1
|
do Carmo KB, Dias R, de Quadros PD, Berber GCM, Bourscheidt MLB, de Farias Neto AL, Dos Santos Weber OL, Triplett EW, Ferreira A. Assessment of soil bacterial communities in integrated crop production systems within the Amazon Biome, Brazil: a comparative study. Braz J Microbiol 2024; 55:2815-2825. [PMID: 38696039 PMCID: PMC11405747 DOI: 10.1007/s42770-024-01352-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/19/2024] [Indexed: 05/18/2024] Open
Abstract
Integrated production systems have been proposed as alternative to sustainable land use. However, information regarding bacterial community structure and diversity in soils of integrated Crop-Livestock-Forest systems remains unknown. We hypothesize that these integrated production systems, with their ecological intensification, can modulate the soil bacterial communities. However, Yet, it remains unclear whether the modulation of bacterial biodiversity is solely attributable to the complexity of root exudates or if seasonal climatic events also play a contributory role. The objective of this study is to evaluate the impact of monoculture and integrated production systems on bacterial soil communities in the Amazon Biome, Brazil. Three monoculture systems, each with a single crop over time and space (Eucalyptus (E), Crop Soybean (C), Pasture (P)), and three integrated systems with multiple crops over time and space (ECI, PI, ECPI) were evaluated, along with a Native forest serving as a reference area. Soil samples were collected at a depth of 0-10 cm during both the wet and dry seasons. Bacterial composition was determined using Illumina high-throughput sequencing of the 16 S rRNA gene. The sequencing results revealed the highest abundance classified under the phyla Firmicutes, Actinobacteria, and Proteobacteria. The Firmicutes correlated with the Crop in the rainy period and in the dry only ECPI and Forest. For five classes corresponding to the three phyla, the Crop stood out with the greatest fluctuations in their relative abundance compared to other production systems. In cluster analysis by genus during the rainy season, only Forest and ECPI showed no similarity with the other production systems. However, in the dry season, both were grouped with Forest and EPI. Therefore, the bacterial community in integrated systems proved to be sensitive to management practices, even with only two years of use. ECPI demonstrated the greatest similarity in bacterial structure to the Native forest, despite just two years of experimental deployment. Crop exhibited fluctuations in relative abundance in both seasons, indicating an unsustainable production system with changes in soil microbial composition. These findings support our hypothesis that integrated production systems and their ecological intensification, as exemplified by ECPI, can indeed modulate soil bacterial communities.
Collapse
Affiliation(s)
- Kellen Banhos do Carmo
- Programa de pós graduação em Agricultura Tropical, Universidade Federal de Mato Grosso (UFMT), Campus Central, Cuiabá, MT, 78060-900, Brazil
| | - Raquel Dias
- Microbiology & Cell Science Department, University of Florida (UF), Gainesville, FL, 110-700, USA
| | - Patricia Dorr de Quadros
- Departamento de Solos e Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90410-000, Brazil
| | - Gilcele Campos Martin Berber
- Programa de pós graduação em Ciências Ambientais, Universidade Federal de Mato Grosso (UFMT), Campus Sinop, Sinop, MT, 78550-000, Brazil
| | - Maira Laís Both Bourscheidt
- Curso de graduação em Zootecnia, Universidade Federal de Mato Grosso (UFMT), Campus Sinop, Sinop, MT, 78550-000, Brazil
| | - Austeclinio Lopes de Farias Neto
- Embrapa Agrossilvipastoril - Empresa Brasileira de Pesquisa Agropecuária; endereço atual Embrapa Trigo, Passo Fundo, RS, 99050-970, Brazil
| | - Oscarlina Lucia Dos Santos Weber
- Programa de pós graduação em Agricultura Tropical, Universidade Federal de Mato Grosso (UFMT), Campus Central, Cuiabá, MT, 78060-900, Brazil
| | - Eric W Triplett
- Microbiology & Cell Science Department, University of Florida (UF), Gainesville, FL, 110-700, USA
| | - Anderson Ferreira
- Programa de pós graduação em Agricultura Tropical, Universidade Federal de Mato Grosso (UFMT), Campus Central, Cuiabá, MT, 78060-900, Brazil.
| |
Collapse
|
2
|
Rui J, Zhao Y, Cong N, Wang F, Li C, Liu X, Hu J, Ling N, Jing X. Elevational distribution and seasonal dynamics of alpine soil prokaryotic communities. Front Microbiol 2023; 14:1280011. [PMID: 37808282 PMCID: PMC10557256 DOI: 10.3389/fmicb.2023.1280011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
The alpine grassland ecosystem is a biodiversity hotspot of plants on the Qinghai-Tibetan Plateau, where rapid climate change is altering the patterns of plant biodiversity along elevational and seasonal gradients of environments. However, how belowground microbial biodiversity changes along elevational gradient during the growing season is not well understood yet. Here, we investigated the elevational distribution of soil prokaryotic communities by using 16S rRNA amplicon sequencing along an elevational gradient between 3,200 and 4,200 m, and a seasonal gradient between June and September in the Qinghai-Tibetan alpine grasslands. First, we found soil prokaryotic diversity and community composition significantly shifted along the elevational gradient, mainly driven by soil temperature and moisture. Species richness did not show consistent elevational trends, while those of evenness declined with elevation. Copiotrophs and symbiotic diazotrophs declined with elevation, while oligotrophs and AOB increased, affected by temperature. Anaerobic or facultatively anaerobic bacteria and AOA were hump-shaped, mainly influenced by moisture. Second, seasonal patterns of community composition were mainly driven by aboveground biomass, precipitation, and soil temperature. The seasonal dynamics of community composition indicated that soil prokaryotic community, particularly Actinobacteria, was sensitive to short-term climate change, such as the monthly precipitation variation. At last, dispersal limitation consistently dominated the assembly process of soil prokaryotic communities along both elevational and seasonal gradients, especially for those of rare species, while the deterministic process of abundant species was relatively higher at drier sites and in drier July. The balance between deterministic and stochastic processes in abundant subcommunities might be strongly influenced by water conditions (precipitation/moisture). Our findings suggest that both elevation and season can alter the patterns of soil prokaryotic biodiversity in alpine grassland ecosystem of Qinghai-Tibetan Plateau, which is a biodiversity hotspot and is experiencing rapid climate change. This work provides new insights into the response of soil prokaryotic communities to changes in elevation and season, and helps us understand the temporal and spatial variations in such climate change-sensitive regions.
Collapse
Affiliation(s)
- Junpeng Rui
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
- Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yuwei Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
- Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Nan Cong
- Lhasa Plateau Ecosystem Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Fuxin Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Chao Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Xiang Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Jingjing Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Ning Ling
- Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xin Jing
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
He D, Guo Z, Shen W, Ren L, Sun D, Yao Q, Zhu H. Fungal Communities Are More Sensitive to the Simulated Environmental Changes than Bacterial Communities in a Subtropical Forest: the Single and Interactive Effects of Nitrogen Addition and Precipitation Seasonality Change. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02092-8. [PMID: 35927588 DOI: 10.1007/s00248-022-02092-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Increased nitrogen deposition (N factor) and changes in precipitation patterns (W factor) can greatly impact soil microbial communities in tropical/subtropical forests. Although knowledge about the effects of a single factor on soil microbial communities is growing rapidly, little is understood about the interactive effects of these two environmental change factors. In this study, we investigated the responses of soil bacterial and fungal communities to the short-term simulated environmental changes (nitrogen addition, precipitation seasonality change, and their combination) in a subtropical forest in South China. The interaction between N and W factors was detected significant for affecting some soil physicochemical properties (such as pH, soil water, and NO3- contents). Fungi were more susceptible to treatment than bacteria in a variety of community traits (alpha, beta diversity, and network topological features). The N and W factors act antagonistically to affect fungal alpha diversity, and the interaction effect was detected significant for the dry season. The topological features of the meta-community (containing both bacteria and fungi) network overrode the alpha and beta diversity of bacterial or fungal communities in explaining the variation of soil enzyme activities. The associations between Ascomycota fungi and Gammaproteobacteria or Alphaproteobacteria might be important in mediating the inter-kingdom interactions. In summary, our results suggested that fungal communities were more sensitive to N and W factors (and their interaction) than bacterial communities, and the treatments' effects were more prominent in the dry season, which may have great consequences in soil processes and ecosystem functions in subtropical forests.
Collapse
Affiliation(s)
- Dan He
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Xianlie Road 100#, Guangzhou, 510070, China
| | - Zhiming Guo
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Weijun Shen
- College of Forestry, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Daxue Road 100#, Nanning, 530004, China.
| | - Lijuan Ren
- Department of Ecology, Institute of Hydrobiology, Jinan University, Guangzhou, 510632, China
| | - Dan Sun
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Qing Yao
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Honghui Zhu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Xianlie Road 100#, Guangzhou, 510070, China.
| |
Collapse
|
4
|
Gao Y, Chen Y, Luo Y, Liu J, Tian P, Nan Z, Zhou Q. The microbiota diversity of Festuca sinensis seeds in Qinghai-Tibet Plateau and their relationship with environments. Front Microbiol 2022; 13:956489. [PMID: 35992719 PMCID: PMC9382023 DOI: 10.3389/fmicb.2022.956489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/01/2022] [Indexed: 11/15/2022] Open
Abstract
A total of 14 Festuca sinensis seed lots were collected from different geographical locations on the Qinghai-Tibet Plateau to study the seed microbiota and determine the abiotic (temperature, precipitation, and elevation) and biotic (Epichloë sinensis infection rate) factors likely to shape the seed microbiome. The 14 seed lots had different bacterial and fungal structures and significantly different diversities (p < 0.05). The α-diversity indices of the bacteria were significantly correlated with precipitation (p < 0.05), whereas those of the fungi were significantly correlated with temperature (p < 0.05). Microbiota analysis showed that Proteobacteria, Cyanobacteria, and Bacteroidetes were the most abundant bacteria at the phylum level in the seeds, and Ascomycota and Basidiomycota were the most abundant fungi. β-diversity analysis suggested large differences in the microbial communities of each sample. Redundancy analysis showed that temperature and precipitation were the main environmental factors that drive variations in the microbial community, at the medium-high elevation (3,000–4,500 m), the impact of temperature and precipitation on microbial community is different, and the other elevations that effect on microbial community were basically identical. Spearman's correlation analysis showed that the relative abundances of the most abundant bacterial phyla were significantly correlated with temperature (p < 0.05), whereas those of the most abundant fungal phyla were significantly correlated with precipitation (p < 0.05). E. sinensis infection rates were significantly correlated with elevation and temperature (p < 0.05). These results suggest that temperature and precipitation are the key factors driving the microbial community, that temperature and elevation also had a great influence on the E. sinensis infection rate, and that environmental factors (temperature and elevation) may further affect the microbial community by regulating the E. sinensis infection rate.
Collapse
Affiliation(s)
- Yue Gao
- State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Youjun Chen
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Yang Luo
- State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Junying Liu
- State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Pei Tian
- State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
- *Correspondence: Pei Tian
| | - Zhibiao Nan
- State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Qingping Zhou
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| |
Collapse
|
5
|
Gao C, Xu L, Montoya L, Madera M, Hollingsworth J, Chen L, Purdom E, Singan V, Vogel J, Hutmacher RB, Dahlberg JA, Coleman-Derr D, Lemaux PG, Taylor JW. Co-occurrence networks reveal more complexity than community composition in resistance and resilience of microbial communities. Nat Commun 2022; 13:3867. [PMID: 35790741 PMCID: PMC9256619 DOI: 10.1038/s41467-022-31343-y] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/14/2022] [Indexed: 11/09/2022] Open
Abstract
Plant response to drought stress involves fungi and bacteria that live on and in plants and in the rhizosphere, yet the stability of these myco- and micro-biomes remains poorly understood. We investigate the resistance and resilience of fungi and bacteria to drought in an agricultural system using both community composition and microbial associations. Here we show that tests of the fundamental hypotheses that fungi, as compared to bacteria, are (i) more resistant to drought stress but (ii) less resilient when rewetting relieves the stress, found robust support at the level of community composition. Results were more complex using all-correlations and co-occurrence networks. In general, drought disrupts microbial networks based on significant positive correlations among bacteria, among fungi, and between bacteria and fungi. Surprisingly, co-occurrence networks among functional guilds of rhizosphere fungi and leaf bacteria were strengthened by drought, and the same was seen for networks involving arbuscular mycorrhizal fungi in the rhizosphere. We also found support for the stress gradient hypothesis because drought increased the relative frequency of positive correlations.
Collapse
Affiliation(s)
- Cheng Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA.
| | - Ling Xu
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Liliam Montoya
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Mary Madera
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Joy Hollingsworth
- University of California Kearney Agricultural Research & Extension Center, Parlier, CA, 93648, USA
| | - Liang Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Elizabeth Purdom
- Department of Statistics, University of California, Berkeley, CA, 94720, USA
| | - Vasanth Singan
- Department of Energy Joint Genome Institute, 1 Cyclotron Rd., Berkeley, CA, 94720, USA
| | - John Vogel
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Department of Energy Joint Genome Institute, 1 Cyclotron Rd., Berkeley, CA, 94720, USA
| | - Robert B Hutmacher
- UC Davis Department of Plant Sciences, University of California West Side Research & Extension Center, Five Points, CA, 93624, US
| | - Jeffery A Dahlberg
- University of California Kearney Agricultural Research & Extension Center, Parlier, CA, 93648, USA
| | - Devin Coleman-Derr
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Plant Gene Expression Center, US Department of Agriculture-Agricultural Research Service, Albany, CA, 94710, USA
| | - Peggy G Lemaux
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - John W Taylor
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
6
|
Soil Bacterial and Fungal Community Responses to Throughfall Reduction in a Eucalyptus Plantation in Southern China. FORESTS 2021. [DOI: 10.3390/f13010037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In subtropical plantations in southern China, how soil microbial communities respond to climate change-induced drought is poorly understood. A field experiment was conducted in a subtropical Eucalyptus plantation to determine the impacts of 50% of throughfall reduction (TR) on soil microbial community composition, function, and soil physicochemical properties. Results showed that TR reduced soil water content (SWC) and soil available phosphorus (AP) content. TR significantly altered 196 bacterial operational taxonomic units (OTUs), most of them belonging to Acidobacteria, Actinobacteria, and Proteobacteria, while there were fewer changes in fungal OTUs. At the phylum level, TR increased the relative abundance of Acidobacteria at 0–20 cm soil depth by 37.18%, but failed to influence the relative abundance of the fungal phylum. Notably, TR did not alter the alpha diversity of the bacterial and fungal communities. The redundancy analysis showed that the bacterial communities were significantly correlated with SWC, and fungal communities were significantly correlated with AP content. According to predictions of bacterial and fungal community functions using PICRUSt2 and FUNGuild platforms, TR had different effects on both bacterial and fungal communities. Overall, SWC and AP decreased during TR, resulting in greater changes in soil bacterial community structure, but did not dramatically change soil fungal community structure.
Collapse
|
7
|
Bei Q, Moser G, Müller C, Liesack W. Seasonality affects function and complexity but not diversity of the rhizosphere microbiome in European temperate grassland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147036. [PMID: 33895508 DOI: 10.1016/j.scitotenv.2021.147036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Knowledge on how grassland microbiota responds on gene expression level to winter-summer change of seasons is poor. Here, we used a combination of quantitative PCR-based assays and metatranscriptomics to assess the impact of seasonality on the rhizospheric microbiota in temperate European grassland. Bacteria dominated, being at least one order of magnitude more abundant than fungi. Despite a fivefold summer increase in bacterial community size, season had nearly no effect on microbiome diversity. It, however, had a marked impact on taxon-specific gene expression, with 668 genes significantly differing in relative transcript abundance between winter and summer samples. Acidobacteria, Bacteroidetes, Planctomycetes, and Proteobacteria showed a greater relative gene expression activity in winter, while mRNA of Actinobacteria and Fungi was, relative to other taxa, significantly enriched in summer. On functional level, mRNA involved in protein turnover (e.g., transcription and translation) and cell maintenance (e.g., chaperones that protect against cell freezing damage such as GroEL and Hsp20) were highly enriched in winter. By contrast, mRNA involved in central carbon and amino acid metabolisms had a greater abundance in summer. Among carbohydrate-active enzymes, transcripts of GH36 family (hemicellulases) were highly enriched in winter, while those encoding GH3 family (cellulases) showed increased abundance in summer. The seasonal differences in plant polymer breakdown were linked to a significantly greater microbial network complexity in winter than in summer. Conceptually, the winter-summer change in microbiome functioning can be well explained by a shift from stress-tolerator to high-yield life history strategy.
Collapse
Affiliation(s)
- Qicheng Bei
- Research Group Methanotrophic Bacteria, and Environmental Genomics/Transcriptomics Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany.
| | - Gerald Moser
- Department of Plant Ecology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
| | - Christoph Müller
- Department of Plant Ecology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany; School of Biology and Environmental Science, University College Dublin, Ireland
| | - Werner Liesack
- Research Group Methanotrophic Bacteria, and Environmental Genomics/Transcriptomics Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany.
| |
Collapse
|
8
|
Chen Y, Martinez A, Cleavenger S, Rudolph J, Barberán A. Changes in Soil Microbial Communities across an Urbanization Gradient: A Local-Scale Temporal Study in the Arid Southwestern USA. Microorganisms 2021; 9:microorganisms9071470. [PMID: 34361905 PMCID: PMC8305102 DOI: 10.3390/microorganisms9071470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 01/04/2023] Open
Abstract
Urban development is one of the leading causes of biodiversity change. Understanding how soil microorganisms respond to urbanization is particularly important because they are crucial for the provisioning of ecosystem functions and services. Here, we collected monthly soil samples over one year across three locations representing an urbanization gradient (low-moderate-high) in the arid Southwestern USA, and we characterized their microbial communities using marker gene sequencing. Our results showed that microbial richness and community composition exhibited nonsignificant changes over time regardless of the location. Soil fungal richness was lower in moderately and highly urbanized locations, but soil bacterial/archaeal richness was not significantly different among locations. Both bacteria/archaea and fungi exhibited significant differences in community composition across locations. After inferring potential functional groups, soils in the highly urbanized location had lower proportions of arbuscular mycorrhizal fungi and soil saprotrophic fungi but had higher proportions of bacterial taxa involved in aromatic compound degradation, human pathogens, and intracellular parasites. Furthermore, ammonia-oxidizing bacteria were more abundant in the highly urbanized location, but ammonia-oxidizing archaea were more abundant in lowly and moderately urbanized locations. Together, these results highlight the significant changes in belowground microbial communities across an urbanization gradient, and these changes might have important implications for aboveground–belowground interactions, nutrient cycling, and human health.
Collapse
|
9
|
Jiao P, Li Z, Yang L, He J, Chang X, Xiao H, Nie X, Tong D. Bacteria are more sensitive than fungi to moisture in eroded soil by natural grass vegetation restoration on the Loess Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143899. [PMID: 33310219 DOI: 10.1016/j.scitotenv.2020.143899] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Community composition and respiration rates of bacterial and fungal communities from grass-covered eroded soils of the Loess Plateau responded differently to constant and increasing soil moisture (SM) regimes. The soils were incubated with SM contents of 5%, 30%, and 45% and with wetting processes in the SM ranges from 5% to 30% (5-30%), from 5% to 30% to 45% (5-30-45%) and from 30% to 45% (30-45%); high-throughput sequencing and co-occurrence network analyses were applied to investigate the different responses of the bacterial and fungal communities to changed SM. Our results showed that bacteria were more sensitive than fungi to changes in SM. The dominant bacterial communities converted from Actinobacterial to Proteobacteria and Acidobacteria in 5-30-45% wetting procedure. Firmicutes preferred wet condition and exhibited slow resilience. However, no difference was observed for the Chloroflexi communities across any sample. The obvious difference in fungal composition was found between the wetting process of 5-30-45% and constant 45% SM. During the 5-30-45% procedure, the respiration rate was higher than that at 30-45% procedure after incubation for 24 days. The respiration rate in 5-30% procedure was lower than that of 5-30-45% process after incubation for 16-27 days. The larger effects on bacterial response than on fungi were verified in network analysis. Multiple stepwise regression analysis showed that 84.40% of the variation in bacterial richness and diversity as well as fungal diversity can be explained by changes in soil respiration rate in response to wetting procedure. Understanding the response of difference between bacterial and fungal community composition, phylum-levels networks and respiration rate to changes in SM is essential for the management of plant-soil-water relationship in the ecosystem after natural vegetation restoration on the Loess Plateau.
Collapse
Affiliation(s)
- Panpan Jiao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling 712100, China; University of Chinese Academy of Sciences, Beijing 100000, China
| | - Zhongwu Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling 712100, China; College of Resources and Environmental Sciences, Hunan Normal University, Changsha 410081, China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China.
| | - Lei Yang
- University of Chinese Academy of Sciences, Beijing 100000, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jijun He
- Base of the State Laboratory of Urban Environmental Processes and Digital Modeling, Key Laboratory of 3D Information Acquisition and Application, Ministry of Education, Capital Normal University, Beijing 100048, China.
| | - Xiaofeng Chang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling 712100, China
| | - Haibing Xiao
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaodong Nie
- College of Resources and Environmental Sciences, Hunan Normal University, Changsha 410081, China
| | - Di Tong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
10
|
Jongman M, Carmichael PC, Bill M. Technological Advances in Phytopathogen Detection and Metagenome Profiling Techniques. Curr Microbiol 2020; 77:675-681. [PMID: 31960092 DOI: 10.1007/s00284-020-01881-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 01/09/2020] [Indexed: 12/11/2022]
Abstract
The use of advanced molecular methods in plant pathology and applied microbiology has necessitated for more accurate, rapid detection and identification of plant pathogens. This is particularly significant given accelerated emergence of virulence that leads to increased prevalence of plant pathogens. Thus, the capacity to contain plant pathogens and ultimately disease progression is key to ensuring crop biosecurity and overall food security. Of recent, research on pathogens utilizes a holistic approach focusing on elucidating growth dynamics within the entire biome rather than studying individual or closely related isolates in unison. This has advanced knowledge and information of microbial ecosystem within natural environments in the twenty first century. Applied technological platforms used for rapid detection and profiling microbial biomes in this regard include digital PCR, pyrosequencing, Illumina, DNA microarray and barcoding, Ion torrent, and nanopore. These technologies have been applied in various fields including human health and medicine, marine and animal biology, crop production and water quality research, to mention but a few. Although much has been done and achieved through the development of several technologies, more accuracy is required to circumvent the shortfalls still experienced. This includes integrating existing methods with new applications such as viability PCRs and microbial viability testing. Hence, this review provides critical analysis of some widely used latest technologies in rapid detection and identification of plant pathogens, and profiling plant associated microbiomes that reveal growth dynamics and population diversity. The advantages and limitations of the technologies are also discussed.
Collapse
Affiliation(s)
| | - Patricia C Carmichael
- Agricultural Research and Specialists, Department of Agriculture, Malkerns, Swaziland
| | - Malick Bill
- Plant Health and Food Safety Research, Department of Plant and Soil Sciences, University of Pretoria, Pretoria, 0002, South Africa
| |
Collapse
|
11
|
Lüneberg K, Schneider D, Brinkmann N, Siebe C, Daniel R. Land Use Change and Water Quality Use for Irrigation Alters Drylands Soil Fungal Community in the Mezquital Valley, Mexico. Front Microbiol 2019; 10:1220. [PMID: 31258519 PMCID: PMC6587704 DOI: 10.3389/fmicb.2019.01220] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/15/2019] [Indexed: 12/15/2022] Open
Abstract
Soil fungal communities provide important ecosystem services, however, some soil borne representatives damage agricultural productivity. Composition under land-use change scenarios, especially in drylands, is rarely studied. Here, the soil fungal community composition and diversity of natural shrubland was analyzed and compared with agricultural systems irrigated with different water quality, namely rain, fresh water, dam-stored, and untreated wastewater. Superficial soil samples were collected during the dry and rainy seasons. Amplicon-based sequencing of the ITS2 region was performed on total DNA extractions and used the amplicon sequence variants to predict specific fungal trophic modes with FUNGuild. Additionally, we screened for potential pathogens of crops and humans and assessed potential risks. Fungal diversity and richness were highest in shrubland and least in the wastewater-irrigated soil. Soil moisture together with soil pH and exchangeable sodium were the strongest drivers of the fungal community. The abundance of saprophytic fungi remained constant among the land use systems, while symbiotic and pathogenic fungi of plants and animals had the lowest abundance in soil irrigated with untreated wastewater. We found lineage-specific adaptations to each land use system: fungal families associated to shrubland, rainfed and part of the freshwater were adapted to drought, hence sensitive to exchangeable sodium content and most of them to N and P content. Taxa associated to freshwater, dam wastewater and untreated wastewater irrigated systems show the opposite trend. Additionally, we identified potentially harmful human pathogens that might be a health risk for the population.
Collapse
Affiliation(s)
- Kathia Lüneberg
- Departamento de Ciencias Ambientales y del Suelo, Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Dominik Schneider
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Universität Göttingen, Göttingen, Germany
| | - Nicole Brinkmann
- Forest Botany and Tree Physiology, Büsgen-Institut, Universität Göttingen, Göttingen, Germany
| | - Christina Siebe
- Departamento de Ciencias Ambientales y del Suelo, Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Universität Göttingen, Göttingen, Germany
| |
Collapse
|
12
|
Schostag M, Priemé A, Jacquiod S, Russel J, Ekelund F, Jacobsen CS. Bacterial and protozoan dynamics upon thawing and freezing of an active layer permafrost soil. ISME JOURNAL 2019; 13:1345-1359. [PMID: 30692629 DOI: 10.1038/s41396-019-0351-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/17/2018] [Accepted: 12/23/2018] [Indexed: 11/09/2022]
Abstract
The active layer of soil overlaying permafrost in the Arctic is subjected to annual changes in temperature and soil chemistry, which we hypothesize to affect the overall soil microbial community. We investigated changes in soil microorganisms at different temperatures during warming and freezing of the active layer soil from Svalbard, Norway. Soil community data were obtained by direct shotgun sequencing of total extracted RNA. No changes in soil microbial communities were detected when warming from -10 to -2 °C or when freezing from -2 to -10 °C. In contrast, within a few days we observed changes when warming from -2 to +2 °C with a decrease in fungal rRNA and an increase in several OTUs belonging to Gemmatimonadetes, Bacteroidetes and Betaproteobacteria. Even more substantial changes occurred when incubating at 2 °C for 16 days, with declines in total fungal potential activity and decreases in oligotrophic members from Actinobacteria and Acidobacteria. Additionally, we detected an increase in transcriptome sequences of bacterial phyla Bacteriodetes, Firmicutes, Betaproteobacteria and Gammaproteobacteria-collectively presumed to be copiotrophic. Furthermore, we detected an increase in putative bacterivorous heterotrophic flagellates, likely due to predation upon the bacterial community via grazing. Although this grazing activity may explain relatively large changes in the bacterial community composition, no changes in total 16S rRNA gene copy number were observed and the total RNA level remained stable during the incubation. Together, these results are showing the first comprehensive ecological evaluation across prokaryotic and eukaryotic microbial communities on thawing and freezing of soil by application of the TotalRNA technique.
Collapse
Affiliation(s)
- Morten Schostag
- Department of Geosciences and Natural Resource Management, Center for Permafrost, University of Copenhagen, Copenhagen, Denmark.,Department of Biology, University of Copenhagen, Copenhagen, Denmark.,Geological Survey of Denmark and Greenland, Copenhagen, Denmark
| | - Anders Priemé
- Department of Geosciences and Natural Resource Management, Center for Permafrost, University of Copenhagen, Copenhagen, Denmark.,Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Samuel Jacquiod
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.,INRA Dijon, UMR1347 Agroécologie, Dijon, France
| | - Jakob Russel
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Flemming Ekelund
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Suhr Jacobsen
- Department of Geosciences and Natural Resource Management, Center for Permafrost, University of Copenhagen, Copenhagen, Denmark. .,Geological Survey of Denmark and Greenland, Copenhagen, Denmark. .,Department of Environmental Science, Aarhus University, Roskilde, Denmark.
| |
Collapse
|
13
|
Wu X, Xu H, Liu G, Zhao L, Mu C. Effects of permafrost collapse on soil bacterial communities in a wet meadow on the northern Qinghai-Tibetan Plateau. BMC Ecol 2018; 18:27. [PMID: 30134875 PMCID: PMC6103961 DOI: 10.1186/s12898-018-0183-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 08/15/2018] [Indexed: 11/10/2022] Open
Abstract
Background Permafrost degradation may develop thermokarst landforms, which substantially change physico–chemical characteristics in the soil as well as the soil carbon stock. However, little is known about changes of bacterial community among the microfeatures within thermokarst area. Results We investigated bacterial communities using the Illumina sequencing method and examined their relationships with soil parameters in a thermokarst feature on the northern Qinghai-Tibetan Plateau. We categorized the ground surface into three different micro-relief patches based on the type and extent of permafrost collapse (control, collapsing and subsided areas). Permafrost collapse significantly decreased the soil carbon density and moisture content in the upper 10 cm samples in the collapsing areas. The highest loading factors for the first principal component (PC) extracted from the soil parameters were soil carbon and nitrogen contents, while soil moisture content and C:N ratios were the highest loading factors for the second PC. The relative abundance of Acidobacteria decreased with depth. Bacterial diversity in subsided areas was higher than that in control areas. Conclusions Bacterial community structure was significantly affected by pH and depth. The relative abundance of Gemmatimonadetes and Firmicutes were significantly correlated with the first and second PCs extracted from multiple soil parameters, suggesting these phyla could be used as indicators for the soil parameters in the thermokarst terrain. Electronic supplementary material The online version of this article (10.1186/s12898-018-0183-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaodong Wu
- Cryosphere Research Station on the Qinghai-Tibetan Plateau, State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resource, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China.
| | - Haiyan Xu
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Guimin Liu
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Lin Zhao
- Cryosphere Research Station on the Qinghai-Tibetan Plateau, State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resource, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China
| | - Cuicui Mu
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
14
|
Koch BJ, McHugh TA, Hayer M, Schwartz E, Blazewicz SJ, Dijkstra P, Gestel N, Marks JC, Mau RL, Morrissey EM, Pett‐Ridge J, Hungate BA. Estimating taxon‐specific population dynamics in diverse microbial communities. Ecosphere 2018. [DOI: 10.1002/ecs2.2090] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Benjamin J. Koch
- Center for Ecosystem Science and Society Northern Arizona University Flagstaff Arizona 86011 USA
| | - Theresa A. McHugh
- Center for Ecosystem Science and Society Northern Arizona University Flagstaff Arizona 86011 USA
| | - Michaela Hayer
- Center for Ecosystem Science and Society Northern Arizona University Flagstaff Arizona 86011 USA
| | - Egbert Schwartz
- Center for Ecosystem Science and Society Northern Arizona University Flagstaff Arizona 86011 USA
- Department of Biological Sciences Northern Arizona University Flagstaff Arizona 86011 USA
| | - Steven J. Blazewicz
- Physical and Life Sciences Directorate Lawrence Livermore National Laboratory Livermore California 94550 USA
| | - Paul Dijkstra
- Center for Ecosystem Science and Society Northern Arizona University Flagstaff Arizona 86011 USA
- Department of Biological Sciences Northern Arizona University Flagstaff Arizona 86011 USA
| | - Natasja Gestel
- Center for Ecosystem Science and Society Northern Arizona University Flagstaff Arizona 86011 USA
| | - Jane C. Marks
- Center for Ecosystem Science and Society Northern Arizona University Flagstaff Arizona 86011 USA
- Department of Biological Sciences Northern Arizona University Flagstaff Arizona 86011 USA
| | - Rebecca L. Mau
- Center for Ecosystem Science and Society Northern Arizona University Flagstaff Arizona 86011 USA
| | - Ember M. Morrissey
- Division of Plant and Soil Sciences West Virginia University Morgantown West Virginia 26506 USA
| | - Jennifer Pett‐Ridge
- Physical and Life Sciences Directorate Lawrence Livermore National Laboratory Livermore California 94550 USA
| | - Bruce A. Hungate
- Center for Ecosystem Science and Society Northern Arizona University Flagstaff Arizona 86011 USA
- Department of Biological Sciences Northern Arizona University Flagstaff Arizona 86011 USA
| |
Collapse
|
15
|
McHugh TA, Compson Z, van Gestel N, Hayer M, Ballard L, Haverty M, Hines J, Irvine N, Krassner D, Lyons T, Musta EJ, Schiff M, Zint P, Schwartz E. Climate controls prokaryotic community composition in desert soils of the southwestern United States. FEMS Microbiol Ecol 2017; 93:4111145. [DOI: 10.1093/femsec/fix116] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 09/07/2017] [Indexed: 01/01/2023] Open
Affiliation(s)
- Theresa A. McHugh
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ 86011-5620, USA
- Department of Biological Sciences, Colorado Mesa University, Grand Junction, CO 81501, USA
| | - Zacchaeus Compson
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ 86011-5620, USA
- Canadian Rivers Institute, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Natasja van Gestel
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ 86011-5620, USA
- Texas Tech University Climate Science Center, Lubbock, TX 79409, USA
| | - Michaela Hayer
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ 86011-5620, USA
| | | | | | - Jeffrey Hines
- Northland Preparatory Academy, Flagstaff, AZ 86004, USA
| | - Nick Irvine
- Northland Preparatory Academy, Flagstaff, AZ 86004, USA
| | | | - Ted Lyons
- Coconino High School, Flagstaff, AZ 86004, USA
| | | | | | | | - Egbert Schwartz
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ 86011-5620, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011-5640, USA
| |
Collapse
|
16
|
Gomba A, Chidamba L, Korsten L. Effect of postharvest practices including degreening on citrus carpoplane microbial biomes. J Appl Microbiol 2017; 122:1057-1070. [PMID: 28052466 DOI: 10.1111/jam.13396] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/23/2016] [Accepted: 12/13/2016] [Indexed: 01/04/2023]
Abstract
AIMS To investigate the effect of commercial citrus packhouse processing steps on the fruit surface microbiome of Clementines and Palmer navel oranges. METHODS AND RESULTS Viable bacteria, yeast and fungi counts, and the pyrosequencing analysis of the 16S rRNA and ITS were used to evaluate the community structure and population dynamics of phylloepiphytic bacteria and fungi associated with commercial postharvest processing. Drenching significantly reduced microbial counts in all cases except for yeasts on navels, while the extent of degreening effects varied between the citrus varieties. Pyrosequencing analysis showed a total of 4409 bacteria and 5792 fungi nonchimeric unique sequences with an average of 1102 bacteria and 1448 fungi reads per sample. Dominant phyla on the citrus carpoplane were Proteobacteria (53·5%), Actinobacteria (19·9%), Bacteroidetes (5·6%) and Deinococcus-Thermus (5·4%) for bacteria and Ascomycota (80·5%) and Basidiomycota (9·8%) for fungi. Beginning with freshly harvested fruit fungal diversity declined significantly after drenching, but had little effect on bacteria and populations recovered during degreening treatments, including those for Penicillium sp. CONCLUSION Packhouse processing greatly influences microbial communities on the citrus carpoplane. SIGNIFICANCE AND IMPACT OF THE STUDY A broad orange biome was described with pyrosequencing and gave insight into the likely survival and persistence of pathogens, especially as they may affect the quality and safety of the packed product. A close examination of the microbiota of fruit and the impact of intervention strategies on the ecological balance may provide a more durable approach to reduce losses and spoilage.
Collapse
Affiliation(s)
- A Gomba
- Department of Plant and Soil Sciences, University of Pretoria, Hatfield, South Africa
| | - L Chidamba
- Department of Plant and Soil Sciences, University of Pretoria, Hatfield, South Africa
| | - L Korsten
- Department of Plant and Soil Sciences, University of Pretoria, Hatfield, South Africa
| |
Collapse
|
17
|
Jongman M, Korsten L. Microbial quality and suitability of roof-harvested rainwater in rural villages for crop irrigation and domestic use. JOURNAL OF WATER AND HEALTH 2016; 14:961-971. [PMID: 27959874 DOI: 10.2166/wh.2016.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The study aimed at assessing the microbiological quality and suitability of roof-harvested rainwater (RHRW) for crop irrigation and domestic use. In total, 80 rainwater tanks (246 samples) across three rural villages (Ga-Molepane, Jericho and Luthngele) were visited. Culture-based techniques were used to isolate bacterial microbes and identities were confirmed using matrix-assisted laser desorption/ionization time of flight (MALDI-TOF-MS). Uncultured fungal populations were also identified using pyrosequencing. Salmonella spp. (3%), Listeria monocytogenes (22%), total coliforms (57.7%), Escherichia coli (30.5%), Enterococcus spp. (48.8%), Pseudomonas spp. (21.5%) were detected in RHRW samples after rainfall. Fungal sequences belonging to species known to cause fever, coughing and shortness of breath in humans (Cryptococcus spp.) were identified. This study indicates that RHRW quality can be affected by external factors such as faecal material and debris on rooftops. The use of untreated RHRW could pose a potential health risk if used for irrigation of crops or domestic use, especially in the case of a relative high population of immunocompromised individuals. This study does not dispute the fact that RHRW is an alternative irrigation water source but it recommends treatment before use for domestic purposes or for watering crops.
Collapse
Affiliation(s)
- Mosimanegape Jongman
- Department of Plant and Soil Sciences, University of Pretoria, Lynwood Road, Pretoria 0082, South Africa E-mail:
| | - Lise Korsten
- Department of Plant and Soil Sciences, University of Pretoria, Lynwood Road, Pretoria 0082, South Africa E-mail:
| |
Collapse
|
18
|
Chen Q, Zhao Q, Li J, Jian S, Ren H. Mangrove succession enriches the sediment microbial community in South China. Sci Rep 2016; 6:27468. [PMID: 27265262 PMCID: PMC4893734 DOI: 10.1038/srep27468] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 05/17/2016] [Indexed: 11/19/2022] Open
Abstract
Sediment microorganisms help create and maintain mangrove ecosystems. Although the changes in vegetation during mangrove forest succession have been well studied, the changes in the sediment microbial community during mangrove succession are poorly understood. To investigate the changes in the sediment microbial community during succession of mangroves at Zhanjiang, South China, we used phospholipid fatty acid (PLFA) analysis and the following chronosequence from primary to climax community: unvegetated shoal; Avicennia marina community; Aegiceras corniculatum community; and Bruguiera gymnorrhiza + Rhizophora stylosa community. The PLFA concentrations of all sediment microbial groups (total microorganisms, fungi, gram-positive bacteria, gram-negative bacteria, and actinomycetes) increased significantly with each stage of mangrove succession. Microbial PLFA concentrations in the sediment were significantly lower in the wet season than in the dry season. Regression and ordination analyses indicated that the changes in the microbial community with mangrove succession were mainly associated with properties of the aboveground vegetation (mainly plant height) and the sediment (mainly sediment organic matter and total nitrogen). The changes in the sediment microbial community can probably be explained by increases in nutrients and microhabitat heterogeneity during mangrove succession.
Collapse
Affiliation(s)
- Quan Chen
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qian Zhao
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jing Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, P. R. China
| | - Shuguang Jian
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, P. R. China
| | - Hai Ren
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, P. R. China
| |
Collapse
|
19
|
Bordez L, Jourand P, Ducousso M, Carriconde F, Cavaloc Y, Santini S, Claverie JM, Wantiez L, Leveau A, Amir H. Distribution patterns of microbial communities in ultramafic landscape: a metagenetic approach highlights the strong relationships between diversity and environmental traits. Mol Ecol 2016; 25:2258-72. [PMID: 26994404 DOI: 10.1111/mec.13621] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 02/25/2016] [Accepted: 03/15/2016] [Indexed: 11/30/2022]
Abstract
Microbial species richness and assemblages across ultramafic ecosystems were investigated to assess the relationship between their distributional patterns and environmental traits. The structure of microorganism communities in the Koniambo massif, New Caledonia, was investigated using a metagenetic approach correlated with edaphic and floristic factors. Vegetation cover and soil properties significantly shaped the large phylogenetic distribution of operational taxonomic unit within microbial populations, with a mean per habitat of 3.477 (±317) for bacteria and 712 (±43) for fungi. Using variance partitioning, we showed that the effect of aboveground vegetation was the most significant descriptor for both bacterial and fungal communities. The floristic significant predictors explained 43% of the variation for both the bacterial and fungal community structures, while the edaphic significant predictors explained only 32% and 31% of these variations, respectively. These results confirm the previous hypothesis that the distribution of microorganisms was more structured by the vegetation cover rather than the edaphic characteristics and that microbial diversity is not limited in ultramafic ecosystems.
Collapse
Affiliation(s)
- L Bordez
- Laboratoire Insulaire du Vivant et de l'Environnement (LIVE), Université de la Nouvelle-Calédonie (UNC), BP R4, Avenue James Cook, 98851, Nouméa Cedex, Nouvelle-Calédonie.,Koniambo Nickel SAS (KNS), BP 696, 98860, Koné, Nouvelle-Calédonie.,IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM, UMR040), TA A-82/J, 34398, Montpellier cedex 5, France.,Institut Agronomique néo-Calédonien (IAC), BPA5, 98848, Nouméa, Nouvelle-Calédonie
| | - P Jourand
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM, UMR040), TA A-82/J, 34398, Montpellier cedex 5, France
| | - M Ducousso
- CIRAD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM, UMR082), TA A-82/J, 34398, Montpellier cedex 5, France
| | - F Carriconde
- Institut Agronomique néo-Calédonien (IAC), BPA5, 98848, Nouméa, Nouvelle-Calédonie
| | - Y Cavaloc
- Laboratoire Insulaire du Vivant et de l'Environnement (LIVE), Université de la Nouvelle-Calédonie (UNC), BP R4, Avenue James Cook, 98851, Nouméa Cedex, Nouvelle-Calédonie
| | - S Santini
- Laboratoire Information Génomique et Structurale (IGS), UMR7256 CNRS, Aix-Marseille Université, 13288, Marseille cedex 09, France
| | - J M Claverie
- Laboratoire Information Génomique et Structurale (IGS), UMR7256 CNRS, Aix-Marseille Université, 13288, Marseille cedex 09, France
| | - L Wantiez
- Laboratoire Insulaire du Vivant et de l'Environnement (LIVE), Université de la Nouvelle-Calédonie (UNC), BP R4, Avenue James Cook, 98851, Nouméa Cedex, Nouvelle-Calédonie
| | - A Leveau
- Koniambo Nickel SAS (KNS), BP 696, 98860, Koné, Nouvelle-Calédonie
| | - H Amir
- Laboratoire Insulaire du Vivant et de l'Environnement (LIVE), Université de la Nouvelle-Calédonie (UNC), BP R4, Avenue James Cook, 98851, Nouméa Cedex, Nouvelle-Calédonie
| |
Collapse
|
20
|
Gatica J, Yang K, Pagaling E, Jurkevitch E, Yan T, Cytryn E. Resistance of Undisturbed Soil Microbiomes to Ceftriaxone Indicates Extended Spectrum β-Lactamase Activity. Front Microbiol 2015; 6:1233. [PMID: 26617578 PMCID: PMC4639628 DOI: 10.3389/fmicb.2015.01233] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 10/23/2015] [Indexed: 11/18/2022] Open
Abstract
Emergence and spread of antibiotic resistance, and specifically resistance to third generation cephalosporins associated with extended spectrum β-lactamase (ESBL) activity, is one of the greatest epidemiological challenges of our time. In this study we addressed the impact of the third generation cephalosporin ceftriaxone on microbial activity and bacterial community composition of two physically and chemically distinct undisturbed soils in highly regulated microcosm experiments. Surprisingly, periodical irrigation of the soils with clinical doses of ceftriaxone did not affect their microbial activity; and only moderately impacted the microbial diversity (α and β) of the two soils. Corresponding slurry experiments demonstrated that the antibiotic capacity of ceftriaxone rapidly diminished in the presence of soil, and ∼70% of this inactivation could be explained by biological activity. The biological nature of ceftriaxone degradation in soil was supported by microcosm experiments that amended model Escherichia coli strains to sterile and non-sterile soils in the presence and absence of ceftriaxone and by the ubiquitous presence of ESBL genes (blaTEM, blaCTX-M, and blaOXA) in soil DNA extracts. Collectively, these results suggest that the resistance of soil microbiomes to ceftriaxone stems from biological activity and even more, from broad-spectrum β-lactamase activity; raising questions regarding the scope and clinical implications of ESBLs in soil microbiomes.
Collapse
Affiliation(s)
- Joao Gatica
- The Department of Soil and Water Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem Rehovot, Israel ; The Institute of Soil, Water and Environmental Sciences, The Volcani Center, Agricultural Research Organization Bet-Dagan, Israel
| | - Kun Yang
- Department of Civil and Environmental Engineering, University of Hawaii at Manoa Hawaii, HI, USA
| | - Eulyn Pagaling
- Department of Civil and Environmental Engineering, University of Hawaii at Manoa Hawaii, HI, USA
| | - Edouard Jurkevitch
- The Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem Rehovot, Israel
| | - Tao Yan
- Department of Civil and Environmental Engineering, University of Hawaii at Manoa Hawaii, HI, USA
| | - Eddie Cytryn
- The Institute of Soil, Water and Environmental Sciences, The Volcani Center, Agricultural Research Organization Bet-Dagan, Israel
| |
Collapse
|
21
|
Nielsen UN, Ball BA. Impacts of altered precipitation regimes on soil communities and biogeochemistry in arid and semi-arid ecosystems. GLOBAL CHANGE BIOLOGY 2015; 21:1407-21. [PMID: 25363193 DOI: 10.1111/gcb.12789] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 09/28/2014] [Indexed: 05/19/2023]
Abstract
Altered precipitation patterns resulting from climate change will have particularly significant consequences in water-limited ecosystems, such as arid to semi-arid ecosystems, where discontinuous inputs of water control biological processes. Given that these ecosystems cover more than a third of Earth's terrestrial surface, it is important to understand how they respond to such alterations. Altered water availability may impact both aboveground and belowground communities and the interactions between these, with potential impacts on ecosystem functioning; however, most studies to date have focused exclusively on vegetation responses to altered precipitation regimes. To synthesize our understanding of potential climate change impacts on dryland ecosystems, we present here a review of current literature that reports the effects of precipitation events and altered precipitation regimes on belowground biota and biogeochemical cycling. Increased precipitation generally increases microbial biomass and fungal:bacterial ratio. Few studies report responses to reduced precipitation but the effects likely counter those of increased precipitation. Altered precipitation regimes have also been found to alter microbial community composition but broader generalizations are difficult to make. Changes in event size and frequency influences invertebrate activity and density with cascading impacts on the soil food web, which will likely impact carbon and nutrient pools. The long-term implications for biogeochemical cycling are inconclusive but several studies suggest that increased aridity may cause decoupling of carbon and nutrient cycling. We propose a new conceptual framework that incorporates hierarchical biotic responses to individual precipitation events more explicitly, including moderation of microbial activity and biomass by invertebrate grazing, and use this framework to make some predictions on impacts of altered precipitation regimes in terms of event size and frequency as well as mean annual precipitation. While our understanding of dryland ecosystems is improving, there is still a great need for longer term in situ manipulations of precipitation regime to test our model.
Collapse
Affiliation(s)
- Uffe N Nielsen
- Hawkesbury Institute for the Environment and School of Science and Health, University of Western Sydney, Penrith, NSW 2751, Australia
| | | |
Collapse
|