1
|
Namadi P, Deng Z. Optimum environmental conditions controlling prevalence of vibrio parahaemolyticus in marine environment. MARINE ENVIRONMENTAL RESEARCH 2023; 183:105828. [PMID: 36423461 DOI: 10.1016/j.marenvres.2022.105828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
This literature review presents major environmental indicators and their optimum variation ranges for the prevalence of Vibrio parahaemolyticus in the marine environment by critically reviewing and statistically analyzing more than one hundred studies from countries around the world. Results of this review indicated that the prevalence of Vibrio parahaemolyticus in the marine environment is primarily responsive to favorable environmental conditions that are described with environmental indicators. The importance of environmental indicators to the prevalence of Vibrio parahaemolyticus can be ranked from the highest to lowest as Sea Surface Temperature (SST), salinity, pH, chlorophyll a, and turbidity, respectively. It was also found in this study that each environmental indicator has an optimum variation range favoring the prevalence of Vibrio parahaemolyticus. Specifically, the SST range of 25.67 ± 2 °C, salinity range of 27.87 ± 3 ppt, and pH range of 7.96 ± 0.1 were found to be the optimum conditions for the prevalence of Vibrio parahaemolyticus. High vibrio concentrations were also observed in water samples with the chlorophyll a range of 16-25 μg/L. The findings provide new insights into the importance of environmental indicators and their optimum ranges, explaining not only the existence of both positive and negative associations reported in the literature but also the dynamic associations between the Vibrio presence and its environmental drivers.
Collapse
Affiliation(s)
- Peyman Namadi
- Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Zhiqiang Deng
- Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA, 70803, United States.
| |
Collapse
|
2
|
Semenza JC. Invited Perspective: Vibriosis-The Price Tag of a Warmer World. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:81305. [PMID: 35983961 PMCID: PMC9389639 DOI: 10.1289/ehp11070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/09/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Jan C. Semenza
- Heidelberg Institute of Global Health, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
3
|
Dutta B, Bandopadhyay R. Biotechnological potentials of halophilic microorganisms and their impact on mankind. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022; 11:75. [PMID: 35669848 PMCID: PMC9152817 DOI: 10.1186/s43088-022-00252-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 05/08/2022] [Indexed: 11/10/2022] Open
Abstract
Background Halophiles are extremophilic organisms represented by archaea, bacteria and eukaryotes that thrive in hypersaline environment. They apply different osmoadaptation strategies to survive in hostile conditions. Habitat diversity of halophilic microorganisms in hypersaline system provides information pertaining the evolution of life on Earth. Main body The microbiome-gut-brain axis interaction contributes greatly to the neurodegenerative diseases. Gut resident halophilic bacteria are used as alternative medication for chronic brain diseases. Halophiles can be used in pharmaceuticals, drug delivery, agriculture, saline waste water treatment, biodegradable plastic production, metal recovery, biofuel energy generation, concrete crack repair and other sectors. Furthermore, versatile biomolecules, mainly enzymes characterized by broad range of pH and thermostability, are suitable candidate for industrial purposes. Reflectance pattern of halophilic archaeal pigment rhodopsin is considered as potential biosignature for Earth-like planets. Short conclusions This review represents important osmoadaptation strategies acquired by halophilic archaea and bacteria and their potential biotechnological applications to resolve present day challenges. Graphical Abstract
Collapse
Affiliation(s)
- Bhramar Dutta
- Department of Botany, The University of Burdwan, Purba Bardhaman, West Bengal 713104 India
| | - Rajib Bandopadhyay
- Department of Botany, The University of Burdwan, Purba Bardhaman, West Bengal 713104 India
| |
Collapse
|
4
|
Castaneda-Guzman M, Mantilla-Saltos G, Murray KA, Settlage R, Escobar LE. A database of global coastal conditions. Sci Data 2021; 8:304. [PMID: 34836949 PMCID: PMC8626420 DOI: 10.1038/s41597-021-01081-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 10/29/2021] [Indexed: 11/08/2022] Open
Abstract
Remote sensing satellite imagery has the potential to monitor and understand dynamic environmental phenomena by retrieving information about Earth's surface. Marine ecosystems, however, have been studied with less intensity than terrestrial ecosystems due, in part, to data limitations. Data on sea surface temperature (SST) and Chlorophyll-a (Chlo-a) can provide quantitative information of environmental conditions in coastal regions at a high spatial and temporal resolutions. Using the exclusive economic zone of coastal regions as the study area, we compiled monthly and annual statistics of SST and Chlo-a globally for 2003 to 2020. This ready-to-use dataset aims to reduce the computational time and costs for local-, regional-, continental-, and global-level studies of coastal areas. Data may be of interest to researchers in the areas of ecology, oceanography, biogeography, fisheries, and global change. Target applications of the database include environmental monitoring of biodiversity and marine microorganisms, and environmental anomalies.
Collapse
Affiliation(s)
- Mariana Castaneda-Guzman
- Department of Fish and Wildlife Conservation, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 24061, USA
| | - Gabriel Mantilla-Saltos
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias Naturales y Matemáticas, Guayaquil, Ecuador
| | - Kris A Murray
- MRC Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK
| | - Robert Settlage
- Advanced Research Computing at Virginia Tech Carilion, Roanoke, Virginia, USA
| | - Luis E Escobar
- Department of Fish and Wildlife Conservation, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 24061, USA.
- Global Change Center, Virginia Tech, Blacksburg, VA, USA.
- Center for Emerging Zoonotic and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
5
|
Bioluminescence and Photoreception in Unicellular Organisms: Light-Signalling in a Bio-Communication Perspective. Int J Mol Sci 2021; 22:ijms222111311. [PMID: 34768741 PMCID: PMC8582858 DOI: 10.3390/ijms222111311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022] Open
Abstract
Bioluminescence, the emission of light catalysed by luciferases, has evolved in many taxa from bacteria to vertebrates and is predominant in the marine environment. It is now well established that in animals possessing a nervous system capable of integrating light stimuli, bioluminescence triggers various behavioural responses and plays a role in intra- or interspecific visual communication. The function of light emission in unicellular organisms is less clear and it is currently thought that it has evolved in an ecological framework, to be perceived by visual animals. For example, while it is thought that bioluminescence allows bacteria to be ingested by zooplankton or fish, providing them with favourable conditions for growth and dispersal, the luminous flashes emitted by dinoflagellates may have evolved as an anti-predation system against copepods. In this short review, we re-examine this paradigm in light of recent findings in microorganism photoreception, signal integration and complex behaviours. Numerous studies show that on the one hand, bacteria and protists, whether autotrophs or heterotrophs, possess a variety of photoreceptors capable of perceiving and integrating light stimuli of different wavelengths. Single-cell light-perception produces responses ranging from phototaxis to more complex behaviours. On the other hand, there is growing evidence that unicellular prokaryotes and eukaryotes can perform complex tasks ranging from habituation and decision-making to associative learning, despite lacking a nervous system. Here, we focus our analysis on two taxa, bacteria and dinoflagellates, whose bioluminescence is well studied. We propose the hypothesis that similar to visual animals, the interplay between light-emission and reception could play multiple roles in intra- and interspecific communication and participate in complex behaviour in the unicellular world.
Collapse
|
6
|
The Seasonal Microbial Ecology of Plankton and Plankton-Associated Vibrio parahaemolyticus in the Northeast United States. Appl Environ Microbiol 2021; 87:e0297320. [PMID: 33990304 PMCID: PMC8276809 DOI: 10.1128/aem.02973-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbial ecology studies have proven to be important resources for improving infectious disease response and outbreak prevention. Vibrio parahaemolyticus is an ongoing source of shellfish-borne food illness in the Northeast United States, and there is keen interest in understanding the environmental conditions that coincide with V. parahaemolyticus disease risk, in order to aid harvest management and prevent further illness. Zooplankton and chitinous phytoplankton are associated with V. parahaemolyticus dynamics elsewhere; however, this relationship is undetermined for the Great Bay estuary (GBE), an important emerging shellfish growing region in the Northeast United States. A comprehensive evaluation of the microbial ecology of V. parahaemolyticus associated with plankton was conducted in the GBE using 3 years of data regarding plankton community, nutrient concentration, water quality, and V. parahaemolyticus concentration in plankton. The concentrations of V. parahaemolyticus associated with plankton were highly seasonal, and the highest concentrations of V. parahaemolyticus cultured from zooplankton occurred approximately 1 month before the highest concentrations of V. parahaemolyticus from phytoplankton. The two V. parahaemolyticus peaks corresponded with different water quality variables and a few highly seasonal plankton taxa. Importantly, V. parahaemolyticus concentrations and plankton community dynamics were poorly associated with nutrient concentrations and chlorophyll a, commonly applied proxy variables for assessing ecological health risks and human health risks from harmful plankton and V. parahaemolyticus elsewhere. Together, these statistical associations (or lack thereof) provide valuable insights to characterize the plankton-V. parahaemolyticus dynamic and inform approaches for understanding the potential contribution of plankton to human health risks from V. parahaemolyticus for the Northeast United States. IMPORTANCE The Vibrio-plankton interaction is a focal relationship in Vibrio disease research; however, little is known about this dynamic in the Northeast United States, where V. parahaemolyticus is an established public health issue. We integrated phototactic plankton separation with seasonality analysis to determine the dynamics of the plankton community, water quality, and V. parahaemolyticus concentrations. Distinct bimodal peaks in the seasonal timing of V. parahaemolyticus abundance from phyto- versus zooplankton and differing associations with water quality variables and plankton taxa indicate that monitoring and forecasting approaches should consider the source of exposure when designing predictive methods for V. parahaemolyticus. Helicotheca tamensis has not been previously reported in the GBE. Its detection during this study provides evidence of the changes occurring in the ecology of regional estuaries and potential mechanisms for changes in V. parahaemolyticus populations. The Vibrio monitoring approaches can be translated to aid other areas facing similar public health challenges.
Collapse
|
7
|
Grimes DJ. The Vibrios: Scavengers, Symbionts, and Pathogens from the Sea. MICROBIAL ECOLOGY 2020; 80:501-506. [PMID: 32440699 DOI: 10.1007/s00248-020-01524-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Bacteria belonging to the genus Vibrio are major carbon cycle drivers in marine and estuarine environments. As is the case for most carbon cycle participants, the vibrios metabolize degradable compounds such as sugars and amino acids; they can also degrade some more recalcitrant compounds including hydrocarbons and lignins. Several vibrios are symbionts and even fewer are pathogenic for animals, including humans and marine animals and plants. This paper reviews Vibrio ecology, metabolism, and survival, and it also discusses select vibrios-V. alginolyticus, V. cholerae, V. coralliilyticus, V. cortegadensis, V. fischeri, V. harveyi, V. harveyi var. carahariae, V. ordalii, V. parahaemolyticus, and V. vulnificus.
Collapse
Affiliation(s)
- D Jay Grimes
- Department of Coastal Sciences, The University of Southern Mississippi, 703 East Beach Drive, Ocean Springs, MS, 39564, USA.
| |
Collapse
|
8
|
Baker‐Austin C, Trinanes J, Martinez‐Urtaza J. The new tools revolutionizing
Vibrio
science. Environ Microbiol 2020; 22:4096-4100. [DOI: 10.1111/1462-2920.15083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/27/2020] [Accepted: 05/13/2020] [Indexed: 01/26/2023]
Affiliation(s)
- Craig Baker‐Austin
- Centre for Environment, Fisheries and Aquaculture (CEFAS) Weymouth, Dorset DT4 8UB UK
| | - Joaquin Trinanes
- CRETUS, University of Santiago de Compostela, Campus Universitario Sur Santiago de Compostela 15782 Spain
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration 4301 Rickenbacker Causeway, Miami Florida 33149 USA
- Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine and Atmospheric Science, University of Miami 4600 Rickenbacker Causeway, Miami Florida 33149 USA
| | - Jaime Martinez‐Urtaza
- Centre for Environment, Fisheries and Aquaculture (CEFAS) Weymouth, Dorset DT4 8UB UK
- Department of Genetics and Microbiology, Facultat de Biociències ‐ Edifici C Campus Universitat Autònoma de Barcelona (UAB) 08193 Bellaterra, Barcelona Spain
| |
Collapse
|
9
|
Vannier T, Hingamp P, Turrel F, Tanet L, Lescot M, Timsit Y. Diversity and evolution of bacterial bioluminescence genes in the global ocean. NAR Genom Bioinform 2020; 2:lqaa018. [PMID: 33575578 PMCID: PMC7671414 DOI: 10.1093/nargab/lqaa018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/14/2020] [Accepted: 03/06/2020] [Indexed: 12/19/2022] Open
Abstract
Although bioluminescent bacteria are the most abundant and widely distributed of all light-emitting organisms, the biological role and evolutionary history of bacterial luminescence are still shrouded in mystery. Bioluminescence has so far been observed in the genomes of three families of Gammaproteobacteria in the form of canonical lux operons that adopt the CDAB(F)E(G) gene order. LuxA and luxB encode the two subunits of bacterial luciferase responsible for light-emission. Our deep exploration of public marine environmental databases considerably expands this view by providing a catalog of new lux homolog sequences, including 401 previously unknown luciferase-related genes. It also reveals a broader diversity of the lux operon organization, which we observed in previously undescribed configurations such as CEDA, CAED and AxxCE. This expanded operon diversity provides clues for deciphering lux operon evolution and propagation within the bacterial domain. Leveraging quantitative tracking of marine bacterial genes afforded by planetary scale metagenomic sampling, our study also reveals that the novel lux genes and operons described herein are more abundant in the global ocean than the canonical CDAB(F)E(G) operon.
Collapse
Affiliation(s)
- Thomas Vannier
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM110, 13288 Marseille, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 rue Michel-Ange, 75016 Paris, France
| | - Pascal Hingamp
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM110, 13288 Marseille, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 rue Michel-Ange, 75016 Paris, France
| | - Floriane Turrel
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM110, 13288 Marseille, France
| | - Lisa Tanet
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM110, 13288 Marseille, France
| | - Magali Lescot
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM110, 13288 Marseille, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 rue Michel-Ange, 75016 Paris, France
| | - Youri Timsit
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM110, 13288 Marseille, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 rue Michel-Ange, 75016 Paris, France
| |
Collapse
|
10
|
Environmental Reservoirs of Vibrio cholerae: Challenges and Opportunities for Ocean-Color Remote Sensing. REMOTE SENSING 2019. [DOI: 10.3390/rs11232763] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The World Health Organization has estimated the burden of the on-going pandemic of cholera at 1.3 to 4 million cases per year worldwide in 2016, and a doubling of case-fatality-rate to 1.8% in 2016 from 0.8% in 2015. The disease cholera is caused by the bacterium Vibrio cholerae that can be found in environmental reservoirs, living either in free planktonic form or in association with host organisms, non-living particulate matter or in the sediment, and participating in various biogeochemical cycles. An increasing number of epidemiological studies are using land- and water-based remote-sensing observations for monitoring, surveillance, or risk mapping of Vibrio pathogens and cholera outbreaks. Although the Vibrio pathogens cannot be sensed directly by satellite sensors, remotely-sensed data can be used to infer their presence. Here, we review the use of ocean-color remote-sensing data, in conjunction with information on the ecology of the pathogen, to map its distribution and forecast risk of disease occurrence. Finally, we assess how satellite-based information on cholera may help support the Sustainable Development Goals and targets on Health (Goal 3), Water Quality (Goal 6), Climate (Goal 13), and Life Below Water (Goal 14).
Collapse
|
11
|
Hartwick MA, Urquhart EA, Whistler CA, Cooper VS, Naumova EN, Jones SH. Forecasting Seasonal Vibrio parahaemolyticus Concentrations in New England Shellfish. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16224341. [PMID: 31703312 PMCID: PMC6888421 DOI: 10.3390/ijerph16224341] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 11/16/2022]
Abstract
Seafood-borne Vibrio parahaemolyticus illness is a global public health issue facing resource managers and the seafood industry. The recent increase in shellfish-borne illnesses in the Northeast United States has resulted in the application of intensive management practices based on a limited understanding of when and where risks are present. We aim to determine the contribution of factors that affect V. parahaemolyticus concentrations in oysters (Crassostrea virginica) using ten years of surveillance data for environmental and climate conditions in the Great Bay Estuary of New Hampshire from 2007 to 2016. A time series analysis was applied to analyze V. parahaemolyticus concentrations and local environmental predictors and develop predictive models. Whereas many environmental variables correlated with V. parahaemolyticus concentrations, only a few retained significance in capturing trends, seasonality and data variability. The optimal predictive model contained water temperature and pH, photoperiod, and the calendar day of study. The model enabled relatively accurate seasonality-based prediction of V. parahaemolyticus concentrations for 2014–2016 based on the 2007–2013 dataset and captured the increasing trend in extreme values of V. parahaemolyticus concentrations. The developed method enables the informative tracking of V. parahaemolyticus concentrations in coastal ecosystems and presents a useful platform for developing area-specific risk forecasting models.
Collapse
Affiliation(s)
- Meghan A. Hartwick
- Northeast Center for Vibrio Disease and Ecology, University of New Hampshire, Durham, NH 03824, USA; (M.A.H.); (E.A.U.); (C.A.W.)
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Erin A. Urquhart
- Northeast Center for Vibrio Disease and Ecology, University of New Hampshire, Durham, NH 03824, USA; (M.A.H.); (E.A.U.); (C.A.W.)
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH 03824, USA
| | - Cheryl A. Whistler
- Northeast Center for Vibrio Disease and Ecology, University of New Hampshire, Durham, NH 03824, USA; (M.A.H.); (E.A.U.); (C.A.W.)
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Vaughn S. Cooper
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA;
| | - Elena N. Naumova
- Division of Nutrition Data Sciences, Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA;
| | - Stephen H. Jones
- Northeast Center for Vibrio Disease and Ecology, University of New Hampshire, Durham, NH 03824, USA; (M.A.H.); (E.A.U.); (C.A.W.)
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH 03824, USA
- Correspondence: ; Tel.: +1-(603)-862-5124
| |
Collapse
|
12
|
Dietrich D, Dekova R, Davy S, Fahrni G, Geissbühler A. Applications of Space Technologies to Global Health: Scoping Review. J Med Internet Res 2018; 20:e230. [PMID: 29950289 PMCID: PMC6041558 DOI: 10.2196/jmir.9458] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/21/2018] [Accepted: 04/22/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Space technology has an impact on many domains of activity on earth, including in the field of global health. With the recent adoption of the United Nations' Sustainable Development Goals that highlight the need for strengthening partnerships in different domains, it is useful to better characterize the relationship between space technology and global health. OBJECTIVE The aim of this study was to identify the applications of space technologies to global health, the key stakeholders in the field, as well as gaps and challenges. METHODS We used a scoping review methodology, including a literature review and the involvement of stakeholders, via a brief self-administered, open-response questionnaire. A distinct search on several search engines was conducted for each of the four key technological domains that were previously identified by the UN Office for Outer Space Affairs' Expert Group on Space and Global Health (Domain A: remote sensing; Domain B: global navigation satellite systems; Domain C: satellite communication; and Domain D: human space flight). Themes in which space technologies are of benefit to global health were extracted. Key stakeholders, as well as gaps, challenges, and perspectives were identified. RESULTS A total of 222 sources were included for Domain A, 82 sources for Domain B, 144 sources for Domain C, and 31 sources for Domain D. A total of 3 questionnaires out of 16 sent were answered. Global navigation satellite systems and geographic information systems are used for the study and forecasting of communicable and noncommunicable diseases; satellite communication and global navigation satellite systems for disaster response; satellite communication for telemedicine and tele-education; and global navigation satellite systems for autonomy improvement, access to health care, as well as for safe and efficient transportation. Various health research and technologies developed for inhabited space flights have been adapted for terrestrial use. CONCLUSIONS Although numerous examples of space technology applications to global health exist, improved awareness, training, and collaboration of the research community is needed.
Collapse
Affiliation(s)
- Damien Dietrich
- Hopitaux Universitaires de Genève, eHealth and Telemedicine Division, Geneva, Switzerland
| | - Ralitza Dekova
- Hopitaux Universitaires de Genève, eHealth and Telemedicine Division, Geneva, Switzerland
| | - Stephan Davy
- Hopitaux Universitaires de Genève, eHealth and Telemedicine Division, Geneva, Switzerland
| | - Guillaume Fahrni
- Hopitaux Universitaires de Genève, eHealth and Telemedicine Division, Geneva, Switzerland
| | - Antoine Geissbühler
- Hopitaux Universitaires de Genève, eHealth and Telemedicine Division, Geneva, Switzerland
| |
Collapse
|
13
|
Turner MC, Nieuwenhuijsen M, Anderson K, Balshaw D, Cui Y, Dunton G, Hoppin JA, Koutrakis P, Jerrett M. Assessing the Exposome with External Measures: Commentary on the State of the Science and Research Recommendations. Annu Rev Public Health 2017; 38:215-239. [PMID: 28384083 PMCID: PMC7161939 DOI: 10.1146/annurev-publhealth-082516-012802] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The exposome comprises all environmental exposures that a person experiences from conception throughout the life course. Here we review the state of the science for assessing external exposures within the exposome. This article reviews (a) categories of exposures that can be assessed externally, (b) the current state of the science in external exposure assessment, (c) current tools available for external exposure assessment, and (d) priority research needs. We describe major scientific and technological advances that inform external assessment of the exposome, including geographic information systems; remote sensing; global positioning system and geolocation technologies; portable and personal sensing, including smartphone-based sensors and assessments; and self-reported questionnaire assessments, which increasingly rely on Internet-based platforms. We also discuss priority research needs related to methodological and technological improvement, data analysis and interpretation, data sharing, and other practical considerations, including improved assessment of exposure variability as well as exposure in multiple, critical life stages.
Collapse
Affiliation(s)
- Michelle C Turner
- Barcelona Institute for Global Health (ISGlobal), Barcelona 08003, Spain; , .,Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid 28029, Spain.,McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Ontario K1G 3Z7, Canada
| | - Mark Nieuwenhuijsen
- Barcelona Institute for Global Health (ISGlobal), Barcelona 08003, Spain; , .,Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid 28029, Spain
| | - Kim Anderson
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331;
| | - David Balshaw
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709; ,
| | - Yuxia Cui
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709; ,
| | - Genevieve Dunton
- Department of Preventive Medicine and Department of Psychology, University of Southern California, Los Angeles, California 90033;
| | - Jane A Hoppin
- Center for Human Health and the Environment, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695;
| | - Petros Koutrakis
- Department of Environmental Health, Harvard University, Boston, Massachusetts 02115;
| | - Michael Jerrett
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, California 94704; .,Department of Environmental Health Science, Fielding School of Public Health, University of California, Los Angeles, California 90095-1772;
| |
Collapse
|
14
|
Greenfield DI, Gooch Moore J, Stewart JR, Hilborn ED, George BJ, Li Q, Dickerson J, Keppler CK, Sandifer PA. Temporal and Environmental Factors Driving Vibrio Vulnificus and V. Parahaemolyticus Populations and Their Associations With Harmful Algal Blooms in South Carolina Detention Ponds and Receiving Tidal Creeks. GEOHEALTH 2017; 1:306-317. [PMID: 32158995 PMCID: PMC7007149 DOI: 10.1002/2017gh000094] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/27/2017] [Accepted: 10/27/2017] [Indexed: 05/09/2023]
Abstract
Incidences of harmful algal blooms (HABs) and Vibrio infections have increased over recent decades. Numerous studies have tried to identify environmental factors driving HABs and pathogenic Vibrio populations separately. Few have considered the two simultaneously, though emerging evidence suggests that algal blooms enhance Vibrio growth and survival. This study examined various physical, nutrient, and temporal factors associated with incidences of HABs, V. vulnificus, and V. parahaemolyticus in South Carolina coastal stormwater detention ponds, managed systems where HABs often proliferate, and their receiving tidal creek waters. Five blooms occurred during the study (2008-2009): two during relatively warmer months (an August 2008 cyanobacteria bloom and a November 2008 dinoflagellate bloom) followed by increases in both Vibrio species and V. parahaemolyticus, respectively, and three during cooler months (December 2008 through February 2009) caused by dinoflagellates and euglenophytes that were not associated with marked changes in Vibrio abundances. Vibrio concentrations were positively and significantly associated with temperature and dissolved organic matter, dinoflagellate blooms, negatively and significantly associated with suspended solids, but not significantly correlated with chlorophyll or nitrogen. While more research involving longer time series is needed to increase robustness, findings herein suggest that certain HAB species may augment Vibrio occurrences during warmer months.
Collapse
Affiliation(s)
- D. I. Greenfield
- Now at Advanced Science Research CenterCity University of New YorkNew York CityNYUSA
- Belle W. Baruch Institute for Marine and Coastal SciencesUniversity of South CarolinaCharlestonSCUSA
- Marine Resources Research InstituteSouth Carolina Department of Natural ResourcesCharlestonSCUSA
| | | | - J. R. Stewart
- NOAA, National Ocean ServiceCharlestonSCUSA
- Department of Environmental Sciences and Engineering, Gillings School of Global Public HealthUniversity of North CarolinaChapel HillNCUSA
| | - E. D. Hilborn
- National Health and Environmental Effects LaboratoryOffice of Research and Development, United States Environmental Protection AgencyResearch Triangle ParkNCUSA
| | - B. J. George
- National Health and Environmental Effects LaboratoryOffice of Research and Development, United States Environmental Protection AgencyResearch Triangle ParkNCUSA
| | - Q. Li
- Biostatistics and Bioinformatics Research CenterSamuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical CenterLos AngelesCAUSA
| | | | - C. K. Keppler
- Marine Resources Research InstituteSouth Carolina Department of Natural ResourcesCharlestonSCUSA
| | - P. A. Sandifer
- NOAA, National Ocean ServiceCharlestonSCUSA
- Now at School of Sciences and MathematicsCollege of CharlestonCharlestonSCUSA
| |
Collapse
|