1
|
Yang KM, Poolpak T, Pokethitiyook P, Kruatrachue M. Risk assessment and biodegradation potential of PAHs originating from Map Ta Phut Industrial Estate, Rayong, Thailand. ENVIRONMENTAL TECHNOLOGY 2024; 45:2348-2362. [PMID: 36527266 DOI: 10.1080/09593330.2022.2157758] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Petroleum hydrocarbon contamination is a serious concern across the globe. Here, the capability of native bacterial consortium enriched from sediment samples of Map Ta Phut Industrial Estate (MTPIE), Rayong, Thailand was described. The distribution of PAHs was assessed from the sediment samples collected from MTPIE by GC-FID and the toxic unit (TU) was calculated to assess the potential ecological risk to the surrounding biota. This study investigated the degradation potential and determined the PAH-degrading bacterial cultures by enriching collected sediments in PAHs mixtures (naphthalene, phenanthrene, and pyrene). The TPH degradation capacity of each bacterial consortium was validated in a soil microcosm using aged crude oil-contaminated soil. The MTPIE sediments were highly contaminated with PAHs (843.99-3904.39 ng g-1) and posed extremely high ecological risks to benthic biota (TU > 1). The consortium S5-P most significantly removed naphthalene (90.03%) and phenanthrene (88.14%) while the highest removal of pyrene was achieved by the S3-P consortium. Other consortia only partially degraded the PAHs. The dominant microbes in the consortia were determined using PCR-DGGE, it was found that the PAH degrading consortia were known PAH degraders such as Annwoodia, Bacillus, Brevibacillus, Lysinibacillus, Paracoccus, Rhodococcus, Sphingopyxis, Sulfurovum, and Sulfurimonas species and unknown PAH degraders such as Lithuaxuella species. The consortium S5-P showed the highest degradation capacity, removing 74.99% of TPHs in the soil microcosm. Furthermore, the inoculation of PAH-biodegrading bacterial consortia significantly promoted the catechol-2,3-dioxygenase (C23O) and dehydrogenase (DHA) activities which directly correlated with the degradation efficiency of petroleum hydrocarbons (p < 0.05).
Collapse
Affiliation(s)
- Kwang Mo Yang
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Toemthip Poolpak
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Prayad Pokethitiyook
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Maleeya Kruatrachue
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| |
Collapse
|
2
|
Sarma H, Gogoi B, Guan CY, Yu CP. Nitro-PAHs: Occurrences, ecological consequences, and remediation strategies for environmental restoration. CHEMOSPHERE 2024; 356:141795. [PMID: 38548078 DOI: 10.1016/j.chemosphere.2024.141795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/24/2023] [Accepted: 03/23/2024] [Indexed: 04/12/2024]
Abstract
Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) are persistent pollutants that have been introduced into the environment as a result of human activities. They are produced when PAHs undergo oxidation and are highly resistant to degradation, resulting in prolonged exposure and significant health risks for wildlife and humans. Nitro-PAHs' potential to induce cancer and mutations has raised concerns about their harmful effects. Furthermore, their ability to accumulate in the food chain seriously threatens the ecosystem and human health. Moreover, nitro-PAHs can disrupt the normal functioning of the endocrine system, leading to reproductive and developmental problems in humans and other organisms. Reducing nitro-PAHs in the environment through source management, physical removal, and chemical treatment is essential to mitigate the associated environmental and human health risks. Recent studies have focused on improving nitro-PAHs' phytoremediation by incorporating microorganisms and biostimulants. Microbes can break down nitro-PAHs into less harmful substances, while biostimulants can enhance plant growth and metabolic activity. By combining these elements, the effectiveness of phytoremediation for nitro-PAHs can be increased. This study aimed to investigate the impact of introducing microbial and biostimulant agents on the phytoremediation process for nitro-PAHs and identify potential solutions for addressing the environmental risks associated with these pollutants.
Collapse
Affiliation(s)
- Hemen Sarma
- Bioremediation Technology Research Group, Department of Botany, Bodoland University, Rangalikhata, Deborgaon, Kokrajhar (BTR), Assam, 783370, India.
| | - Bhoirob Gogoi
- Bioremediation Technology Research Group, Department of Botany, Bodoland University, Rangalikhata, Deborgaon, Kokrajhar (BTR), Assam, 783370, India
| | - Chung-Yu Guan
- Department of Environmental Engineering, National Ilan University, Yilan, 260, Taiwan
| | - Chang-Ping Yu
- Graduate Institute of Environmental Engineering, National Taiwan University. B.S., Civil Engineering, National Taiwan University, Taiwan
| |
Collapse
|
3
|
Ni Z, Gong Z, Song L, Jia C, Zhang X. Adaptation strategies and functional transitions of microbial community in pyrene-contaminated soils promoted by lead with Pseudomonas veronii and its extracellular polymeric substances. CHEMOSPHERE 2024; 351:141139. [PMID: 38185422 DOI: 10.1016/j.chemosphere.2024.141139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/25/2023] [Accepted: 01/04/2024] [Indexed: 01/09/2024]
Abstract
Pyrene was designated as a remediation target in this study, and low contamination of lead (Pb) was set to induce heavy metal stress. Pseudomonas veronii and its extracellular polymeric substances (EPSs) were chosen for biofortification, with the aim of elucidating the structural, metabolic, and functional responses of soil microbial communities. Community analysis of soil microorganisms using high-throughput sequencing showed that the co-addition of P. veronii and EPSs resulted in an increase in relative abundance of phyla associated with pyrene degradation, and formed a symbiotic system dominated by Firmicutes and Proteobacteria, which involved in pyrene metabolism. Co-occurrence network analysis revealed that the module containing P. veronii was the only one exhibiting a positive correlation between bacterial abundance and pyrene removal, indicating the potential of bioaugmentation in enriching functional taxa. Biofortification also enhanced the abundance of functional gene linked to EPS production (biofilm formation-Pseudomonas aeruginosa) and pyrene degradation. Furthermore, 17 potential functional bacteria were screened out using random forest algorithm. Lead contamination further promoted the growth of Proteobacteria, intensified cooperative associations among bacteria, and increased the abundance of bacteria with positive correlation with pyrene degradation. The results offer novel perspectives on alterations in microbial communities resulting from the synergistic impact of heavy metal stress and biofortification.
Collapse
Affiliation(s)
- Zijun Ni
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zongqiang Gong
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Lei Song
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chunyun Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Xiaorong Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| |
Collapse
|
4
|
Qi Y, Wu Y, Zhi Q, Zhang Z, Zhao Y, Fu G. Effects of Polycyclic Aromatic Hydrocarbons on the Composition of the Soil Bacterial Communities in the Tidal Flat Wetlands of the Yellow River Delta of China. Microorganisms 2024; 12:141. [PMID: 38257968 PMCID: PMC10820892 DOI: 10.3390/microorganisms12010141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/26/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are pervasive organic pollutants in coastal ecosystems, especially in tidal flat wetlands. However, the mechanisms through which PAHs impact the soil bacterial communities of wetlands featuring a simple vegetation structure in the Yellow River Delta (China) remain largely unclear. In this study, we examined soil samples from two sites featuring a single vegetation type (Suaeda salsa) in the Yellow River Delta. Specifically, we investigated the impacts of PAHs on the diversity and composition of soil bacteria communities through high-throughput 16 S rRNA sequencing. PAHs significantly increased the soil organic carbon content but decreased the total phosphorus content (p = 0.02). PAH contamination notably reduced soil bacterial community α diversity (Shannon index) and β diversity. Furthermore, PAHs significantly altered the relative abundance of bacterial phyla, classes, and genera (p < 0.05). Specifically, PAHs increased the relative abundance of the bacterial phyla Acidobacteriota and Gemmatimonadota (p < 0.05), while decreasing the relative abundance of Bacteroidota, Desulfobacterota, and Firmicutes compared to the control wetland (p < 0.05). Moreover, PAHs and certain soil properties [total nitrogen (TN), soil organic carbon (SOC), total phosphorus (TP), and total salt (TS)] were identified as key parameters affecting the community of soil bacteria, with the abundance of specific bacteria being both negatively and positively affected by PAHs, SOC, and TN. In summary, our findings could facilitate the identification of existing environmental problems and offer insights for improving the protection and management of tidal flat wetland ecosystems in the Yellow River Delta of China.
Collapse
Affiliation(s)
- Yue Qi
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China (Q.Z.)
| | - Yuxuan Wu
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China (Q.Z.)
| | - Qiuying Zhi
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China (Q.Z.)
| | - Zhe Zhang
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China (Q.Z.)
| | - Yilei Zhao
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China (Q.Z.)
| | - Gang Fu
- Institute of Geographical Sciences, Heibei Academy of Sciences, Shijiazhuang 050011, China;
| |
Collapse
|
5
|
Zhang H, Liu X, Wang Y, Duan L, Liu X, Zhang X, Dong L. Deep relationships between bacterial community and polycyclic aromatic hydrocarbons in soil profiles near typical coking plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:64486-64498. [PMID: 37071357 DOI: 10.1007/s11356-023-26903-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 04/05/2023] [Indexed: 05/11/2023]
Abstract
Bacterial communities play an important role in maintaining the normal functioning of ecosystems; therefore, it is important to understand the effects of polycyclic aromatic hydrocarbons (PAHs) on the bacterial community. In addition, understanding the metabolic potential of bacterial communities for PAHs is important for the remediation of PAH-contaminated soils. However, the deep relationship between PAHs and bacterial community in coking plants is not clear. In this study, we determined the bacterial community and the concentration of PAHs in three soil profiles contaminated by coke plants in Xiaoyi Coking Park, Shanxi, China, using 16S rRNA and gas chromatography coupled with mass spectrometry, respectively. The results show that 2 ~ 3 rings PAHs are the main PAHs and Acidobacteria (23.76%) was the dominant bacterial community in three soil profiles. Statistical analysis showed that there were significant differences in the composition of bacterial communities at different depths and different sites. Redundancy analysis (RDA) and variance partitioning analysis (VPA) illustrate the influence of environmental factors (including PAHs, soil organic matter (SOM), and pH) on the vertical distribution of soil bacterial community, and PAHs were the main factors affecting the bacterial community in this study. The co-occurrence networks further indicated correlations between bacterial community and PAHs and found that Nap has the greatest effect on bacterial community compared with other PAHs. In addition, some operational taxonomic units (OTUs, OTU2, and OTU37) have the potential to degrade PAHs. PICRUSt2 (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) was used for further study on the potential of microbial PAHs degradation from a genetic perspective, which showed that different PAH metabolism genes were present in the genomes of bacterial communities in the three soil profiles, and a total of 12 PAH degradation-related genes were isolated, mainly dioxygenase and dehydrogenase genes.
Collapse
Affiliation(s)
- Handan Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China
- Research and Development Center for Watershed Environmental Eco-Engineering (Zhuhai), Beijing Normal University, Zhuhai, 519087, People's Republic of China
| | - Xinhui Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China.
- Research and Development Center for Watershed Environmental Eco-Engineering (Zhuhai), Beijing Normal University, Zhuhai, 519087, People's Republic of China.
| | - Yujing Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Linshuai Duan
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Xiqin Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Xin Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China
- Research and Development Center for Watershed Environmental Eco-Engineering (Zhuhai), Beijing Normal University, Zhuhai, 519087, People's Republic of China
| | - Lu Dong
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China
- Research and Development Center for Watershed Environmental Eco-Engineering (Zhuhai), Beijing Normal University, Zhuhai, 519087, People's Republic of China
| |
Collapse
|
6
|
Li H, Wang X, Peng S, Lai Z, Mai Y. Seasonal variation of temperature affects HMW-PAH accumulation in fishery species by bacterially mediated LMW-PAH degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158617. [PMID: 36084776 DOI: 10.1016/j.scitotenv.2022.158617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/03/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Currently, the specific mechanism generating seasonal variation in polycyclic aromatic hydrocarbons (PAHs) via bacterial biodegradation remains unclear, and whether this alteration affects PAH bioaccumulation is unknown. Therefore, we performed a study between 2015 and 2020 to investigate the effects of seasonal variation on bacterial communities and PAH bioaccumulation in the Pearl River Estuary. Significantly high PAH concentrations in both aquatic and fishery species were determined in dry seasons (the mean ∑16PAH concentration: water, 37.24 ng/L (2015), 30.83 ng/L (2020); fish, 51.01 ng/L (2015) and 72.60 ng/L (2020)) compared to wet seasons (the mean ∑16PAH concentration: water, 22.38 ng/L (2015), 19.40 ng/L(2020); fish, 25.28 ng/L (2015) and 32.59 ng/L (2020)). Distinct differences in taxonomic and functional composition of bacterial communities related to biodegradation of low molecular weight PAHs (LMW-PAHs) were observed between seasons, and the concentrations of PAHs were negatively correlated with seasonal variation in temperature. Temperature-related specific bacterial taxa (e.g., Stenotrophomonas) directly or indirectly participated in LMW-PAH degradation via encoding PAH degradation enzymes (e.g., protocatechuate 4,5-dioxygenase) that subsequently led to bioaccumulation of high molecular weight PAHs (HMW-PAHs) in wild and fishery species due to LMW-PAHs in the water. Based on this alteration, the ecological risk posed by PAHs decreased in wet seasons, and an unbalanced spatio-temporal distribution of PAHs was observed in this estuary. These results suggest that seasonal variation of temperature affects HMW-PAH accumulation in fishery species via bacterially mediated LMW-PAH biodegradation.
Collapse
Affiliation(s)
- Haiyan Li
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Xuesong Wang
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China.
| | - Songyao Peng
- Pearl River Water Resources Research Institute, Guangzhou 510611, China
| | - Zini Lai
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Yongzhan Mai
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.
| |
Collapse
|
7
|
Wu H, Sun B, Li J. Influence of polycyclic aromatic hydrocarbon pollution on the diversity and function of bacterial communities in urban wetlands. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:56281-56293. [PMID: 34053037 DOI: 10.1007/s11356-021-14174-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Human disturbance has become the primary driving factor behind declining urban wetland ecological health due to rapid urbanization. Sediment microbial communities are critical for wetland ecosystem functioning but experience a range of natural and anthropogenic stressors due to rapid urbanization and land use changes, especially in developing countries. Polycyclic aromatic hydrocarbons (PAHs) released into the environment primarily come from anthropogenic sources like industrial activities and traffic emissions. Environmental PAH contamination is accelerating due to rapid urbanization, which also increases potential PAH-related dangers to human health. However, PAHs are widely distributed and not easy to centrally control. Microorganisms are the primary mediators of wetland purification, with most PAH-degrading microorganisms being bacteria. To better understand the influence of PAH contamination on urban wetland microbial communities, bacterial community compositions within sediments of urban wetlands in three land use types were investigated using high-throughput DNA sequencing and bioinformatics analyses. Statistical analyses revealed significant differences in overall microbial compositions among the three land use types, although γ-proteobacteria was the dominant phyla across all samples. Among the potential PAH-degrading bacterial taxa in sediments, Sphingomonas was the most prevalent. The distributions of PAH-degrading taxa were primarily affected by variance in organic compound abundances in addition to various physico-chemical variables, among which high-ring PAH content was a key parameter associated with bacterial distributions, except in the riverine wetlands. Functional inference via phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) indicated that 30 of the 43 genes related to PAH metabolism were predicted to be present within the genomes of bacteria among the three land use type. In particular, dioxygenase and dehydrogenase genes involved in PAH degradation were inferred to be prevalent, indicating that the host urban wetlands exhibited strong potential for organic pollutant degradation.
Collapse
Affiliation(s)
- Huanling Wu
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, Anhui, China
- School of Resource and Environment, Anqing Normal University, Anqing, Anhui, China
- Key Laboratory of Aqueous Environment Protection and Pollution Control of Yangtze River in Anhui of Anhui Provincial Education Department, Anqing Normal University, Anqing, Anhui, China
| | - Binghua Sun
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, Anhui, China
| | - Jinhua Li
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China.
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, Anhui, China.
- School of Life Science, Hefei Normal University, Hefei, Anhui, China.
| |
Collapse
|
8
|
Panchenko L, Muratova A, Biktasheva L, Galitskaya P, Golubev S, Dubrovskaya E, Selivanovskaya S, Turkovskaya O. Study of Boraginaceae plants for phytoremediation of oil-contaminated soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:215-223. [PMID: 34098813 DOI: 10.1080/15226514.2021.1932729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Long-term field observations of the natural vegetation cover in industrial and adjacent areas has revealed that the Boraginaceae was one of the main plant family representatives of which were noted in oil-contaminated area. In this study against the background of the previously well characterized plant families Poaceae and Fabaceae, the phytoremediation potential of Boraginaceae plants was investigated under the field conditions and described. Among the members of this family, Lithospermum arvense, Nonea pulla, Asperugo procumbens, Lappula myosotis, and Echium vulgare were the most common in oil-contaminated areas. N. pulla was the most tolerant to hydrocarbons and, along with L. arvense and E. vulgare, actively stimulated the soil microorganisms, including hydrocarbon-oxidizing ones, in their rhizosphere. A comparative assay confirmed that the plants of the Fabaceae family as a whole more efficiently enrich the soil both with available nitrogen and with pollutant degradation genes. Nevertheless, the comparatively high ammonium nitrogen content in the rhizosphere of N. pulla and E. vulgare allows these species to be singled out to explain their high rhizosphere effect, and to suggest their remediation potential for oil-contaminated soil.Novelty statement Against the background of the previously well characterized plant families Poaceae and Fabaceae, the remediation potential of Boraginaceae plants was described for the first time. Overall, this study contributes to understanding the differences in remediation potential of plants at the family level and suggests the monitoring pollutant degradation genes as an informative tool to the search for plant promising for use in the cleanup of oil-contaminated soil.
Collapse
Affiliation(s)
- Leonid Panchenko
- Laboratory of Environmental Biotechnology, Institute of Biochemistry and Physiology of Plants and Microorganisms RAS, Saratov, Russia
| | - Anna Muratova
- Laboratory of Environmental Biotechnology, Institute of Biochemistry and Physiology of Plants and Microorganisms RAS, Saratov, Russia
| | - Lilia Biktasheva
- Institute of Environmental Sciences, Kazan Federal University, Kazan, Russia
| | - Polina Galitskaya
- Institute of Environmental Sciences, Kazan Federal University, Kazan, Russia
| | - Sergey Golubev
- Laboratory of Environmental Biotechnology, Institute of Biochemistry and Physiology of Plants and Microorganisms RAS, Saratov, Russia
| | - Ekaterina Dubrovskaya
- Laboratory of Environmental Biotechnology, Institute of Biochemistry and Physiology of Plants and Microorganisms RAS, Saratov, Russia
| | | | - Olga Turkovskaya
- Laboratory of Environmental Biotechnology, Institute of Biochemistry and Physiology of Plants and Microorganisms RAS, Saratov, Russia
| |
Collapse
|
9
|
Liu X, Liu M, Zhou L, Hou L, Yang Y, Wu D, Meadows ME, Li Z, Tong C, Gu J. Occurrence and distribution of PAHs and microbial communities in nearshore sediments of the Knysna Estuary, South Africa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116083. [PMID: 33280920 DOI: 10.1016/j.envpol.2020.116083] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 10/13/2020] [Accepted: 11/12/2020] [Indexed: 06/12/2023]
Abstract
This study investigated the polycyclic aromatic hydrocarbons (PAHs) occurrence, and their impact on the microbial community and PAH-degrading genera and genes in the Knysna Estuary of South Africa. The results reveal that the estuary exhibits low PAH levels (114.1-356.0 ng g-1). Ignavibacteriae and Deferribacteres, as well as Proteobacteria and Bacteroidetes, are keystone phyla. Among measured environmental factors, total organic carbon (TOC), nutrients such as nitrite and nitrate, metals as Al, Cr, Cu, Ni, Pb and Zn, and environmental properties (pH and salinity) are primary contributors to structuring the bacterial community assemblage. The abundance of alpha subunit genes of the PAH-ring hydroxylating dioxygenases (PAH-RHDα) of Gram-negative bacteria lies in the range of (2.0-4.2) × 105 copies g-1, while that of Gram-positive bacteria ranges from 3.0 × 105 to 1.3 × 107 copies g-1. The PAH-degrading bacteria account for up to 0.1% of the bacterial community and respond mainly to nitrate, TOC and salinity, while PAHs at low concentration are not significant influencing factors. PAH degraders such as Xanthomonadales, Pseudomonas, and Mycobacterium, which play a central role in PAH-metabolization coupled with other biogeochemical processes (e.g. iron cycling), may contribute to maintaining a healthy estuarine ecosystem. These results are important for developing appropriate utilization and protection strategies for pristine estuaries worldwide.
Collapse
Affiliation(s)
- Xinran Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, 200241, China; Institute of Eco-Chongming (IEC), 3663 North Zhongshan Road, Shanghai, 200062, China.
| | - Limin Zhou
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, 200241, China; Institute of Eco-Chongming (IEC), 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Yi Yang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Dianming Wu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, 200241, China; Institute of Eco-Chongming (IEC), 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Michael E Meadows
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, 200241, China; Department of Environmental & Geographical Science, University of Cape Town, Private Bag X3, Rondebosch, 7701, Cape Town, South Africa
| | - Zhanhai Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Chunfu Tong
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Jinghua Gu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| |
Collapse
|
10
|
Mapping Microbial Capacities for Bioremediation: Genes to Genomics. Indian J Microbiol 2019; 60:45-53. [PMID: 32089573 DOI: 10.1007/s12088-019-00842-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 11/12/2019] [Indexed: 12/15/2022] Open
Abstract
Bioremediation is a process wherein the decontamination strategies are designed so that a site could achieve the environmental abiotic and biotic parameters close to its baseline. In the process, the driving force is the available microbial genetic degradative capabilities, which are supported by required nutrients so that the desired expression of these capabilities could be exploited in favour of removal of pollutants. With genomics tools not only the available abilities could be estimated but their dynamic performance could also be established. These tools are now playing important role in bioprocess optimization, which not only derive the bio-stimulation plans but also could suggest possible genetic bio-augmentation options.
Collapse
|
11
|
Distribution of bacterial polycyclic aromatic hydrocarbon (PAH) ring-hydroxylating dioxygenases genes in oilfield soils and mangrove sediments explored by gene-targeted metagenomics. Appl Microbiol Biotechnol 2019; 103:2427-2440. [PMID: 30661109 DOI: 10.1007/s00253-018-09613-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/25/2018] [Accepted: 12/28/2018] [Indexed: 10/27/2022]
Abstract
PAH ring-hydroxylating dioxygenases (PAH-RHDα) gene, a useful biomarker for PAH-degrading bacteria, has been widely used to examine PAH-degrading bacterial community in different contaminated sites. However, the distribution of PAH-RHDα genes in oilfield soils and mangrove sediments and their relationship with environmental factors still remain largely unclear. In this study, gene-targeted metagenomics was first used to investigate the diversity of PAH-degrading bacterial communities in oilfield soils and mangrove sediments. The results showed that higher diversity of PAH-degrading bacteria in the studied samples was revealed by gene-targeted metagenomics than traditional clone library analysis. Pseudomonas, Burkholderia, Ralstonia, Polymorphum gilvum, Mycobacterium, Sciscionella marina, Rhodococcus, and potential new degraders were prevailed in the oilfield area. For mangrove sediments, novel PAH degraders and Mycobacterium were predominated. The spatial distribution of PAH-RHDα gene was dependent on geographical location and regulated by local environmental variables. PAH content played a key role in shaping PAH-degrading bacterial communities in the studied samples, which would enrich PAH-degrading bacterial population and decrease PAH-degrading bacterial diversity. This work brings a more comprehensive and some new insights into the distribution and biodegradation potential of PAH-degrading bacteria in soil and sediments ecosystems.
Collapse
|
12
|
Bourceret A, Leyval C, Thomas F, Cébron A. Rhizosphere effect is stronger than PAH concentration on shaping spatial bacterial assemblages along centimetre-scale depth gradients. Can J Microbiol 2017; 63:881-893. [PMID: 28841396 DOI: 10.1139/cjm-2017-0124] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
At centimetre scale, soil bacterial assemblages are shaped by both abiotic (edaphic characteristics and pollutants) and biotic parameters. In a rhizobox experiment carried out on planted industrial soil contaminated with polycyclic aromatic hydrocarbons (PAHs), we previously showed that pollution was distributed randomly with hot and cold spots. Therefore, in the present study, we investigated the effect of this patchy PAH distribution on the bacterial community assemblage and compared it with that of root depth gradients found in the rhizosphere of either alfalfa or ryegrass. Sequencing of 16S rRNA amplicons revealed a higher bacterial diversity in ryegrass rhizosphere and enrichment in specific taxa by the 2 plant species. Indeed, Bacteroidetes, Firmicutes, and Gammaproteobacteria were globally favored in alfalfa, whereas Acidimicrobiia, Chloroflexi, Alpha-, and Betaproteobacteria were globally favored in ryegrass rhizosphere. The presence of alfalfa created depth gradients of root biomass, carbohydrate, and pH, and actually shaped the bacterial assemblage, favoring Actinobacteria near the surface and Gemmatimonadetes and Proteobacteria at greater depths. Contrarily, the bacterial assemblage was homogeneous all along depths of the ryegrass root system. With both plant species, the PAH content and random distribution had no significant effect on bacterial assemblage. Globally, at centimeter scale, bacterial community assemblages were mostly shaped by soil physical and chemical depth gradients induced by root growth but not by patchy PAH content.
Collapse
Affiliation(s)
- Amélia Bourceret
- a CNRS, LIEC UMR7360, Faculté des Sciences et Technologies, boulevard des Aiguillettes, B.P. 70239, 54506 Vandoeuvre-lès-Nancy, France.,b Université de Lorraine, LIEC UMR7360, Faculté des Sciences et Technologies, boulevard des Aiguillettes, B.P. 70239, 54506 Vandoeuvre-lès-Nancy, France
| | - Corinne Leyval
- a CNRS, LIEC UMR7360, Faculté des Sciences et Technologies, boulevard des Aiguillettes, B.P. 70239, 54506 Vandoeuvre-lès-Nancy, France.,b Université de Lorraine, LIEC UMR7360, Faculté des Sciences et Technologies, boulevard des Aiguillettes, B.P. 70239, 54506 Vandoeuvre-lès-Nancy, France
| | - François Thomas
- a CNRS, LIEC UMR7360, Faculté des Sciences et Technologies, boulevard des Aiguillettes, B.P. 70239, 54506 Vandoeuvre-lès-Nancy, France.,b Université de Lorraine, LIEC UMR7360, Faculté des Sciences et Technologies, boulevard des Aiguillettes, B.P. 70239, 54506 Vandoeuvre-lès-Nancy, France
| | - Aurélie Cébron
- a CNRS, LIEC UMR7360, Faculté des Sciences et Technologies, boulevard des Aiguillettes, B.P. 70239, 54506 Vandoeuvre-lès-Nancy, France.,b Université de Lorraine, LIEC UMR7360, Faculté des Sciences et Technologies, boulevard des Aiguillettes, B.P. 70239, 54506 Vandoeuvre-lès-Nancy, France
| |
Collapse
|
13
|
Misson B, Garnier C, Lauga B, Dang DH, Ghiglione JF, Mullot JU, Duran R, Pringault O. Chemical multi-contamination drives benthic prokaryotic diversity in the anthropized Toulon Bay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 556:319-329. [PMID: 27032072 DOI: 10.1016/j.scitotenv.2016.02.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 06/05/2023]
Abstract
Investigating the impact of human activities on marine coastal ecosystems remains difficult because of the co-occurrence of numerous natural and human-induced gradients. Our aims were (i) to evaluate the links between the chemical environment as a whole and microbial diversity in the benthic compartment, and (ii) to compare the contributions of anthropogenic and natural chemical gradients to microbial diversity shifts. We studied surface sediments from 54 sampling sites in the semi-enclosed Toulon Bay (NW Mediterranean) exposed to high anthropogenic pressure. Previously published chemical data were completed by new measurements, resulting in an in depth geochemical characterization by 29 representative environmental variables. Bacterial and archaeal diversity was assessed by terminal restriction fragment length polymorphism profiling on a selection of samples distributed along chemical gradients. Multivariate statistical analyses explained from 45% to 80% of the spatial variation in microbial diversity, considering only the chemical variables. A selection of trace metals of anthropogenic origin appeared to be strong structural factors for both bacterial and archaeal communities. Bacterial terminal restriction fragment (T-RF) richness correlated strongly with both anthropogenic and natural chemical gradients, whereas archaeal T-RF richness demonstrated fewer links with chemical variables. No significant decrease in diversity was evidenced in relation to chemical contamination, suggesting a high adaptive potential of benthic microbial communities in Toulon Bay.
Collapse
Affiliation(s)
- Benjamin Misson
- PROTEE, EA 3819, Université de Toulon, CS 60584, 83041 Toulon Cedex 9, France.
| | - Cédric Garnier
- PROTEE, EA 3819, Université de Toulon, CS 60584, 83041 Toulon Cedex 9, France
| | - Béatrice Lauga
- Equipe Environnement et Microbiologie, Melody Group, Université de Pau et des Pays de l'Adour, IPREM, UMR CNRS 5254, BP 11055, F-64013 Pau Cedex, France
| | - Duc Huy Dang
- PROTEE, EA 3819, Université de Toulon, CS 60584, 83041 Toulon Cedex 9, France
| | - Jean-François Ghiglione
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC) UMR 7621, Observatoire Océanologique, F-66650 Banyuls/mer, France
| | - Jean-Ulrich Mullot
- LASEM de Toulon, Base Navale Toulon, BP 61, 83800 Toulon Cedex 9, France
| | - Robert Duran
- Equipe Environnement et Microbiologie, Melody Group, Université de Pau et des Pays de l'Adour, IPREM, UMR CNRS 5254, BP 11055, F-64013 Pau Cedex, France
| | - Olivier Pringault
- MARBEC, UMR 9190, CNRS IRD IFREMER Université Montpellier 2, F-34095 Montpellier, France; Laboratoire de Biosurveillance de l'Environnement, Faculté des Sciences de Bizerte, Zarzouna 7021, Tunisia
| |
Collapse
|
14
|
Bourceret A, Leyval C, de Fouquet C, Cébron A. Mapping the Centimeter-Scale Spatial Variability of PAHs and Microbial Populations in the Rhizosphere of Two Plants. PLoS One 2015; 10:e0142851. [PMID: 26599438 PMCID: PMC4657893 DOI: 10.1371/journal.pone.0142851] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/26/2015] [Indexed: 12/03/2022] Open
Abstract
Rhizoremediation uses root development and exudation to favor microbial activity. Thus it can enhance polycyclic aromatic hydrocarbon (PAH) biodegradation in contaminated soils. Spatial heterogeneity of rhizosphere processes, mainly linked to the root development stage and to the plant species, could explain the contrasted rhizoremediation efficiency levels reported in the literature. Aim of the present study was to test if spatial variability in the whole plant rhizosphere, explored at the centimetre-scale, would influence the abundance of microorganisms (bacteria and fungi), and the abundance and activity of PAH-degrading bacteria, leading to spatial variability in PAH concentrations. Two contrasted rhizospheres were compared after 37 days of alfalfa or ryegrass growth in independent rhizotron devices. Almost all spiked PAHs were degraded, and the density of the PAH-degrading bacterial populations increased in both rhizospheres during the incubation period. Mapping of multiparametric data through geostatistical estimation (kriging) revealed that although root biomass was spatially structured, PAH distribution was not. However a greater variability of the PAH content was observed in the rhizosphere of alfalfa. Yet, in the ryegrass-planted rhizotron, the Gram-positive PAH-degraders followed a reverse depth gradient to root biomass, but were positively correlated to the soil pH and carbohydrate concentrations. The two rhizospheres structured the microbial community differently: a fungus-to-bacterium depth gradient similar to the root biomass gradient only formed in the alfalfa rhizotron.
Collapse
Affiliation(s)
- Amélia Bourceret
- CNRS, LIEC UMR7360, Faculté des Sciences et Technologies, Bd des Aiguillettes, BP70239, 54506 Vandoeuvre-lès-Nancy, France
- Université de Lorraine, LIEC UMR7360, Faculté des Sciences et Technologies, Bd des Aiguillettes, BP 70239, 54506 Vandoeuvre-lès-Nancy, France
| | - Corinne Leyval
- CNRS, LIEC UMR7360, Faculté des Sciences et Technologies, Bd des Aiguillettes, BP70239, 54506 Vandoeuvre-lès-Nancy, France
- Université de Lorraine, LIEC UMR7360, Faculté des Sciences et Technologies, Bd des Aiguillettes, BP 70239, 54506 Vandoeuvre-lès-Nancy, France
| | - Chantal de Fouquet
- MINES ParisTech, Centre de Géosciences Géostatistique, Ecole Nationale Supérieure des Mines de Paris, 35 Rue Saint-Honoré, 77305 Fontainebleau, France
| | - Aurélie Cébron
- CNRS, LIEC UMR7360, Faculté des Sciences et Technologies, Bd des Aiguillettes, BP70239, 54506 Vandoeuvre-lès-Nancy, France
- Université de Lorraine, LIEC UMR7360, Faculté des Sciences et Technologies, Bd des Aiguillettes, BP 70239, 54506 Vandoeuvre-lès-Nancy, France
- * E-mail:
| |
Collapse
|
15
|
Xia X, Xia N, Lai Y, Dong J, Zhao P, Zhu B, Li Z, Ye W, Yuan Y, Huang J. Response of PAH-degrading genes to PAH bioavailability in the overlying water, suspended sediment, and deposited sediment of the Yangtze River. CHEMOSPHERE 2015; 128:236-244. [PMID: 25723716 DOI: 10.1016/j.chemosphere.2015.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/02/2015] [Accepted: 02/03/2015] [Indexed: 06/04/2023]
Abstract
The degrading genes of hydrophobic organic compounds (HOCs) serve as indicators of in situ HOC degradation potential, and the existing forms and bioavailability of HOCs might influence the distribution of HOC-degrading genes in natural waters. However, little research has been conducted to study the relationship between them. In the present study, nahAc and nidA genes, which act as biomarkers for naphthalene- and pyrene-degrading bacteria, were selected as model genotypes to investigate the response of polycyclic aromatic hydrocarbon (PAH)-degrading genes to PAH bioavailability in the overlying water, suspended sediment (SPS), and deposited sediment of the Yangtze River. The freely dissolved concentration, typically used to reflect HOC bioavailability, and total dissolved, as well as sorbed concentrations of PAHs were determined. Phylogenetic analysis showed that all the PAH-ring hydroxylating dioxygenase gene sequences of Gram-negative bacteria (PAH-RHD[GN]) were closely related to nahAc, nagAc, nidA, and uncultured PAH-RHD genes. The PAH-RHD[GN] gene diversity as well as nahAc and nidA gene copy numbers decreased in the following order: deposited sediment>SPS>overlying water. The nahAc and nidA gene abundance was not significantly correlated with environmental parameters but was significantly correlated with the bioavailable existing forms of naphthalene and pyrene in the three phases. The nahAc gene copy numbers in the overlying water and deposited sediment were positively correlated with freely dissolved naphthalene concentrations in the overlying and pore water phases, respectively, and so were nidA gene copy numbers. This study suggests that the distribution and abundance of HOC-degrading bacterial population depend on the HOC bioavailability in aquatic environments.
Collapse
Affiliation(s)
- Xinghui Xia
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China.
| | - Na Xia
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China
| | - Yunjia Lai
- Agricultural and Environmental Chemistry Graduate Group, University of California, Davis, One Shields Avenue, Davis 95616, CA, United States
| | - Jianwei Dong
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China
| | - Pujun Zhao
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China
| | - Baotong Zhu
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China
| | - Zhihuang Li
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China
| | - Wan Ye
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China
| | - Yue Yuan
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China
| | - Junxiong Huang
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China
| |
Collapse
|
16
|
Abundance and diversity of polycyclic aromatic hydrocarbon degradation bacteria in urban roadside soils in Shanghai. Appl Microbiol Biotechnol 2014; 99:3639-49. [DOI: 10.1007/s00253-014-6299-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 12/02/2014] [Accepted: 12/04/2014] [Indexed: 11/26/2022]
|
17
|
Yang Y, Wang J, Liao J, Xie S, Huang Y. Distribution of naphthalene dioxygenase genes in crude oil-contaminated soils. MICROBIAL ECOLOGY 2014; 68:785-793. [PMID: 25008984 DOI: 10.1007/s00248-014-0457-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 06/27/2014] [Indexed: 06/03/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are one of the major pollutants in soils in oil exploring areas. Biodegradation is the major process for natural elimination of PAHs from contaminated soils. Functional genes can be used as biomarkers to assess the biodegradation potential of indigenous microbial populations. However, little is known about the distribution of PAH-degrading genes in the environment. The links between environmental parameters and the distribution of PAH metabolic genes remain essentially unclear. The present study investigated the abundance and diversity of naphthalene dioxygenase genes in the oil-contaminated soils in the Shengli Oil Field (China). Spatial variations in the density and diversity of naphthalene dioxygenase genes occurred in this area. Four different sequence genotypes were observed in the contaminated soils, with the predominance of novel PAH-degrading genes. Pearson's correlation analysis illustrated that gene abundance had positive correlations with the levels of total organic carbon and aromatic hydrocarbons, while gene diversity showed a negative correlation with the level of polar aromatics. This work could provide some new insights toward the distribution of PAH metabolic genes and PAH biodegradation potential in oil-contaminated ecosystems.
Collapse
Affiliation(s)
- Yuyin Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | | | | | | | | |
Collapse
|
18
|
Yang Y, Wang J, Liao J, Xie S, Huang Y. Abundance and diversity of soil petroleum hydrocarbon-degrading microbial communities in oil exploring areas. Appl Microbiol Biotechnol 2014; 99:1935-46. [PMID: 25236802 DOI: 10.1007/s00253-014-6074-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 01/23/2023]
Abstract
Alkanes and polycyclic aromatic hydrocarbons (PAHs) are the commonly detected petroleum hydrocarbon contaminants in soils in oil exploring areas. Hydrocarbon-degrading genes are useful biomarks for estimation of the bioremediation potential of contaminated sites. However, the links between environmental factors and the distribution of alkane and PAH metabolic genes still remain largely unclear. The present study investigated the abundances and diversities of soil n-alkane and PAH-degrading bacterial communities targeting both alkB and nah genes in two oil exploring areas at different geographic regions. A large variation in the abundances and diversities of alkB and nah genes occurred in the studied soil samples. Various environmental variables regulated the spatial distribution of soil alkane and PAH metabolic genes, dependent on geographic location. The soil alkane-degrading bacterial communities in oil exploring areas mainly consisted of Pedobacter, Mycobacterium, and unknown alkB-harboring microorganisms. Moreover, the novel PAH-degraders predominated in nah gene clone libraries from soils of the two oil exploring areas. This work could provide some new insights towards the distribution of hydrocarbon-degrading microorganisms and their biodegradation potential in soil ecosystems.
Collapse
Affiliation(s)
- Yuyin Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (Peking University), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | | | | | | | | |
Collapse
|
19
|
Johnsen AR, Styrishave B, Aamand J. Quantification of small-scale variation in the size and composition of phenanthrene-degrader populations and PAH contaminants in traffic-impacted topsoil. FEMS Microbiol Ecol 2014; 88:84-93. [DOI: 10.1111/1574-6941.12272] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 12/02/2013] [Accepted: 12/09/2013] [Indexed: 11/27/2022] Open
Affiliation(s)
- Anders R. Johnsen
- Department of Geochemistry; Geological Survey of Denmark and Greenland (GEUS); Copenhagen K Denmark
| | - Bjarne Styrishave
- Toxicology Laboratory; Department of Pharmacy; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen K Denmark
| | - Jens Aamand
- Department of Geochemistry; Geological Survey of Denmark and Greenland (GEUS); Copenhagen K Denmark
| |
Collapse
|