1
|
Rao Y, He Z. Hythane production from brewery wastewater-generated biogas using a membrane electrochemical cell. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2025; 97:e70098. [PMID: 40420366 DOI: 10.1002/wer.70098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/20/2025] [Accepted: 05/13/2025] [Indexed: 05/28/2025]
Abstract
Converting organic wastes into hythane, a blend of hydrogen (5% to 25%) and methane (75% to 95%), will not only reduce waste discharge but also maximize energy recovery. Herein, a membrane electrochemical cell was investigated to produce hythane from biogas generated in anaerobic digestion of brewery wastewater (BW). The key parameters including current densities, electrolyte concentrations, and biogas flow rates were examined in batch tests. Under an optimal condition (210 mA, 100 mM electrolyte, 1 mL min-1 of biogas flow), the system achieved the production of hythane containing 70.6% ± 1.1% CH4, 27.3% ± 0.5% H2, and 2.1% ± 1.6% CO2 (corresponding to 91.1% ± 6.4% CO2 removal). Meanwhile, the H2S concentration was decreased from 513 to 2 ppm, 99.9% ± 0.2% removal. Energy efficiency of this system was estimated 61.8% ± 10.7%, and energy output increased by 54.4% ± 10.6% with biogas upgrading to hythane. These results encourage further exploration of electrochemical approach for simultaneous biogas upgrading and hythane production. PRACTITIONER POINTS: An innovative approach is demonstrated for efficient simultaneous biogas upgrading and electrochemical hythane production. Hythane composition is affected by the applied current and biogas flow rate. Biogas from brewery wastewater is converted into hythane with composition of 70.6% ± 1.1% CH4, 27.3% ± 0.5% H2, and 2.1% ± 1.6% of CO2. Electrochemical treatment achieves significant removal of H2S from the produced hythane.
Collapse
Affiliation(s)
- Yue Rao
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Zhen He
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Dang TMT, Bui HM. Performance evaluation of ICX reactor in treatment of paper mill wastewater: a case study in South Vietnam. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:1115-1131. [PMID: 39215727 DOI: 10.2166/wst.2024.273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
This study evaluates the performance of the Internal Circulation eXperience (ICX) reactor in treating high-strength paper mill wastewater in the south of Vietnam. The ICX reactor effectively managed organic concentrations (sCOD) of up to 11,800 mg/L. Results indicate a volumetric loading rate (VLR) of 26.8 kg/m3 × day, achieving processing efficiency exceeding 81% while consistently maintaining volatile fatty acids (VFA) below 300 mg/L. The study employed Monod and Stover-Kincannon kinetic modeling, revealing dynamic parameters including Ks = 56.81 kg/m3, Y = 0.121 kgVSS/kgsCOD, Kd = 0.0242 1/day, μmax = 0.372 1/day, Umax = 151 kg/m3 × day, and KB = 175.92 kg/m3 × day, underscoring the ICX reactor's superior efficiency compared to alternative technologies. Notably, the reactor's heightened sensitivity to VFA levels necessitates influent concentrations below 1,400 mg/L for effective sludge treatment. Furthermore, the influence of calcium on treatment efficiency requires post-treatment alkalinity maintenance below 19 meq/L to stabilize MLVSS/MLSS concentration. Biogas production ranged from 0.6 to 0.7 Nm3 biogas/kg sCOD; however, calcium impact diminished this ratio, reducing overall treatment efficiency and biogas production. The study contributes valuable insights into anaerobic treatment processes for complex industrial wastewaters, emphasizing the significance of controlling VFA, calcium, and alkalinity for optimal system performance.
Collapse
Affiliation(s)
- Tuan Minh Truong Dang
- Institute of Environmental Toxin and Emerging-Contaminant, Cheng Shiu University, 840 Chengcing Road, Niaosong District, Kaohsiung City 833301, Taiwan
| | - Ha Manh Bui
- Faculty of Environment, Saigon University, 273 An Duong Vuong Street, District 5, Ho Chi Minh City 700000, Vietnam E-mail:
| |
Collapse
|
3
|
Cremonez PA, Teleken JG, Weiser Meier TR, Alves HJ. Two-Stage anaerobic digestion in agroindustrial waste treatment: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 281:111854. [PMID: 33360925 DOI: 10.1016/j.jenvman.2020.111854] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/12/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
The anaerobic digestion is a process widely recognized as an interesting alternative for the treatment and stabilization of residual organic substrates. However, several technical limitations were observed based on the characteristics of the organic matter submitted to the process, such as the presence of high concentrations of soluble sugars or fats. The technology of anaerobic digestion in multiple stages is described as a viable option in the control of variables, optimizing the environmental conditions of the main microorganisms involved in the process, assuring high solid removal and methane production, besides allowing a higher energy yield through the generation of molecular fuel hydrogen. Several studies reviewed the process of anaerobic digestion in multiple stages in the treatment of food waste, although few report its use applied directly to agroindustrial residues. Thus, the present work aims to review the literature evaluating the scenario and viability of the multi-stage anaerobic digestion process applied to agroindustrial effluents. Effluents such as manipueira, vinasse, and dairy wastewater are substrates that present high yields when treated by AD processes with stage separation. The high concentration of easily fermentable sugars results in a high production of molecular hydrogen (co-product of the production of volatile acids in the acid phase) and methane (methanogenic phase). The great challenges related to the development of the sector are focused on the stability of the composition and yield of hydrogen in the acid phase, besides the problems resulting from the treatment of complex residues. Thus, the present study suggests that future works should focus on the technologies of new microorganisms and optimization of process parameters, providing maturation and scale-up of the two-stage anaerobic digestion technique.
Collapse
Affiliation(s)
- Paulo André Cremonez
- Federal University of Paraná (UFPR-Campus Palotina), 2153 Pioneiro St., Bairro Jardim Dallas, Palotina, PR, 85.950-000, Brazil.
| | - Joel Gustavo Teleken
- Federal University of Paraná (UFPR-Campus Palotina), 2153 Pioneiro St., Bairro Jardim Dallas, Palotina, PR, 85.950-000, Brazil
| | - Thompson Ricardo Weiser Meier
- Federal University of Paraná (UFPR-Campus Palotina), 2153 Pioneiro St., Bairro Jardim Dallas, Palotina, PR, 85.950-000, Brazil
| | - Helton José Alves
- Federal University of Paraná (UFPR-Campus Palotina), 2153 Pioneiro St., Bairro Jardim Dallas, Palotina, PR, 85.950-000, Brazil
| |
Collapse
|
4
|
Deepnarain N, Nasr M, Amoah ID, Enitan-Folami AM, Reddy P, Stenström TA, Kumari S, Bux F. Impact of sludge bulking on receiving environment using quantitative microbial risk assessment (QMRA)-based management for full-scale wastewater treatment plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 267:110660. [PMID: 32421681 DOI: 10.1016/j.jenvman.2020.110660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/16/2020] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
During sludge bulking in wastewater treatment plants (WWTPs), high amounts of potentially pathogenic bacteria would release into the environment, causing various human-health risks. This is the first study attempting to assess the microbial infections associated with the reuse of WWTP effluents under various bulking conditions. Three common waterborne pathogens, viz., E. coli O157:H7, Salmonella, and Mycobacterium, were quantified from full-scale WWTPs using DNA extraction and qPCR at different sludge volume indices (SVIs). The detected pathogens were incorporated into a quantitative microbial risk assessment (QMRA) model to determine the applicability of WWTP discharge for recreational (bathing) activities and agricultural practices. The QMRA exposures were children, women, and men during swimming, and farmers and vegetable consumers during irrigation. Bacterial abundance in the treated wastewater increased in response to SVIs, and the QMRA values at all bulking events exceeded the tolerable risk of one case of infection per 10,000 people per year. Hence, various disinfection scenarios (chlorination, ultraviolet, and ozonation) were hypothetically tested to control the risks associated with pathogenic bacteria, allowing for safe disposal and reuse of the treated effluent. The ultraviolet application provided the highest ability to inactivate the pathogenic bacteria, except for the case of children exposed to Salmonella infection during swimming. The reduction of Mycobacterium infection risks with either chlorination or ozonation showed inefficient results. This study would be helpful for the management of human health risks associated with effluent wastewater containing pathogens, i.e., particularly concerning the case of sludge bulking.
Collapse
Affiliation(s)
- Nashia Deepnarain
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4000, South Africa
| | - Mahmoud Nasr
- Sanitary Engineering Department, Faculty of Engineering, Alexandria University, Alexandria, 21544, Egypt
| | - Isaac Dennis Amoah
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4000, South Africa
| | | | - Poovendhree Reddy
- Department of Community Health Studies, Faculty of Health Sciences, Durban University of Technology, South Africa
| | - Thor Axel Stenström
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4000, South Africa
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4000, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4000, South Africa.
| |
Collapse
|
5
|
Enitan AM, Kumari S, Swalaha FM, Odiyo JO, Bux F. Microbiota of a Full-scale UASB Reactor Treating Brewery Wastewater Using Illumina MiSeq Sequencing. Open Microbiol J 2019. [DOI: 10.2174/1874285801913010001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background:
The efficiency of biological wastewater treatment plant is determined by bacterial metabolism. There are data on the effect of operational parameters on microbial consortia present in laboratory scale reactor. However, knowledge on the full-scale reactor is still limited at present, hence the need to define the relations between the microbial structure and the performance of full-scale reactor.
Objective:
In this study, the microbial community structure in a full-scale UASB reactor treating brewery wastewater was assessed using metagenomics Next-Generation Sequencing technique.
Method:
Granular sludge samples were collected from the UASB reactor treating brewery wastewater and extracted genomic DNA was amplified using barcoded bacterial primer sets targeting V3-V4 region of the 16S rRNA genes on sequencing Illumina MiSeq platform.
Results:
The taxonomic analysis revealed the abundance of bacteria (~95%) with considerable Archaea community (~2%) in the granular sludge. After trimming, 18 bacterial phyla, 29 orders, 36 families and 44 genera were recovered from the 48,488 sequences reads of the 16S rRNA genes analysed, where the most abundant community belongs to Firmicutes, Bacteroidetes, Synergistetes and Proteobacteria phyla.
Conclusion:
For a sustainable bioenergy generation, understanding the mechanisms of anaerobic system in relation to microbial community is an important factor to increase the production of biogas production during wastewater treatment. To the best of our knowledge, this report is one of the studies that explored and described bacterial diversity and community structure of a full-scale UASB reactor treating brewery wastewater using high-throughput sequencing. This study provides insight into the dominant microbial community and their phylogenetic diversity in biogas producing reactor.
Collapse
|
6
|
State of the art on granular sludge by using bibliometric analysis. Appl Microbiol Biotechnol 2018; 102:3453-3473. [PMID: 29497798 DOI: 10.1007/s00253-018-8844-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 02/07/2023]
Abstract
With rapid industrialization and urbanization in the nineteenth century, the activated sludge process (ASP) has experienced significant steps forward in the face of greater awareness of and sensitivity toward water-related environmental problems. Compared with conventional flocculent ASP, the major advantages of granular sludge are characterized by space saving and resource recovery, where the methane and hydrogen recovery in anaerobic granular and 50% more space saving, 30-50% of energy consumption reduction, 75% of footprint cutting, and even alginate recovery in aerobic granular. Numerous engineers and scientists have made great efforts to explore the superiority over the last 40 years. Therefore, a bibliometric analysis was desired to trace the global trends of granular sludge research from 1992 to 2016 indexed in the SCI-EXPANDED. Articles were published in 276 journals across 44 subject categories spanning 1420 institutes across 68 countries. Bioresource Technology (293, 11.9%), Water Research (235, 9.6%), and Applied Microbiology and Biotechnology (127, 5.2%) dominated in top three journals. The Engineering (991, 40.3%), China (906, 36.9%), and Harbin Inst Technol, China (114, 4.6%) were the most productive subject category, country, and institution, respectively. The hotspot is the emerging techniques depended on granular reactors in response to the desired removal requirements and bio-energy production (primarily in anaerobic granular sludge). In view of advanced and novel bio-analytical methods, the characteristics, functions, and mechanisms for microbial granular were further revealed in improving and innovating the granulation techniques. Therefore, a promising technique armed with strengthened treatment efficiency and efficient resource and bio-energy recovery can be achieved.
Collapse
|
7
|
Gokal J, Awolusi OO, Enitan AM, Kumari S, Bux F. Chapter 4 Molecular Characterization and Quantification of Microbial Communities in Wastewater Treatment Systems. Microb Biotechnol 2016. [DOI: 10.1201/9781315367880-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
8
|
Wang Y, Wang Q, Li M, Yang Y, He W, Yan G, Guo S. An alternative anaerobic treatment process for treatment of heavy oil refinery wastewater containing polar organics. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.08.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|