1
|
Bhat HM, Nazir R, Kashoo ZA, Bhat SA. Probiotic potential of LAB strains from native Kashmir Flavorella chickens of northwestern Himalayas: A focus on safety and gut health. Res Vet Sci 2025; 192:105698. [PMID: 40412344 DOI: 10.1016/j.rvsc.2025.105698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2025] [Revised: 05/06/2025] [Accepted: 05/17/2025] [Indexed: 05/27/2025]
Abstract
Lactic acid bacteria (LAB) possess notable functional characteristics, making them promising candidates for probiotic applications due to their ability to endure low pH and high bile salt concentrations while inhibiting enteric pathogens. This study evaluates the probiotic potential and safety of LAB strains isolated from the gastrointestinal tract of indigenous chickens of the Northwestern Himalayas. We assessed features such as antimicrobial activity, auto-aggregation, co-aggregation, haemolytic activity, antibiotic resistance, and virulence gene presence. Multivariate analysis using Principal Component Analysis (PCA) and heat mapping was conducted to evaluate variability among strains based on traits like pH and bile salt tolerance, autoaggregation and co-aggregation and antimicrobial activity. Five LAB strains were identified through 16S rDNA analysis: Lactobacillus johnsonii, Ligilactobacillus salivarius, Lactobacillus kitasatonis, Rummeliibacillus suwonensis, and Enterococcus faecalis. All strains demonstrated significant tolerance to acidic and bile salt conditions, robust aggregation abilities, and strong antibacterial activity. Safety evaluations revealed no haemolytic activity or virulence genes, except for Enterococcus faecalis, which harboured the esp gene. PCA and heat mapping identified strain NC10 as the most promising probiotic isolate due to its superior antimicrobial activity and bile tolerance. This study highlights the potential of indigenous LAB strains, particularly Ligilactobacillus salivarius NC10, as safe probiotics for enhancing poultry health. To the best of our knowledge, this study is the first to evaluate the probiotic attributes of LAB strains derived from native chickens of the Northwestern Himalayas in the Indian subcontinent. IMPORTANCE: This study underscores the potential of utilizing lactic acid bacteria (LAB) strains from indigenous chickens of the Northwestern Himalayas as safe and effective probiotics. Native breeds, such as the Kashmir Flavorella, have adapted to the region's unique environment, offering a rich source of microbiota with distinct probiotic traits. The identification of LAB strains, particularly Ligilactobacillus salivarius NC10, with exceptional antimicrobial activity and bile tolerance, opens avenues for improving poultry gut health and productivity. As antibiotic resistance emerges as a global challenge, exploring natural and safe alternatives like probiotics becomes increasingly vital. Additionally, the comprehensive safety evaluation, including the absence of haemolytic activity and virulence genes in most strains, highlights their suitability for probiotic applications. This research not only contributes to sustainable poultry farming practices but also emphasizes the need to preserve and harness the microbial diversity of indigenous animal breeds, ensuring food security and environmental sustainability.
Collapse
Affiliation(s)
- Haneef Mohammad Bhat
- Microbiology Research Laboratory, Centre of Research for Development, University of Kashmir, 190006, Srinagar, India
| | - Ruqeya Nazir
- Microbiology Research Laboratory, Centre of Research for Development, University of Kashmir, 190006, Srinagar, India.
| | - Zahid Amin Kashoo
- Division of Veterinary Microbiology and Immunology, SKUAST-K Shuhama Alusteng-190006, India
| | - Shabir Ahmad Bhat
- Microbiology Research Laboratory, Centre of Research for Development, University of Kashmir, 190006, Srinagar, India
| |
Collapse
|
2
|
Ma W, Zhang W, Wang X, Pan Y, Wang M, Xu Y, Gao J, Cui H, Li C, Chen H, Zhang H, Xia C, Wang Y. Molecular identification and probiotic potential characterization of lactic acid bacteria isolated from the pigs with superior immune responses. Front Microbiol 2024; 15:1361860. [PMID: 38585699 PMCID: PMC10995931 DOI: 10.3389/fmicb.2024.1361860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/01/2024] [Indexed: 04/09/2024] Open
Abstract
Lactic acid bacteria (LAB) belong to a significant group of probiotic bacteria that provide hosts with considerable health benefits. Our previous study showed that pigs with abundant LAB had more robust immune responses in a vaccination experiment. In this study, 52 isolate strains were isolated from the pigs with superior immune responses. Out of these, 14 strains with higher antibacterial efficacy were chosen. We then assessed the probiotic features of the 14 LAB strains, including such as autoaggregation, coaggregation, acid resistance, bile salt resistance, and adhesion capability, as well as safety aspects such as antibiotic resistance, hemolytic activity, and the presence or absence of virulence factors. We also compared these properties with those of an opportunistic pathogen EB1 and two commercial probiotics (cLA and cLP). The results showed that most LAB isolates exhibited higher abilities of aggregation, acid and bile salt resistance, adhesion, and antibacterial activity than the two commercial probiotics. Out of the 14 strains, only LS1 and LS9 carried virulence genes and none had hemolytic activity. We selected three LAB strains (LA6, LR6 and LJ1) with superior probiotic properties and LS9 with a virulence gene for testing their safety in vivo. Strains EB1, cLA and cLP were also included as control bacteria. The results demonstrated that mice treated LAB did not exhibit any adverse effects on weight gain, organ index, blood immune cells, and ileum morphology, except for those treated with LS9 and EB1. Moreover, the antimicrobial effect of LR6 and LA6 strains was examined in vivo. The results indicated that these strains could mitigate the inflammatory response, reduce bacterial translocation, and alleviate liver, spleen, and ileum injury caused by Salmonella typhimurium infection. In addition, the LR6 treatment group showed better outcomes than the LA6 treatment group; treatment with LR6 substantially reduced the mortality rate in mice. The study results provide evidence of the probiotic properties of the LAB isolates, in particular LR6, and suggest that oral administration of LR6 could have valuable health-promoting benefits.
Collapse
Affiliation(s)
- Wenjie Ma
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wenli Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xinrong Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Yu Pan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Mengjie Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yunfei Xu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Junxin Gao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongyu Cui
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Changwen Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongyan Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - He Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Changyou Xia
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yue Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- College of Veterinary Medicine, Southwest University, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
| |
Collapse
|
3
|
Vasundaradevi R, Sarvajith M, Somashekaraiah R, Gunduraj A, Sreenivasa MY. Antagonistic properties of Lactiplantibacillus plantarum MYSVB1 against Alternaria alternata: a putative probiotic strain isolated from the banyan tree fruit. Front Microbiol 2024; 15:1322758. [PMID: 38404595 PMCID: PMC10885809 DOI: 10.3389/fmicb.2024.1322758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/15/2024] [Indexed: 02/27/2024] Open
Abstract
Alternaria alternata, a notorious phytopathogenic fungus, has been documented to infect several plant species, leading to the loss of agricultural commodities and resulting in significant economic losses. Lactic acid bacteria (LAB) hold immense promise as biocontrol candidates. However, the potential of LABs derived from fruits remains largely unexplored. In this study, several LABs were isolated from tropical fruit and assessed for their probiotic and antifungal properties. A total of fifty-five LABs were successfully isolated from seven distinct fruits. Among these, seven isolates showed inhibition to growth of A. alternata. Two strains, isolated from fruits: Ficus benghalensis, and Tinospora cordifolia exhibited promising antifungal properties against A. alternata. Molecular identification confirmed their identities as Lactiplantibacillus plantarum MYSVB1 and MYSVA7, respectively. Both strains showed adaptability to a wide temperature range (10-45°C), and salt concentrations (up to 7%), with optimal growth around 37 °C and high survival rates under simulated gastrointestinal conditions. Among these two strains, Lpb. plantarum MYSVB1 demonstrated significant inhibition (p < 0.01) of the growth of A. alternata. The inhibitory effects of cell-free supernatant (CFS) were strong, with 5% crude CFS sufficient to reduce fungal growth by >70% and complete inhibition by 10% CFS. Moreover, the CFS was inhibitory for both mycelial growth and conidial germination. CFS retained its activity even after long cold storage. The chromatographic analysis identified organic acids in CFS, with succinic acid as the predominant constituent, with lactic acid, and malic acid in descending order. LAB strains isolated from tropical fruits showed promising probiotic and antifungal properties, making them potential candidates for various applications in food and agriculture.
Collapse
Affiliation(s)
| | | | | | | | - M. Y. Sreenivasa
- Applied Mycology Laboratory, Department of Studies in Microbiology, University of Mysore, Mysuru, India
| |
Collapse
|
4
|
Abdel Tawab FI, Abd Elkadr MH, Sultan AM, Hamed EO, El-Zayat AS, Ahmed MN. Probiotic potentials of lactic acid bacteria isolated from Egyptian fermented food. Sci Rep 2023; 13:16601. [PMID: 37789063 PMCID: PMC10547719 DOI: 10.1038/s41598-023-43752-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023] Open
Abstract
Lactic acid bacteria (LAB) are of major concern due to their health benefits. Fermented food products comprise variable LAB demonstrating probiotic properties. Discovering and evaluating new probiotics in fermented food products poses a global economic and health importance. Therefore, the present work aimed to investigate and evaluate the probiotic potentials of LAB strains isolated from Egyptian fermented food. In this study, we isolated and functionally characterized 100 bacterial strains isolated from different Egyptian fermented food sources as probiotics. Only four LAB strains amongst the isolated LAB showed probiotic attributes and are considered to be safe for their implementation as feed or dietary supplements. Additionally, they were shown to exert antimicrobial activities against pathogenic bacteria and anticancer effects against the colon cancer cell line Caco-2. The Enterococcus massiliensis IS06 strain was exclusively reported in this study as a probiotic strain with high antimicrobial, antioxidant, and anti-colon cancer activity. Hitherto, few studies have focused on elucidating the impact of probiotic supplementation in vivo. Therefore, in the current study, the safety of the four strains was tested in vivo through the supplementation of rats with potential probiotic strains for 21 days. The results revealed that probiotic bacterial supplementation in rats did not adversely affect the general health of rats. The Lactiplantibacillus plantarum IS07 strain significantly increased the growth performance of rats. Furthermore, the four strains exhibited increased levels of antioxidants such as superoxide dismutase and glutathione in vivo. Consistently, all strains also showed high antioxidant activity of the superoxide dismutase enzyme in vitro. Overall, these findings demonstrated that these isolated potential probiotics harbor desirable characteristics and can be applied widely as feed additives for animals or as dietary supplements for humans to exert their health benefits and combat serious diseases.
Collapse
Affiliation(s)
- Fatma I Abdel Tawab
- Oil Crops Biotechnology Lab, Agricultural Genetic Engineering Institute, Agricultural Research Center, Giza, Egypt
| | - Menna H Abd Elkadr
- Microbiology Lab, Research Park, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Amany M Sultan
- Department of Biochemistry, Toxicology Unit, Animal Health Research Institute, Agricultural Research Center, Giza, Egypt
| | - Ehdaa O Hamed
- Department of Biochemistry, Toxicology Unit, Animal Health Research Institute, Agricultural Research Center, Giza, Egypt
| | - Ayatollah S El-Zayat
- Department of Microbiology, Faculty of Agriculture, Cairo University, El-Gamaa Street, Giza, 12613, Egypt
| | - Marwa N Ahmed
- Department of Microbiology, Faculty of Agriculture, Cairo University, El-Gamaa Street, Giza, 12613, Egypt.
| |
Collapse
|
5
|
Haghshenas B, Nami Y, Kiani A, Moazami N, Tavallaei O. Cytotoxic effect of potential probiotic Lactiplantibacillus plantarum KUMS-Y8 isolated from traditional dairy samples on the KB and OSCC human cancer cell lines. Heliyon 2023; 9:e20147. [PMID: 37809760 PMCID: PMC10559912 DOI: 10.1016/j.heliyon.2023.e20147] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
Oral cancer is one of the leading causes of death worldwide, and its prevalence is especially high in developing countries. As an oral cancer treatment, traditional therapies are commonly used. Nonetheless, these treatments frequently result in a variety of side effects. As a consequence, there is an urgent need to enhance oral cancer therapies. Probiotics have recently demonstrated intriguing properties as therapeutic options for cancer treatment. Thus, the purpose of this study was to investigate the anticancer effect of probiotic Lactobacillus strains on the mouth epidermal carcinoma cells (KB) and oral squamous cell carcinoma (OSCC) cell lines. In this study, we looked at 21 Lactobacillus strains isolated from traditional dairy products in the Kermanshah province of western Iran to see if they had any inhibitory effects on oral cancer cell lines in vitro. We isolated and characterized Lactobacillus strains before assessing and comparing their probiotic potential and safety. Using the MTT assay, the bacterial extract was then prepared and used as an anti-proliferative agent on oral cancer (KB and OSCC) and normal (fibroblast and human umbilical vein endothelial cells (HUVEK) cell lines. Finally, acridine orange/ethidium bromide staining was used to determine whether cell death was caused by apoptosis. Four Lactobacillus isolates (C14, M22, M42, and Y8) were shown to have beneficial probiotic qualities. Lactobacillus extracts (of a protein nature) decreased the survival and proliferation of the KB and OSCC cancer cell lines (dose- and time-dependent) by inducing apoptosis, with no basic damaging effects on normal cells. The staining with acridine orange/ethidium bromide revealed that the cell death was caused by apoptosis. Furthermore, of the four Lactobacillus strains examined, isolate Y8 (Lactiplantibacillus plantarum) showed the strongest probiotic potential for suppressing KB and OSCC cell proliferation when compared to anticancer medicines (doxorubicin and paclitaxel). The current research found that Lactobacillus extract might reduce the growth and viability of the KB and OSCC cancer cell lines by inducing apoptosis, increasing the survival rate of oral cancer patients.
Collapse
Affiliation(s)
- Babak Haghshenas
- Regenerative Medicine Research Center (RMRC), Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yousef Nami
- Department of Food Biotechnology, Branch for Northwest and West Region, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran
| | - Amir Kiani
- Regenerative Medicine Research Center (RMRC), Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nesa Moazami
- Students Research Committee, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Omid Tavallaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
6
|
Zou X, Pan L, Xu M, Wang X, Wang Q, Han Y. Probiotic potential of Lactobacillus sakei L-7 in regulating gut microbiota and metabolism. Microbiol Res 2023; 274:127438. [PMID: 37399653 DOI: 10.1016/j.micres.2023.127438] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 06/05/2023] [Accepted: 06/11/2023] [Indexed: 07/05/2023]
Abstract
A growing body of research suggests that gut microbiota is inextricably linked to host health and disease,so we are committed to finding more probiotic resources that are beneficial to human health. This study evaluated the probiotic properties of Lactobacillus sakei L-7 isolated from home-made sausages. The basic probiotic properties of L. sakei L-7 were evaluated through in vitro tests. The strain showed 89% viability after 7 h of digestion in simulating gastric and intestinal fluid. The hydrophobicity, self-aggregation and co-aggregation of L. sakei L-7 showed it had a strong adhesion ability. C57BL/6 J mice were fed L. sakei L-7 for 4 weeks. 16 S rRNA gene analysis indicated that intake of L. sakei L-7 increased the richness of gut microbiota and abundance of beneficial bacteria Akkermansia, Allobaculum and Parabacteroides. Metabonomics analysis revealed that beneficial metabolite gamma-aminobutyric acid and docosahexaenoic acid increased significantly. While the level of metabolite sphingosine and arachidonic acid significantly decreased. In addition, serum levels of inflammatory cytokines interleukin (IL)- 6 and tumor necrosis factor (TNF)-α were significantly decreased. The results suggested that L. sakei L-7 may promote gut health and reduce the occurrence of inflammatory response, it has the potential to become a probiotic.
Collapse
Affiliation(s)
- Xuan Zou
- School of Chemical Engineering and Technology, Tianjin university, Tianjin 300350, the People's Republic of China
| | - Lei Pan
- School of Chemical Engineering and Technology, Tianjin university, Tianjin 300350, the People's Republic of China
| | - Min Xu
- School of Chemical Engineering and Technology, Tianjin university, Tianjin 300350, the People's Republic of China
| | - Xiaoqing Wang
- Graduate School, Tianjin Medical University, Tianjin 300070, the People's Republic of China
| | - Qi Wang
- School of Chemical Engineering and Technology, Tianjin university, Tianjin 300350, the People's Republic of China
| | - Ye Han
- School of Chemical Engineering and Technology, Tianjin university, Tianjin 300350, the People's Republic of China.
| |
Collapse
|
7
|
Almeida MEDE, Pessoa WFB, Melgaço ACC, Ramos LP, Rezende RP, Romano CC. In vitro selection and characterization of probiotic properties in eight lactobacillus strains isolated from cocoa fermentation. AN ACAD BRAS CIENC 2022; 94:e20220013. [PMID: 36541978 DOI: 10.1590/0001-3765202220220013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/20/2022] [Indexed: 12/23/2022] Open
Abstract
Traditionally, probiotic microorganisms are isolated from human and animal intestinal microbiota. However, the demand for diversification of biofunctional products has driven the search for new sources of probiotic candidates, such as fermented foods and vegetables. The present study found that strains isolated from the fermentation of fine cocoa from southern Bahia have biotechnological potential for use as a probiotic, since they showed capacity for self-aggregation and co-aggregation, antimicrobial activity against intestinal pathogens and resistance to gastrointestinal transits. Scores of importance for each property were established in order to more accurately assess the probiotic potential of the strains. The tests carried out contemplate the criteria previously established for the selection of probiotic candidates.
Collapse
Affiliation(s)
- Milena E DE Almeida
- Universidade Estadual de Santa Cruz, Centro de Biotecnologia e Genética, Laboratório de Imunologia, Campos Soane Nazaré de Andrade, Rodovia Jorge Amado, Km 16, Salobrinho, 456662-900 Ilhéus, BA, Brazil
| | - Wallace Felipe B Pessoa
- Universidade Federal da Paraíba, Centro de Ciências da Saúde, Campus I, Departmento de Fisiologia e Patologia, s/n, Via Pau Brasil, Conj. Pres. Castelo Branco III, 58051-900 João Pessoa, PB, Brazil
| | - Ana Clara C Melgaço
- Universidade Estadual de Santa Cruz, Centro de Biotecnologia e Genética, Laboratório de Imunologia, Campos Soane Nazaré de Andrade, Rodovia Jorge Amado, Km 16, Salobrinho, 456662-900 Ilhéus, BA, Brazil
| | - Louise P Ramos
- Universidade Estadual de Santa Cruz, Centro de Biotecnologia e Genética, Laboratório de Imunologia, Campos Soane Nazaré de Andrade, Rodovia Jorge Amado, Km 16, Salobrinho, 456662-900 Ilhéus, BA, Brazil
| | - Rachel P Rezende
- Universidade Estadual de Santa Cruz, Centro de Biotecnologia e Genética, Departmento de Ciências Biológicas, Laboratório de Biotecnologia Microbiana, Campus Soane Nazaré de Andrade, Rodovia Jorge Amado, Km 16, Salobrinho, 45662-900 Ilhéus, BA, Brazil
| | - Carla Cristina Romano
- Universidade Estadual de Santa Cruz, Centro de Biotecnologia e Genética, Laboratório de Imunologia, Campos Soane Nazaré de Andrade, Rodovia Jorge Amado, Km 16, Salobrinho, 456662-900 Ilhéus, BA, Brazil
| |
Collapse
|
8
|
Lactobacillus reuteri and Enterococcus faecium from Poultry Gut Reduce Mucin Adhesion and Biofilm Formation of Cephalosporin and Fluoroquinolone-Resistant Salmonella enterica. Animals (Basel) 2021; 11:ani11123435. [PMID: 34944212 PMCID: PMC8697943 DOI: 10.3390/ani11123435] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/29/2021] [Accepted: 09/03/2021] [Indexed: 12/16/2022] Open
Abstract
Non-typhoidal Salmonella (NTS) can cause infection in poultry, livestock, and humans. Although the use of antimicrobials as feed additives is prohibited, the previous indiscriminate use and poor regulatory oversight in some parts of the world have resulted in increased bacterial resistance to antimicrobials, including cephalosporins and fluoroquinolones, which are among the limited treatment options available against NTS. This study aimed to isolate potential probiotic lactic acid bacteria (LAB) strains from the poultry gut to inhibit fluoroquinolone and cephalosporin resistant MDR Salmonella Typhimurium and S. Enteritidis. The safety profile of the LAB isolates was evaluated for the hemolytic activity, DNase activity, and antibiotic resistance. Based on the safety results, three possible probiotic LAB candidates for in vitro Salmonella control were chosen. Candidate LAB isolates were identified by 16S rDNA sequencing as Lactobacillus reuteri PFS4, Enterococcus faecium PFS13, and Enterococcus faecium PFS14. These strains demonstrated a good tolerance to gastrointestinal-related stresses, including gastric acid, bile, lysozyme, and phenol. In addition, the isolates that were able to auto aggregate had the ability to co-aggregate with MDR S. Typhimurium and S. Enteritidis. Furthermore, LAB strains competitively reduced the adhesion of pathogens to porcine mucin Type III in co-culture studies. The probiotic combination of the selected LAB isolates inhibited the biofilm formation of S. Typhimurium FML15 and S. Enteritidis FML18 by 90% and 92%, respectively. In addition, the cell-free supernatant (CFS) of the LAB culture significantly reduced the growth of Salmonella in vitro. Thus, L. reuteri PFS4, E. faecium PFS13, and E. faecium PFS 14 are potential probiotics that could be used to control MDR S. Typhimurium and S. Enteritidis in poultry. Future investigations are required to elucidate the in vivo potential of these probiotic candidates as Salmonella control agents in poultry and animal feed.
Collapse
|
9
|
Priyodip P, Balaji S. Probiotic Validation of a Non-native, Thermostable, Phytase-Producing Bacterium: Streptococcus thermophilus. Curr Microbiol 2020; 77:1540-1549. [PMID: 32248282 DOI: 10.1007/s00284-020-01957-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 03/21/2020] [Indexed: 10/24/2022]
Abstract
Phytate-linked nutritional deficiency disorders have plagued poultry for centuries. The application of exogenous phytases in poultry feed has served as a solution to this problem. However, they are linked to certain limitations which include thermal instability during prolonged feed processing. Therefore, in this study, Streptococcus thermophilus 2412 based phytase stability was assessed at higher temperatures up to 90 °C. This was followed by probiotic validation of the same bacterium in an in vitro intestinal model. Bacterial phytase showed thermostability up to 70 °C with a recorded activity of 9.90 U. The bacterium was viable in the intestinal lumen as indicated by the cell count of 6.10 log(CFU/mL) after 16 h. It also showed acid tolerance with a stable cell count of 5.01 log(CFU/mL) after 16 h of incubation at pH 2. The bacterium displayed bile tolerance yielding a cell count of 6.36 log(CFU/mL) in the presence of 0.3% bile. Bacterial susceptibility was observed toward all tested antibiotics with a maximum zone of 20 mm against clindamycin. The maximum antagonistic activity was observed against Staphylococcus aureus, Serratia marcescens, and Escherichia coli with inhibition zone diameters up to 10 mm. The above characteristics prove that S. thermophilus 2412 can be used as an effective phytase-producing poultry probiotic.
Collapse
Affiliation(s)
- Paul Priyodip
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Seetharaman Balaji
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
10
|
Li M, Wang Y, Cui H, Li Y, Sun Y, Qiu HJ. Characterization of Lactic Acid Bacteria Isolated From the Gastrointestinal Tract of a Wild Boar as Potential Probiotics. Front Vet Sci 2020; 7:49. [PMID: 32118070 PMCID: PMC7026679 DOI: 10.3389/fvets.2020.00049] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/20/2020] [Indexed: 01/11/2023] Open
Abstract
Lactic acid bacteria (LAB) are major microorganisms used for probiotic purposes and prime parts of the human and mammalian gut microbiota, which exert important health-promoting effects on the host. The present study aimed to evaluate and compare the probiotic potential and safety of LAB strains isolated from the gastrointestinal tract of a wild boar from the Greater Khingan Mountains, China. Amongst all of the isolated LAB strains, five isolates identified as Lactobacillus mucosae, Lactobacillus salivarius, Enterococcus hirae, Enterococcus durans, and Enterococcus faecium, were remarkably resistant to acid and bile salt. The probiotic characteristics (including adhesion capability, antimicrobial activities, autoaggregation, and coaggregation abilities), and safety properties (including hemolytic activity, antibiotic resistance, absence/presence of virulence factors, and in vivo safety) were evaluated. The results showed that all five isolates exhibited high adhesive potential, remarkable aggregation capacity, and antibacterial activities. Upon assessment of the safety, these strains were negative for hemolytic activity and all tested virulence genes. In vivo safety assessment showed no adverse effects of isolated strains supplementation on the body weight gain and organ indices of the treated mice. This study revealed that these LAB isolates, especially L. salivarius M2-71, possess desirable probiotic properties and have great potentials for the development of feed additives for animals to promote health.
Collapse
Affiliation(s)
- Miao Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yi Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongyu Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yongfeng Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuan Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
11
|
Etienne-Mesmin L, Chassaing B, Desvaux M, De Paepe K, Gresse R, Sauvaitre T, Forano E, de Wiele TV, Schüller S, Juge N, Blanquet-Diot S. Experimental models to study intestinal microbes–mucus interactions in health and disease. FEMS Microbiol Rev 2019; 43:457-489. [DOI: 10.1093/femsre/fuz013] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/31/2019] [Indexed: 02/06/2023] Open
Abstract
ABSTRACT
A close symbiotic relationship exists between the intestinal microbiota and its host. A critical component of gut homeostasis is the presence of a mucus layer covering the gastrointestinal tract. Mucus is a viscoelastic gel at the interface between the luminal content and the host tissue that provides a habitat to the gut microbiota and protects the intestinal epithelium. The review starts by setting up the biological context underpinning the need for experimental models to study gut bacteria-mucus interactions in the digestive environment. We provide an overview of the structure and function of intestinal mucus and mucins, their interactions with intestinal bacteria (including commensal, probiotics and pathogenic microorganisms) and their role in modulating health and disease states. We then describe the characteristics and potentials of experimental models currently available to study the mechanisms underpinning the interaction of mucus with gut microbes, including in vitro, ex vivo and in vivo models. We then discuss the limitations and challenges facing this field of research.
Collapse
Affiliation(s)
- Lucie Etienne-Mesmin
- Université Clermont Auvergne, INRA, MEDIS, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Benoit Chassaing
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303 , USA
- Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Ave, Atlanta, GA 30303 , USA
| | - Mickaël Desvaux
- Université Clermont Auvergne, INRA, MEDIS, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Kim De Paepe
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Raphaële Gresse
- Université Clermont Auvergne, INRA, MEDIS, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Thomas Sauvaitre
- Université Clermont Auvergne, INRA, MEDIS, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Evelyne Forano
- Université Clermont Auvergne, INRA, MEDIS, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Stephanie Schüller
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR7UQ, United Kingdom
| | - Nathalie Juge
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR7UQ, United Kingdom
| | - Stéphanie Blanquet-Diot
- Université Clermont Auvergne, INRA, MEDIS, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| |
Collapse
|
12
|
Binding activity to intestinal cells and transient colonization in mice of two Lactobacillus paracasei subsp. paracasei strains with high aggregation potential. World J Microbiol Biotechnol 2019; 35:85. [PMID: 31134456 DOI: 10.1007/s11274-019-2663-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/18/2019] [Indexed: 02/06/2023]
Abstract
Surface properties like hydrophobicity, aggregation ability, adhesion to mucosal surfaces and epithelial cells and transit time are key features for the characterization of probiotic strains. In this study, we used two Lactobacillus paracasei subsp. paracasei strains (BGNJ1-64 and BGSJ2-8) strains which were previously described with very strong aggregation capacity. The aggregation promoting factor (AggLb) expressed in these strains showed high level of binding to collagen and fibronectin, components of extracellular matrix. The working hypothesis was that strains able to aggregate have an advantage to resist in intestinal tract. So, we assessed whether these strains and their derivatives (without aggLb gene) are able to bind or not to intestinal components and we compared the transit time of each strains in mice. In that purpose parental strains (BGNJ1-64 and BGSJ2-8) and their aggregation negative derivatives (BGNJ1-641 and BGSJ2-83) were marked with double antibiotic resistance in order to be tracked in in vivo experiments in mice. Comparative analysis of binding ability of WT and aggregation negative strains to different human intestinal cell lines and mucin revealed no significant difference among them, excluding involvement of AggLb in interaction with surface of intestinal cells and mucin. In vivo experiments showed that surviving and transit time of marked strains in mice did not drastically depend on the presence of the AggLb aggregation factor.
Collapse
|
13
|
Preska Steinberg A, Datta SS, Naragon T, Rolando JC, Bogatyrev SR, Ismagilov RF. High-molecular-weight polymers from dietary fiber drive aggregation of particulates in the murine small intestine. eLife 2019; 8:40387. [PMID: 30666958 PMCID: PMC6342521 DOI: 10.7554/elife.40387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 12/28/2018] [Indexed: 12/28/2022] Open
Abstract
The lumen of the small intestine (SI) is filled with particulates: microbes, therapeutic particles, and food granules. The structure of this particulate suspension could impact uptake of drugs and nutrients and the function of microorganisms; however, little is understood about how this suspension is re-structured as it transits the gut. Here, we demonstrate that particles spontaneously aggregate in SI luminal fluid ex vivo. We find that mucins and immunoglobulins are not required for aggregation. Instead, aggregation can be controlled using polymers from dietary fiber in a manner that is qualitatively consistent with polymer-induced depletion interactions, which do not require specific chemical interactions. Furthermore, we find that aggregation is tunable; by feeding mice dietary fibers of different molecular weights, we can control aggregation in SI luminal fluid. This work suggests that the molecular weight and concentration of dietary polymers play an underappreciated role in shaping the physicochemical environment of the gut. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Asher Preska Steinberg
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
| | - Sujit S Datta
- Department of Chemical and Biological Engineering, Princeton University, Princeton, United States
| | - Thomas Naragon
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
| | - Justin C Rolando
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
| | - Said R Bogatyrev
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Rustem F Ismagilov
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|
14
|
Screening of cell surface properties of potential probiotic lactobacilli isolated from human milk. J DAIRY RES 2018; 85:347-354. [DOI: 10.1017/s0022029918000432] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Evaluation of eleven candidate probioticLactobacillusstrains isolated from human milk showed that some of the strains were well endowed with desirable cell surface and attachment attributes. The cell surface properties (hydrophobicity, auto-aggregation, attachment to collagen and HT-29 monolayer) of probioticLactobacillusspecies of human milk origin were compared with reference probiotic/ non-probiotic species and pathogenic strains. The bacterial adhesion to hydrocarbons (BATH) was determined using three aliphatic (Chloroform, n-Hexane and n-Octane) and two aromatic (Toluene and Xylene) solvents. Maximum affinity ofLactobacillusstrains towards chloroform and toluene indicated the presence of low electron acceptor/ acidic surface components on cell surface of most of the strains. The highest value of per cent hydrophobicity was recorded with chloroform in HM1 (L. casei) (97·10 ± 3·35%) and LGG (98·92 ± 1·24%). A moderate auto-aggregation attribute was observed in all of ourLactobacillusisolates. Only HM10, HM12 and HM13 exhibited comparatively enhanced precipitation rate after 7 h of incubation period. The adhesion potential to collagen matrix was highest in LGG (26·94 ± 5·83%), followed by HM1 (11·07 ± 3·54%) and HM9 (10·85 ± 1·74%) whereas, on HT-29 cells, HM8 (14·99 ± 3·61%), HM3 (13·73 ± 1·14%) and HM1 (11·21 ± 3·18%) could adhere effectively. In this manner, we noticed that although the cell surface properties and adhesion prospective of probiotic bacteria were strain dependent, five of our isolatesviz. HM1, HM3, HM8, HM9 and HM10 exhibited promising cell surface properties, which could be further targeted as indigenous probiotic.
Collapse
|
15
|
Surface proteins involved in the adhesion of Streptococcus salivarius to human intestinal epithelial cells. Appl Microbiol Biotechnol 2018; 102:2851-2865. [PMID: 29442170 PMCID: PMC5847202 DOI: 10.1007/s00253-018-8794-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/10/2018] [Accepted: 01/14/2018] [Indexed: 01/08/2023]
Abstract
The adhesion properties of 14 Streptococcus salivarius strains to mucus (HT29-MTX) and non-mucus secreting (Caco-2/TC7) human intestinal epithelial cells were investigated. Ability to adhere to these two eukaryotic cell lines greatly differs between strains. The presence of mucus played a major factor in adhesion, likely due to high adhesiveness to mucins present in the native human mucus layer covering the whole cell surface. Only one S. salivarius strain (F6-1), isolated from the feces of a healthy baby, was found to strongly adhere to HT-29 MTX cells at a level comparable to that of Lactobacillus rhamnosus GG, a probiotic strain considered to be highly adherent. By sequencing the genome of F6-1, we were able to identify 36 genes encoding putative surface proteins. Deletion mutants were constructed for six of them and their adhesion abilities on HT-29 MTX cells were checked. Our study confirmed that four of these genes encode adhesins involved in the adhesion of S. salivarius to host cells. Such adhesins were also identified in other S. salivarius strains.
Collapse
|
16
|
Lukic J, Jancic I, Mirkovic N, Bufan B, Djokic J, Milenkovic M, Begovic J, Strahinic I, Lozo J. Lactococcus lactis and Lactobacillus salivarius differently modulate early immunological response of Wistar rats co-administered with Listeria monocytogenes. Benef Microbes 2017; 8:809-822. [PMID: 28856909 DOI: 10.3920/bm2017.0007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In the light of the increasing resistance of bacterial pathogens to antibiotics, one of the main global strategies in applied science is development of alternative treatments, which would be safe both for the host and from the environmental perspective. Accordingly, the aim of this study was to test whether two lactic acid bacteria (LAB) strains, Lactococcus lactis BGBU1-4 and Lactobacillus salivarius BGHO1, could be applied as safe supplements for Listeria infection. Two major research objectives were set: to compare the effects of BGBU1-4 and BGHO1 on early immune response in gut tissue of Wistar rats co-administered with Listeria monocytogenes ATCC19111 and next, to test how this applies to their usage as therapeutics in acute ATCC19111 infection. Intestinal villi (IV), Peyer's patches (PP) and mesenteric lymph nodes (MLN) were used for the analysis. The results showed that BGHO1 increased the mRNA expression of innate immune markers CD14, interleukin (IL)-1β and tumour necrosis factor (TNF)-α in PP and IV, and, in parallel, caused a decrease of listeriolysin O (LLO) mRNA expression in same tissues. In MLN of BGHO1 treated rats, LLO expression was increased, along with an increase of the expression of OX-62 mRNA and CD69, pointing to the activation of adaptive immunity. On the other hand, in BGBU1-4 treated rats, there was no reduction of LLO mRNA expression and no induction of innate immunity markers in intestinal tissue. Additionally, CD14 and IL-1β, as well as LLO, but not OX-62 mRNA and CD69 expression, were elevated in MLN of BGBU1-4 treated rats. However, when applied therapeutically, both, BGBU1-4 and BGHO1, lowered Listeria count in spleens of infected rats. Our results not only reveal the potential of LAB to ameliorate Listeria infections, but suggest different immunological effects of two different LAB strains, both of which could be effective in Listeria elimination.
Collapse
Affiliation(s)
- J Lukic
- 1 Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, 11010 Belgrade, Serbia
| | - I Jancic
- 2 Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11010 Belgrade, Serbia
| | - N Mirkovic
- 1 Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, 11010 Belgrade, Serbia
| | - B Bufan
- 2 Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11010 Belgrade, Serbia
| | - J Djokic
- 1 Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, 11010 Belgrade, Serbia
| | - M Milenkovic
- 2 Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11010 Belgrade, Serbia
| | - J Begovic
- 1 Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, 11010 Belgrade, Serbia
| | - I Strahinic
- 1 Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, 11010 Belgrade, Serbia
| | - J Lozo
- 1 Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, 11010 Belgrade, Serbia.,3 Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| |
Collapse
|
17
|
Ljubobratovic U, Kosanovic D, Vukotic G, Molnar Z, Stanisavljevic N, Ristovic T, Peter G, Lukic J, Jeney G. Supplementation of lactobacilli improves growth, regulates microbiota composition and suppresses skeletal anomalies in juvenile pike-perch (Sander lucioperca) reared in recirculating aquaculture system (RAS): A pilot study. Res Vet Sci 2017; 115:451-462. [PMID: 28777955 DOI: 10.1016/j.rvsc.2017.07.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 07/10/2017] [Accepted: 07/16/2017] [Indexed: 11/17/2022]
Abstract
This research aimed to test the effects of lactobacilli, applied to cultured pike-perch, either through hydrolyzed OTOHIME fish diet, or through Artemia nauplii, on fish growth, microbiota balance and skeletal development. On the 12th Day Post Hatching (DPH) fish were divided into following treatment groups: two groups received the combination of OTOHIME and nauplii enriched either with Lactobacillus paracasei BGHN14+Lactobacillus rhamnosus BGT10 or with Lactobacillus reuteri BGGO6-55+Lactobacillus salivarius BGHO1, and one group received OTOHIME hydrolyzed by BGHN14+BGT10 and non-enriched nauplii. Control group received non-enriched nauplii and non-hydrolyzed OTOHIME. The treatment lasted 14days and fish were sacrificed on the 26th DPH for the assessment of digestive enzyme activity and microbiota composition. Individual total lengths and individual body weights were recorded at the end of the treatments, on the 26th DPH, and also on the 45th DPH, in parallel with the evaluation of skeletal deformities and fish survival. Our results indicated positive effect of Artemia enriched with BGGO6-55+BGHO1 on fish growth, skeletal development and trypsin to chymotrypsin activity ratio (T/C), as an indicator of protein digestibility. Hydrolysis of OTOHIME was also associated with better skeletal development, higher T/C values and lower levels of Aeromonas and Mycobacterium spp., which are important fish pathogens. Though additional testing in larger cohort studies is needed, these observations are promising in terms of usage of probiotics for improved environmentally friendly production of pike-perch in Recirculating Aquaculture System (RAS).
Collapse
Affiliation(s)
- Uros Ljubobratovic
- National Agricultural Research and Innovation Centre, Research Institute for Fisheries and Aquaculture (NAIK-HAKI), Anna-liget 8, 5540 Szarvas, Hungary.
| | - Dejana Kosanovic
- Institute for Virology, Vaccine and Sera "Torlak", Vojvode Stepe 458, 11010 Belgrade, Serbia.
| | - Goran Vukotic
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, 11010 Belgrade, Serbia.
| | - Zsuzsanna Molnar
- National Agricultural Research and Innovation Centre, Research Institute for Fisheries and Aquaculture (NAIK-HAKI), Anna-liget 8, 5540 Szarvas, Hungary.
| | - Nemanja Stanisavljevic
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, 11010 Belgrade, Serbia.
| | - Tijana Ristovic
- National Agricultural Research and Innovation Centre, Research Institute for Fisheries and Aquaculture (NAIK-HAKI), Anna-liget 8, 5540 Szarvas, Hungary.
| | - Geza Peter
- National Agricultural Research and Innovation Centre, Research Institute for Fisheries and Aquaculture (NAIK-HAKI), Anna-liget 8, 5540 Szarvas, Hungary.
| | - Jovanka Lukic
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, 11010 Belgrade, Serbia.
| | - Galina Jeney
- National Agricultural Research and Innovation Centre, Research Institute for Fisheries and Aquaculture (NAIK-HAKI), Anna-liget 8, 5540 Szarvas, Hungary.
| |
Collapse
|
18
|
Gunning AP, Kavanaugh D, Thursby E, Etzold S, MacKenzie DA, Juge N. Use of Atomic Force Microscopy to Study the Multi-Modular Interaction of Bacterial Adhesins to Mucins. Int J Mol Sci 2016; 17:ijms17111854. [PMID: 27834807 PMCID: PMC5133854 DOI: 10.3390/ijms17111854] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/26/2016] [Accepted: 11/02/2016] [Indexed: 01/08/2023] Open
Abstract
The mucus layer covering the gastrointestinal (GI) epithelium is critical in selecting and maintaining homeostatic interactions with our gut bacteria. However, the molecular details of these interactions are not well understood. Here, we provide mechanistic insights into the adhesion properties of the canonical mucus-binding protein (MUB), a large multi-repeat cell–surface adhesin found in Lactobacillus inhabiting the GI tract. We used atomic force microscopy to unravel the mechanism driving MUB-mediated adhesion to mucins. Using single-molecule force spectroscopy we showed that MUB displayed remarkable adhesive properties favouring a nanospring-like adhesion model between MUB and mucin mediated by unfolding of the multiple repeats constituting the adhesin. We obtained direct evidence for MUB self-interaction; MUB–MUB followed a similar binding pattern, confirming that MUB modular structure mediated such mechanism. This was in marked contrast with the mucin adhesion behaviour presented by Galectin-3 (Gal-3), a mammalian lectin characterised by a single carbohydrate binding domain (CRD). The binding mechanisms reported here perfectly match the particular structural organization of MUB, which maximizes interactions with the mucin glycan receptors through its long and linear multi-repeat structure, potentiating the retention of bacteria within the outer mucus layer.
Collapse
Affiliation(s)
- A Patrick Gunning
- The Gut Health and Food Safety Institute Strategic Programme, Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, UK.
| | - Devon Kavanaugh
- The Gut Health and Food Safety Institute Strategic Programme, Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, UK.
| | - Elizabeth Thursby
- The Gut Health and Food Safety Institute Strategic Programme, Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, UK.
| | - Sabrina Etzold
- The Gut Health and Food Safety Institute Strategic Programme, Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, UK.
- Division of Neonatology and Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, School of Medicine, University of California San Diego, 9500 Gilman Drive, San Diego, CA 92093-0715, USA.
| | - Donald A MacKenzie
- The Gut Health and Food Safety Institute Strategic Programme, Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, UK.
| | - Nathalie Juge
- The Gut Health and Food Safety Institute Strategic Programme, Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, UK.
| |
Collapse
|
19
|
Pavlović B, Tomić S, Đokić J, Vasilijić S, Vučević D, Lukić J, Gruden-Movsesijan A, Ilić N, Marković M, Čolić M. Fast dendritic cells matured with Poly (I:C) may acquire tolerogenic properties. Cytotherapy 2015; 17:1763-76. [PMID: 26455276 DOI: 10.1016/j.jcyt.2015.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/29/2015] [Accepted: 08/04/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND AIMS Because of the labor-intensive and time-consuming conventional protocols for the generation of dendritic cells (DCs) as the most promising tools for anti-cancer therapy that enable the induction of a T-helper (Th)1-mediated anti-tumor immune response, the use of short-term protocols has been proposed. However, data on the applicability of such protocols in cancer immunotherapy are quite limited. METHODS We compared the phenotypic and functional capability of fast DCs (fDCs) differentiated for 24 h and then matured for 48 h with Poly (I:C), a strong Th1-promoting agent, with donor-matched conventional DCs (cDCs) differentiated for 5 days and matured likewise. RESULTS Of 12 donors tested, we identified seven whose monocytes failed to develop into immunogenic DCs through the use of fDC protocol, on the basis of incomplete downregulation of CD14, low expression of CD1a and macrophage-like morphology. Such fDCs have significantly lower expression of CD83, CD86, CCR7 and CD40, weaker allo-stimulatory Th1- and Th17-polarizing capacity caused by poor production of interleukin (IL)-12p70 and IL-23 and high production of IL-10, and prominent Th2-polarizing capacity, compared with donor-matched cDCs. Furthermore, such fDCs had tolerogenic properties as judged by higher expression of indolamine dioxigenase-3, IDO-1 and IL-1β and induction of a higher percentage of CD4(+)CD25(+)FoxP3(+) T cells. These findings correlated with increased transforming growth factor (TGF)-β production by fDC-primed CD3(+)T cells and their stronger anti-proliferative capacity. CONCLUSIONS We emphasize that although fDCs could probably be applied as an alternative to cDCs for cancer therapy, the fDC protocol should not be applied to donors whose DCs acquire tolerogenic capabilities.
Collapse
Affiliation(s)
- Bojan Pavlović
- Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Sergej Tomić
- Medical Faculty of the Military Medical Academy, University of Defence, Belgrade, Serbia
| | - Jelena Đokić
- Medical Faculty of the Military Medical Academy, University of Defence, Belgrade, Serbia
| | - Saša Vasilijić
- Institute for Medical Research, Military Medical Academy, University of Defence, Belgrade, Serbia
| | - Dragana Vučević
- Institute for Medical Research, Military Medical Academy, University of Defence, Belgrade, Serbia
| | - Jovanka Lukić
- Institute for Molecular Genetics and Genetic Engineering, Laboratory for Molecular Microbiology, University of Belgrade, Belgrade, Serbia
| | | | - Nataša Ilić
- Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | - Milan Marković
- Medical Faculty of the Military Medical Academy, University of Defence, Belgrade, Serbia; Medical Faculty, University of Niš, Niš, Serbia
| | - Miodrag Čolić
- Medical Faculty of the Military Medical Academy, University of Defence, Belgrade, Serbia; Medical Faculty, University of Niš, Niš, Serbia.
| |
Collapse
|