis of negative controls when investigating Lepidoptera-associated bacterial communities.
Collapse
Affiliation(s)
- L R Paniagua Voirol
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universitaet Berlin, Berlin, Germany
| | - G Valsamakis
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universitaet Berlin, Berlin, Germany
| | - M Yu
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universitaet Berlin, Berlin, Germany
| | - P R Johnston
- Evolutionary Biology, Institute of Biology, Freie Universitaet Berlin, Berlin, Germany.,Berlin Center for Genomics in Biodiversity Research (BeGenDiv), Berlin, Germany.,Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - M Hilker
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universitaet Berlin, Berlin, Germany
| |
Collapse
|
6
|
Phylogeny and Density Dynamics of Wolbachia Infection of the Health Pest Paederus fuscipes Curtis (Coleoptera: Staphylinidae). INSECTS 2020; 11:insects11090625. [PMID: 32932887 PMCID: PMC7564247 DOI: 10.3390/insects11090625] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 11/16/2022]
Abstract
The maternally inherited obligate intracellular bacteria Wolbachia infects the reproductive tissues of a wide range of arthropods and affects host reproduction. Wolbachia is a credible biocontrol agent for reducing the impact of diseases associated with arthropod vectors. Paederus fuscipes is a small staphylinid beetle that causes dermatitis linearis and conjunctivitis in humans when they come into contact with skin. Wolbachia occur in this beetle, but their relatedness to other Wolbachia, their infection dynamics, and their potential host effects remain unknown. In this study, we report the phylogenetic position and density dynamics of Wolbachia in P. fuscipes. The phylogeny of Wolbachia based on an analysis of MLST genotyping showed that the bacteria from P. fuscipes belong to supergroup B. Quantitative PCR indicated that the infection density in adults was higher than in any other life stage (egg, larva or pupa), and that reproductive tissue in adults had the highest infection densities, with similar densities in the sexes. These findings provide a starting point for understanding the Wolbachia infection dynamics in P. fuscipes, and interactions with other components of the microbiota.
Collapse
|
7
|
Maleki‐Ravasan N, Akhavan N, Raz A, Jafari M, Zakeri S, Dinparast Djadid N. Co-occurrence of pederin-producing and Wolbachia endobacteria in Paederus fuscipes Curtis, 1840 (Coleoptera: Staphilinidae) and its evolutionary consequences. Microbiologyopen 2019; 8:e00777. [PMID: 30560551 PMCID: PMC6612549 DOI: 10.1002/mbo3.777] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/13/2018] [Accepted: 11/13/2018] [Indexed: 01/24/2023] Open
Abstract
The dual occurrence of Pseudomonas-like and Wolbachia endobacteria has not been investigated in the Pederus beetles yet. We investigated pederin-producing bacteria (PPB) infection in Paederus fuscipes specimens from the southern margins of the Caspian Sea by designed genus-specific (OprF) and species-specific (16S rRNA) primers. Wolbachia infection was studied through a nested-PCR assay of Wolbachia surface protein (wsp) gene. Of the 125 analyzed beetles, 42 females (82.35%) and 15 males (20.27%) were positive to PPB infection; this is the first study reporting male P. fuscipes infection to PPB. Wolbachia infection was found in 45 female (88.23%) and 50 male (67.57%) analyzed beetles. Surprisingly, a number of 36 females (70.59%) and 13 males (17.57%) were found to be infected with both PPB and Wolbachia endosymbionts. In general, population infection rates to PPB and Wolbachia were determined to be 45.6% and 76%, respectively. The infection rates of female beetles to PPB and PPB-Wolbachia were significantly higher than males. In Paederus species, only female beetles shelter PPB and the discovery of this bacterium in adult males may reflect their cannibalistic behavior on the contaminated stages. Phylogenetic analysis showed that the sequences of OprF gene were unique among Pseudomonas spp.; however, sequences of 16S rRNA gene were related to the PPB of Pederus species. The co-occurrence and random distribution of these endobacteria may imply putative tripartite interactions among PPB, Wolbachia, and Paederus. In order to elucidate these possible tripartite interactions, further studies are required even at gender level.
Collapse
Affiliation(s)
- Naseh Maleki‐Ravasan
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC)Pasteur Institute of IranTehranIran
| | - Niloofar Akhavan
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC)Pasteur Institute of IranTehranIran
- Department of Biotechnology, Faculty of Advanced Sciences and Technology, Pharmaceutical Sciences BranchIslamic Azad UniversityTehranIran
| | - Abbasali Raz
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC)Pasteur Institute of IranTehranIran
| | - Mahmood Jafari
- Department of Geology, Faculty of SciencesTarbiat Modares UniversityTehranIran
| | - Sedigheh Zakeri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC)Pasteur Institute of IranTehranIran
| | - Navid Dinparast Djadid
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC)Pasteur Institute of IranTehranIran
| |
Collapse
|
8
|
Frandsen RJN, Khorsand-Jamal P, Kongstad KT, Nafisi M, Kannangara RM, Staerk D, Okkels FT, Binderup K, Madsen B, Møller BL, Thrane U, Mortensen UH. Heterologous production of the widely used natural food colorant carminic acid in Aspergillus nidulans. Sci Rep 2018; 8:12853. [PMID: 30150747 PMCID: PMC6110711 DOI: 10.1038/s41598-018-30816-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 08/06/2018] [Indexed: 11/09/2022] Open
Abstract
The natural red food colorants carmine (E120) and carminic acid are currently produced from scale insects. The access to raw material is limited and current production is sensitive to fluctuation in weather conditions. A cheaper and more stable supply is therefore desirable. Here we present the first proof-of-concept of heterologous microbial production of carminic acid in Aspergillus nidulans by developing a semi-natural biosynthetic pathway. Formation of the tricyclic core of carminic acid is achieved via a two-step process wherein a plant type III polyketide synthase (PKS) forms a non-reduced linear octaketide, which subsequently is folded into the desired flavokermesic acid anthrone (FKA) structure by a cyclase and a aromatase from a bacterial type II PKS system. The formed FKA is oxidized to flavokermesic acid and kermesic acid, catalyzed by endogenous A. nidulans monooxygenases, and further converted to dcII and carminic acid by the Dactylopius coccus C-glucosyltransferase DcUGT2. The establishment of a functional biosynthetic carminic acid pathway in A. nidulans serves as an important step towards industrial-scale production of carminic acid via liquid-state fermentation using a microbial cell factory.
Collapse
Affiliation(s)
- Rasmus J N Frandsen
- Section for Synthetic Biology, Department of Biotechnology and Biomedicine, The Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Paiman Khorsand-Jamal
- Section for Synthetic Biology, Department of Biotechnology and Biomedicine, The Technical University of Denmark, Kongens Lyngby, Denmark.,Chr. Hansen Natural Colors A/S, Hoersholm, Denmark.,Novo Nordisk A/S, Maaloev, Denmark
| | - Kenneth T Kongstad
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | - Majse Nafisi
- Chr. Hansen Natural Colors A/S, Hoersholm, Denmark.,Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Rubini M Kannangara
- Chr. Hansen Natural Colors A/S, Hoersholm, Denmark.,Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark.,River Stone Biotech ApS, København Ø, Fruebjergvej 3, 2100, Denmark
| | - Dan Staerk
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Finn T Okkels
- Chr. Hansen Natural Colors A/S, Hoersholm, Denmark.,Actabio ApS, Roskilde, Denmark
| | - Kim Binderup
- Chr. Hansen Natural Colors A/S, Hoersholm, Denmark.,DSM Nutritional Products, Kaiseraugst, Switzerland
| | - Bjørn Madsen
- Chr. Hansen Natural Colors A/S, Hoersholm, Denmark
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark.,Center for Synthetic Biology, University of Copenhagen, Frederiksberg, Denmark
| | - Ulf Thrane
- Section for Synthetic Biology, Department of Biotechnology and Biomedicine, The Technical University of Denmark, Kongens Lyngby, Denmark.,Department of Energy Performance, Indoor Environment and Sustainability, Danish Building Research Institute, Aalborg University Copenhagen, Copenhagen, Denmark
| | - Uffe H Mortensen
- Section for Synthetic Biology, Department of Biotechnology and Biomedicine, The Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
9
|
Rasmussen SA, Kongstad KT, Khorsand-Jamal P, Kannangara RM, Nafisi M, Van Dam A, Bennedsen M, Madsen B, Okkels F, Gotfredsen CH, Staerk D, Thrane U, Mortensen UH, Larsen TO, Frandsen RJN. On the biosynthetic origin of carminic acid. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 96:51-61. [PMID: 29551461 DOI: 10.1016/j.ibmb.2018.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 03/09/2018] [Accepted: 03/13/2018] [Indexed: 06/08/2023]
Abstract
The chemical composition of the scale insect Dactylopius coccus was analyzed with the aim to discover new possible intermediates in the biosynthesis of carminic acid. UPLC-DAD/HRMS analyses of fresh and dried insects resulted in the identification of three novel carminic acid analogues and the verification of several previously described intermediates. Structural elucidation revealed that the three novel compounds were desoxyerythrolaccin-O-glucosyl (DE-O-Glcp), 5,6-didehydroxyerythrolaccin 3-O-β-D-glucopyranoside (DDE-3-O-Glcp), and flavokermesic acid anthrone (FKA). The finding of FKA in D. coccus provides solid evidence of a polyketide, rather than a shikimate, origin of coccid pigments. Based on the newly identified compounds, we present a detailed biosynthetic scheme that accounts for the formation of carminic acid (CA) in D. coccus and all described coccid pigments which share a flavokermesic acid (FK) core. Detection of coccid pigment intermediates in members of the Planococcus (mealybugs) and Pseudaulacaspis genera shows that the ability to form these pigments is taxonomically more widely spread than previously documented. The shared core-FK-biosynthetic pathway and wider taxonomic distribution suggests a common evolutionary origin for the trait in all coccid dye producing insect species.
Collapse
Affiliation(s)
- Silas A Rasmussen
- Department of Bioengineering and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221 and 223, 2800 Kongens Lyngby, Denmark
| | - Kenneth T Kongstad
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Paiman Khorsand-Jamal
- Department of Bioengineering and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221 and 223, 2800 Kongens Lyngby, Denmark; Chr. Hansen A/S, Boege Alle 10-12, 2970 Hoersholm, Denmark
| | - Rubini Maya Kannangara
- Chr. Hansen A/S, Boege Alle 10-12, 2970 Hoersholm, Denmark; Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Majse Nafisi
- Chr. Hansen A/S, Boege Alle 10-12, 2970 Hoersholm, Denmark; Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Alex Van Dam
- Department of Bioengineering and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221 and 223, 2800 Kongens Lyngby, Denmark
| | - Mads Bennedsen
- Chr. Hansen A/S, Boege Alle 10-12, 2970 Hoersholm, Denmark
| | - Bjørn Madsen
- Chr. Hansen A/S, Boege Alle 10-12, 2970 Hoersholm, Denmark
| | - Finn Okkels
- Chr. Hansen A/S, Boege Alle 10-12, 2970 Hoersholm, Denmark
| | - Charlotte H Gotfredsen
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, 2800 Kongens Lyngby, Denmark
| | - Dan Staerk
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Ulf Thrane
- Department of Bioengineering and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221 and 223, 2800 Kongens Lyngby, Denmark
| | - Uffe H Mortensen
- Department of Bioengineering and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221 and 223, 2800 Kongens Lyngby, Denmark
| | - Thomas O Larsen
- Department of Bioengineering and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221 and 223, 2800 Kongens Lyngby, Denmark.
| | - Rasmus J N Frandsen
- Department of Bioengineering and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221 and 223, 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
10
|
Kajtoch Ł, Kotásková N. Current state of knowledge on Wolbachia infection among Coleoptera: a systematic review. PeerJ 2018; 6:e4471. [PMID: 29568706 PMCID: PMC5846457 DOI: 10.7717/peerj.4471] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/17/2018] [Indexed: 11/20/2022] Open
Abstract
Background Despite great progress in studies on Wolbachia infection in insects, the knowledge about its relations with beetle species, populations and individuals, and the effects of bacteria on these hosts, is still unsatisfactory. In this review we summarize the current state of knowledge about Wolbachia occurrence and interactions with Coleopteran hosts. Methods An intensive search of the available literature resulted in the selection of 86 publications that describe the relevant details about Wolbachia presence among beetles. These publications were then examined with respect to the distribution and taxonomy of infected hosts and diversity of Wolbachia found in beetles. Sequences of Wolbachia genes (16S rDNA, ftsZ) were used for the phylogenetic analyses. Results The collected publications revealed that Wolbachia has been confirmed in 204 beetle species and that the estimated average prevalence of this bacteria across beetle species is 38.3% and varies greatly across families and genera (0–88% infected members) and is much lower (c. 13%) in geographic studies. The majority of the examined and infected beetles were from Europe and East Asia. The most intensively studied have been two groups of herbivorous beetles: Curculionidae and Chrysomelidae. Coleoptera harbor Wolbachia belonging to three supergroups: F found in only three species, and A and B found in similar numbers of beetles (including some doubly infected); however the latter two were most prevalent in different families. A total of 59% of species with precise data were found to be totally infected. Single infections were found in 69% of species and others were doubly- or multiply-infected. Wolbachia caused numerous effects on its beetle hosts, including selective sweep with host mtDNA (found in 3% of species), cytoplasmic incompatibility (detected in c. 6% of beetles) and other effects related to reproduction or development (like male-killing, possible parthenogenesis or haplodiploidy induction, and egg development). Phylogenetic reconstructions for Wolbachia genes rejected cospeciation between these bacteria and Coleoptera, with minor exceptions found in some Hydraenidae, Curculionidae and Chrysomelidae. In contrast, horizontal transmission of bacteria has been suspected or proven in numerous cases (e.g., among beetles sharing habitats and/or host plants). Discussion The present knowledge about Wolbachia infection across beetle species and populations is very uneven. Even the basic data about infection status in species and frequency of infected species across genera and families is very superficial, as only c. 0.15% of all beetle species have been tested so far. Future studies on Wolbachia diversity in Coleoptera should still be based on the Multi-locus Sequence Typing system, and next-generation sequencing technologies will be important for uncovering Wolbachia relations with host evolution and ecology, as well as with other, co-occurring endosymbiotic bacteria.
Collapse
Affiliation(s)
- Łukasz Kajtoch
- Institute of Systematics and Evolution of Animals Polish Academy of Sciences, Krakow, Poland
| | - Nela Kotásková
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
11
|
Characterization of a membrane-bound C-glucosyltransferase responsible for carminic acid biosynthesis in Dactylopius coccus Costa. Nat Commun 2017; 8:1987. [PMID: 29215010 PMCID: PMC5719414 DOI: 10.1038/s41467-017-02031-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 11/02/2017] [Indexed: 11/09/2022] Open
Abstract
Carminic acid, a glucosylated anthraquinone found in scale insects like Dactylopius coccus, has since ancient times been used as a red colorant in various applications. Here we show that a membrane-bound C-glucosyltransferase, isolated from D. coccus and designated DcUGT2, catalyzes the glucosylation of flavokermesic acid and kermesic acid into their respective C-glucosides dcII and carminic acid. DcUGT2 is predicted to be a type I integral endoplasmic reticulum (ER) membrane protein, containing a cleavable N-terminal signal peptide and a C-terminal transmembrane helix that anchors the protein to the ER, followed by a short cytoplasmic tail. DcUGT2 is found to be heavily glycosylated. Truncated DcUGT2 proteins synthesized in yeast indicate the presence of an internal ER-targeting signal. The cleavable N-terminal signal peptide is shown to be essential for the activity of DcUGT2, whereas the transmembrane helix/cytoplasmic domains, although important, are not crucial for its catalytic function. Carminic acid is a widely applied red colorant that is still harvested from insects because its biosynthesis is not fully understood. Here, the authors identify and characterize a membrane-bound C-glucosyltransferase catalyzing the final step during carminic acid biosynthesis.
Collapse
|
12
|
Genomes of Candidatus Wolbachia bourtzisii wDacA and Candidatus Wolbachia pipientis wDacB from the Cochineal Insect Dactylopius coccus (Hemiptera: Dactylopiidae). G3-GENES GENOMES GENETICS 2016; 6:3343-3349. [PMID: 27543297 PMCID: PMC5068953 DOI: 10.1534/g3.116.031237] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dactylopius species, known as cochineal insects, are the source of the carminic acid dye used worldwide. The presence of two Wolbachia strains in Dactylopius coccus from Mexico was revealed by PCR amplification of wsp and sequencing of 16S rRNA genes. A metagenome analysis recovered the genome sequences of Candidatus Wolbachia bourtzisii wDacA (supergroup A) and Candidatus Wolbachia pipientis wDacB (supergroup B). Genome read coverage, as well as 16S rRNA clone sequencing, revealed that wDacB was more abundant than wDacA. The strains shared similar predicted metabolic capabilities that are common to Wolbachia, including riboflavin, ubiquinone, and heme biosynthesis, but lacked other vitamin and cofactor biosynthesis as well as glycolysis, the oxidative pentose phosphate pathway, and sugar uptake systems. A complete tricarboxylic acid cycle and gluconeogenesis were predicted as well as limited amino acid biosynthesis. Uptake and catabolism of proline were evidenced in Dactylopius Wolbachia strains. Both strains possessed WO-like phage regions and type I and type IV secretion systems. Several efflux systems found suggested the existence of metal toxicity within their host. Besides already described putative virulence factors like ankyrin domain proteins, VlrC homologs, and patatin-like proteins, putative novel virulence factors related to those found in intracellular pathogens like Legionella and Mycobacterium are highlighted for the first time in Wolbachia. Candidate genes identified in other Wolbachia that are likely involved in cytoplasmic incompatibility were found in wDacB but not in wDacA.
Collapse
|
13
|
Vera-Ponce de León A, Sanchez-Flores A, Rosenblueth M, Martínez-Romero E. Fungal Community Associated with Dactylopius (Hemiptera: Coccoidea: Dactylopiidae) and Its Role in Uric Acid Metabolism. Front Microbiol 2016; 7:954. [PMID: 27446001 PMCID: PMC4917543 DOI: 10.3389/fmicb.2016.00954] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/02/2016] [Indexed: 11/13/2022] Open
Abstract
We studied fungal species associated with the carmine cochineal Dactylopius coccus and other non-domesticated Dactylopius species using culture-dependent and -independent methods. Thirty seven fungi were isolated in various culture media from insect males and females from different developmental stages and Dactylopius species. 26S rRNA genes and ITS sequences, from cultured fungal isolates revealed different species of Cryptococcus, Rhodotorula, Debaryomyces, Trametes, and Penicillium, which are genera newly associated with Dactylopius. Uric acid (UA) and uricase activity were detected in tissues extracts from different insect developmental stages. However, accumulation of high UA levels and low uricase activities were found only after antifungal treatments, suggesting an important role of fungal species in its metabolism. Additionally, uricolytic fungal isolates were identified and characterized that presumably are involved in nitrogen recycling metabolism. After metagenomic analyses from D. coccus gut and hemolymph DNA and from two published data sets, we confirmed the presence of fungal genes involved in UA catabolism, suggesting that fungi help in the nitrogen recycling process in Dactylopius by uricolysis. All these results show the importance of fungal communities in scale insects such as Dactylopius.
Collapse
Affiliation(s)
- Arturo Vera-Ponce de León
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México Cuernavca, Mexico
| | - Alejandro Sanchez-Flores
- Unidad de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Universidad Nacional Autónoma de México Cuernavca, Mexico
| | - Mónica Rosenblueth
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México Cuernavca, Mexico
| | - Esperanza Martínez-Romero
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México Cuernavca, Mexico
| |
Collapse
|
14
|
Mathenge CW, Riegler M, Beattie GAC, Spooner-Hart RN, Holford P. Genetic variation amongst biotypes of Dactylopius tomentosus. INSECT SCIENCE 2015; 22:360-374. [PMID: 24619863 DOI: 10.1111/1744-7917.12120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/23/2014] [Indexed: 06/03/2023]
Abstract
The tomentose cochineal scale insect, Dactylopius tomentosus (Lamarck) (Hemiptera: Dactylopiidae), is an important biological control agent against invasive species of Cylindropuntia (Caryophyllales: Cactaceae). Recent studies have demonstrated that this scale is composed of host-affiliated biotypes with differential host specificity and fitness on particular host species. We investigated genetic variation and phylogenetic relationships among D. tomentosus biotypes and provenances to examine the possibility that genetic diversity may be related to their host-use pattern, and whether their phylogenetic relationships would give insights into taxonomic relatedness of their host plants. Nucleotide sequence comparison was accomplished using sequences of the mitochondrial cytochrome c oxidase I (COI) gene. Sequences of individuals from the same host plant within a region were identical and characterized by a unique haplotype. Individuals belonging to the same biotype but from different regions had similar haplotypes. However, haplotypes were not shared between different biotypes. Phylogenetic analysis grouped the monophyletic D. tomentosus into 3 well-resolved clades of biotypes. The phylogenetic relationships and clustering of biotypes corresponded with known taxonomic relatedness of their hosts. Two biotypes, Fulgida and Mamillata, tested positive for Wolbachia (α-Proteobacteria), a common endosymbiont of insects. The Wolbachia sequences were serendipitously detected by using insect-specific COI DNA barcoding primers and are most similar to Wolbachia Supergroup F strains. This study is the first molecular characterization of cochineal biotypes that, together with Wolbachia sequences, contribute to the better identification of the biotypes of cochineal insects and to the biological control of cacti using host-specific biotypes of the scale.
Collapse
Affiliation(s)
| | - Markus Riegler
- Hawkesbury Institute for the Environment, University of Western Sydney, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - G Andrew C Beattie
- School of Science and Health, University of Western Sydney (Hawkesbury Campus)
| | | | - Paul Holford
- School of Science and Health, University of Western Sydney (Hawkesbury Campus)
| |
Collapse
|
15
|
Campana MG, Robles García NM, Tuross N. America's red gold: multiple lineages of cultivated cochineal in Mexico. Ecol Evol 2015; 5:607-17. [PMID: 25691985 PMCID: PMC4328766 DOI: 10.1002/ece3.1398] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 12/15/2014] [Accepted: 12/18/2014] [Indexed: 01/31/2023] Open
Abstract
Cultivated cochineal (Dactylopius coccus) produces carminic acid, a valuable red dye used to color textiles, cosmetics, and food. Extant native D. coccus is largely restricted to two populations in the Mexican and the Andean highlands, although the insect's ultimate center of domestication remains unclear. Moreover, due to Mexican D. coccus cultivation's near demise during the 19th century, the genetic diversity of current cochineal stock is unknown. Through genomic sequencing, we identified two divergent D. coccus populations in highland Mexico: one unique to Mexico and another that was more closely related to extant Andean cochineal. Relic diversity is preserved in the crops of small-scale Mexican cochineal farmers. Conversely, larger-scale commercial producers are cultivating the Andean-like cochineal, which may reflect clandestine 20th century importation.
Collapse
Affiliation(s)
- Michael G Campana
- Department of Human Evolutionary Biology, Harvard University 11 Divinity Avenue, Cambridge, Massachusetts, 02138
| | - Nelly M Robles García
- Proyecto Conjunto Monumental de Atzompa Calle Reforma 501, esq. Constitución. Sala IV. Centro Histórico, Oaxaca, Oaxaca, 68000, Mexico
| | - Noreen Tuross
- Department of Human Evolutionary Biology, Harvard University 11 Divinity Avenue, Cambridge, Massachusetts, 02138
| |
Collapse
|
16
|
Rapid and efficient purification of chrysophanol in Rheum Palmatum LINN by supercritical fluid extraction coupled with preparative liquid chromatography in tandem. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 893-894:101-6. [DOI: 10.1016/j.jchromb.2012.02.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 02/16/2012] [Accepted: 02/23/2012] [Indexed: 11/19/2022]
|
17
|
Abstract
This review describes secondary metabolites that have been shown to be synthesized by symbiotic bacteria, or for which this possibility has been discussed. It includes 365 references.
Collapse
Affiliation(s)
- Jörn Piel
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany.
| |
Collapse
|
18
|
Pankewitz F, Hilker M. Polyketides in insects: ecological role of these widespread chemicals and evolutionary aspects of their biogenesis. Biol Rev Camb Philos Soc 2008; 83:209-26. [PMID: 18410406 DOI: 10.1111/j.1469-185x.2008.00040.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polyketides are known to be used by insects for pheromone communication and defence against enemies. Although in microorganisms (fungi, bacteria) and plants polyketide biogenesis is known to be catalysed by polyketide synthases (PKS), no insect PKS involved in biosynthesis of pheromones or defensive compounds have yet been found. Polyketides detected in insects may also be biosynthesized by endosymbionts. From a chemical perspective, polyketide biogenesis involves the formation of a polyketide chain using carboxylic acids as precursors. Fatty acid biosynthesis also requires carboxylic acids as precursors, but utilizes fatty acid synthases (FAS) to catalyse this process. In the present review, studies of the biosynthesis of insect polyketides applying labelled carboxylic acids as precursors are outlined to exemplify chemical approaches used to elucidate insect polyketide formation. However, since compounds biosynthesised by FAS may use the same precursors, it still remains unclear whether the structures that are formed from e.g. acetate chains (acetogenins) or propanoate chains (propanogenins) are PKS or FAS products. A critical comparison of PKS and FAS architectures and activities supports the hypothesis of a common evolutionary origin of these enzyme complexes and highlights why PKS can catalyse the biosynthesis of much more complex products than can FAS. Finally, we summarise knowledge which might assist researchers in designing approaches for the detection of insect PKS genes.
Collapse
Affiliation(s)
- Florian Pankewitz
- Freie Universität Berlin, Institute of Biology, Haderslebener Str. 9, D-12163 Berlin, Germany
| | | |
Collapse
|
19
|
Abstract
Despite the fact that all vertically transmitted symbionts sequester resources from their hosts and are therefore costly to maintain, there is an extraordinary diversity of them in invertebrates. Some spread through host populations by providing their hosts with fitness benefits or by manipulating host sex ratio, but some do not: their maintenance in host lineages remains an enigma. In this review, I explore the evolutionary ecology of vertically transmitted symbionts and their impact on host resistance, and provide an overview of the evidence for the three-way interactions between these symbionts, natural enemies and invertebrate hosts. A number of recent empirical and theoretical studies suggest that vertically transmitted symbionts may protect their hosts from pathogens. If this 'symbiont-mediated protection' is widespread, it is likely that vertically transmitted symbionts contribute significantly to variation in measures of invertebrate resistance to natural enemies.
Collapse
Affiliation(s)
- Eleanor R Haine
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|