1
|
Getachew M, Mulat WL, Mereta ST, Gebrie GS, Kelly-Quinn M. Refining benthic macroinvertebrate kick sampling protocol for wadeable rivers and streams in Ethiopia. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:196. [PMID: 35175462 DOI: 10.1007/s10661-021-09594-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/05/2021] [Indexed: 06/14/2023]
Abstract
Streams and rivers cover a larger proportion of the Earth's surface but are highly affected by human pressures. Conversely, bioassessment methods are in their infancy in developing countries such as Ethiopia. In this study, we compared 2- and 3-min macroinvertebrate kick samples at multiple locations for both riffle habitat (RH) and multihabitat (MH) approaches. The performance of each method was evaluated statistically using benthic macroinvertebrate metrics and diversity indices. Results of the Kruskal-Wallis analysis in this study showed no significant differences among methods tested in minimally impacted streams in Ethiopia and generally performed equally irrespective of the methods employed except for total abundances and Ephemeroptera abundances. Furthermore, multivariate analysis of the relative abundances of macroinvertebrate communities using analysis of similarity (ANOSIM), RELATE, non-metric multidimensional scaling (MDS), and classification strength-sampling method comparability (CS-SMC) indicated a high similarity in the macroinvertebrate communities recorded among all methods employed in this study area. However, the index of multivariate dispersion (IMD) test showed variations in relative abundances of macroinvertebrate communities among the methods. In summary, if the focus is not on rare taxa and the required information is not dependent on additional evidence provided by the use of lower taxonomic levels of identification (genus and species), the results of the present study support the use of the shorter 2-min RH kick sampling method for the bioassessment of wadeable rivers and streams in Ethiopia.
Collapse
Affiliation(s)
- Melaku Getachew
- Ethiopian Institute of Water Resources, Addis Ababa University, Addis Ababa, Ethiopia.
- Department of Environmental Health, Wollo University, Dessie, Ethiopia.
| | | | - Seid Tiku Mereta
- Department of Environmental Health Sciences and Technology, Jimma University, Jimma, Ethiopia
| | - Geremew Sahilu Gebrie
- School of Civil and Environmental Engineering, Addis Ababa Institute of Technology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Mary Kelly-Quinn
- School of Biology and Environmental Science, University College Dublin, UCD Earth Institute, Dublin, Ireland
| |
Collapse
|
2
|
Urrutia-Cordero P, Langenheder S, Striebel M, Eklöv P, Angeler DG, Bertilsson S, Csitári B, Hansson LA, Kelpsiene E, Laudon H, Lundgren M, Osman OA, Parkefelt L, Hillebrand H. Functionally reversible impacts of disturbances on lake food webs linked to spatial and seasonal dependencies. Ecology 2021; 102:e03283. [PMID: 33428769 DOI: 10.1002/ecy.3283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/17/2020] [Accepted: 10/26/2020] [Indexed: 11/09/2022]
Abstract
Increasing human impact on the environment is causing drastic changes in disturbance regimes and how they prevail over time. Of increasing relevance is to further our understanding on biological responses to pulse disturbances (short duration) and how they interact with other ongoing press disturbances (constantly present). Because the temporal and spatial contexts of single experiments often limit our ability to generalize results across space and time, we conducted a modularized mesocosm experiment replicated in space (five lakes along a latitudinal gradient in Scandinavia) and time (two seasons, spring and summer) to generate general predictions on how the functioning and composition of multitrophic plankton communities (zoo-, phyto- and bacterioplankton) respond to pulse disturbances acting either in isolation or combined with press disturbances. As pulse disturbance, we used short-term changes in fish presence, and as press disturbance, we addressed the ongoing reduction in light availability caused by increased cloudiness and lake browning in many boreal and subarctic lakes. First, our results show that the top-down pulse disturbance had the strongest effects on both functioning and composition of the three trophic levels across sites and seasons, with signs for interactive impacts with the bottom-up press disturbance on phytoplankton communities. Second, community composition responses to disturbances were highly divergent between lakes and seasons: temporal accumulated community turnover of the same trophic level either increased (destabilization) or decreased (stabilization) in response to the disturbances compared to control conditions. Third, we found functional recovery from the pulse disturbances to be frequent at the end of most experiments. In a broader context, these results demonstrate that top-down, pulse disturbances, either alone or with additional constant stress upon primary producers caused by bottom-up disturbances, can induce profound but often functionally reversible changes across multiple trophic levels, which are strongly linked to spatial and temporal context dependencies. Furthermore, the identified dichotomy of disturbance effects on the turnover in community composition demonstrates the potential of disturbances to either stabilize or destabilize biodiversity patterns over time across a wide range of environmental conditions.
Collapse
Affiliation(s)
- Pablo Urrutia-Cordero
- Limnology, Department of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Norbyvägen 18D, Uppsala, Sweden.,Helmholtz Institute for Functional Marine Biodiversity (HIFMB), Ammerländer Heerstrasse 231, Oldenburg, 26129, Germany.,Institute for Chemistry and Biology of Marine Environments (ICBM), Carl-von-Ossietzky University Oldenburg, Schleusenstrasse 1, Wilhelmshaven, 26382, Germany
| | - Silke Langenheder
- Limnology, Department of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Norbyvägen 18D, Uppsala, Sweden
| | - Maren Striebel
- Institute for Chemistry and Biology of Marine Environments (ICBM), Carl-von-Ossietzky University Oldenburg, Schleusenstrasse 1, Wilhelmshaven, 26382, Germany
| | - Peter Eklöv
- Limnology, Department of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Norbyvägen 18D, Uppsala, Sweden
| | - David G Angeler
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, Uppsala, 750 07, Sweden
| | - Stefan Bertilsson
- Limnology, Department of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Norbyvägen 18D, Uppsala, Sweden.,Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, Uppsala, 750 07, Sweden
| | - Bianka Csitári
- Limnology, Department of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Norbyvägen 18D, Uppsala, Sweden.,Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c., Budapest, H-1117, Hungary
| | - Lars-Anders Hansson
- Department of Biology/Aquatic Ecology, Lund University, Ecology Building, Lund, SE-223 62, Sweden
| | - Egle Kelpsiene
- Department of Biochemistry and Structural Biology, Lund University, Lund, SE-221 00, Sweden
| | - Hjalmar Laudon
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden
| | - Maria Lundgren
- Swedish University of Agricultural Sciences, Unit for Field-based Forest Research, Asa Research Station, Lammhult, SE-363 94, Sweden.,Department of Biology and Environmental Science, Linnaeus University, Kalmar, SE-391 82, Sweden
| | - Omneya Ahmed Osman
- Limnology, Department of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Norbyvägen 18D, Uppsala, Sweden
| | | | - Helmut Hillebrand
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB), Ammerländer Heerstrasse 231, Oldenburg, 26129, Germany.,Institute for Chemistry and Biology of Marine Environments (ICBM), Carl-von-Ossietzky University Oldenburg, Schleusenstrasse 1, Wilhelmshaven, 26382, Germany.,Aldfred-Wegener Institute, Helmholtz Center for Polar and Marine Research, Am Handelshafen 12, Bremerhaven, Germany
| |
Collapse
|
3
|
Aguirre M, Abad D, Albaina A, Cralle L, Goñi-Urriza MS, Estonba A, Zarraonaindia I. Unraveling the environmental and anthropogenic drivers of bacterial community changes in the Estuary of Bilbao and its tributaries. PLoS One 2017; 12:e0178755. [PMID: 28594872 PMCID: PMC5464593 DOI: 10.1371/journal.pone.0178755] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 05/18/2017] [Indexed: 12/13/2022] Open
Abstract
In this study, 16S rRNA gene sequencing was used to characterize the changes in taxonomic composition and environmental factors significantly influencing bacterial community structure across an annual cycle in the Estuary of Bilbao as well as its tributaries. In spite of this estuary being small and characterized by a short residence time, the environmental factors most highly correlated with the bacterial community mirrored those reported to govern larger estuaries, specifically salinity and temperature. Additionally, bacterial community changes in the estuary appeared to vary with precipitation. For example, an increase in freshwater bacteria (Comamonadaceae and Sphingobacteriaceae) was observed in high precipitation periods compared to the predominately marine-like bacteria (Rhodobacterales and Oceanospirillales) that were found in low precipitation periods. Notably, we observed a significantly higher relative abundance of Comamonadaceae than previously described in other estuaries. Furthermore, anthropic factors could have an impact on this particular estuary's bacterial community structure. For example, ecosystem changes related to the channelization of the estuary likely induced a low dissolved oxygen (DO) concentration, high temperature, and high chlorophyll concentration period in the inner euhaline water in summer (samples with salinity >30 ppt). Those samples were characterized by a high abundance of facultative anaerobes. For instance, OTUs classified as Cryomorphaceae and Candidatus Aquiluna rubra were negatively associated with DO concentration, while Oleiphilaceae was positively associated with DO concentration. Additionally, microorganisms related to biological treatment of wastewater (e.g Bdellovibrio and Zoogloea) were detected in the samples immediately downstream of the Bilbao Wastewater Treatment Plant (WWTP). There are several human activities planned in the region surrounding the Estuary of Bilbao (e.g. sediment draining, architectural changes, etc.) which will likely affect this ecosystem. Therefore, the addition of bacterial community profiling and diversity analysis into the estuary's ongoing monitoring program would provide a more comprehensive view of the ecological status of the Estuary of Bilbao.
Collapse
Affiliation(s)
- Mikel Aguirre
- Department of Genetics, Physical Anthropology & Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leio, Spain
| | - David Abad
- Department of Genetics, Physical Anthropology & Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leio, Spain
| | - Aitor Albaina
- Department of Genetics, Physical Anthropology & Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leio, Spain
- Environmental Studies Centre (CEA), Vitoria-Gasteiz, 01008, Spain
| | - Lauren Cralle
- Department of Surgery, University of Chicago, 5841 S. Maryland Ave., Chicago, IL, United States of America
| | - María Soledad Goñi-Urriza
- Equipe Microbiologie et Environnement, IPREM, UMR CNRS 5254, Bâtiment IBEAS, Université de Pau et des Pays de l’Adour, BP1155, Pau, France
| | - Andone Estonba
- Department of Genetics, Physical Anthropology & Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leio, Spain
| | - Iratxe Zarraonaindia
- Department of Genetics, Physical Anthropology & Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
4
|
Sullam KE, Matthews B, Aebischer T, Seehausen O, Bürgmann H. The effect of top-predator presence and phenotype on aquatic microbial communities. Ecol Evol 2017; 7:1572-1582. [PMID: 28261466 PMCID: PMC5330871 DOI: 10.1002/ece3.2784] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 01/04/2017] [Accepted: 01/11/2017] [Indexed: 11/08/2022] Open
Abstract
The presence of predators can impact a variety of organisms within the ecosystem, including microorganisms. Because the effects of fish predators and their phenotypic differences on microbial communities have not received much attention, we tested how the presence/absence, genotype, and plasticity of the predatory three‐spine stickleback (Gasterosteus aculeatus) influence aquatic microbes in outdoor mesocosms. We reared lake and stream stickleback genotypes on contrasting food resources to adulthood, and then added them to aquatic mesocosm ecosystems to assess their impact on the planktonic bacterial community. We also investigated whether the effects of fish persisted following the removal of adults, and the subsequent addition of a homogenous juvenile fish population. The presence of adult stickleback increased the number of bacterial OTUs and altered the size structure of the microbial community, whereas their phenotype affected bacterial community composition. Some of these effects were detectable after adult fish were removed from the mesocosms, and after juvenile fish were placed in the tanks, most of these effects disappeared. Our results suggest that fish can have strong short‐term effects on microbial communities that are partially mediated by phenotypic variation of fish.
Collapse
Affiliation(s)
- Karen E Sullam
- Department of Surface Waters-Research and Management Center for Ecology, Evolution and Biogeochemistry Eawag Swiss Federal Institute of Aquatic Science and Technology Kastanienbaum Switzerland; Zoological Institute University of Basel Basel Switzerland
| | - Blake Matthews
- Eawag Aquatic Ecology Department Center for Ecology, Evolution and Biogeochemistry Kastanienbaum Switzerland
| | - Thierry Aebischer
- Eawag Department of Fish Ecology and Evolution Center for Ecology, Evolution and Biogeochemistry Kastanienbaum Switzerland; Aquatic Ecology and Evolution Institute of Ecology & Evolution University of Bern Bern Switzerland; Department of Biology University of Fribourg Fribourg Switzerland
| | - Ole Seehausen
- Eawag Department of Fish Ecology and Evolution Center for Ecology, Evolution and Biogeochemistry Kastanienbaum Switzerland; Aquatic Ecology and Evolution Institute of Ecology & Evolution University of Bern Bern Switzerland
| | - Helmut Bürgmann
- Department of Surface Waters-Research and Management Center for Ecology, Evolution and Biogeochemistry Eawag Swiss Federal Institute of Aquatic Science and Technology Kastanienbaum Switzerland
| |
Collapse
|