1
|
Anguita-Maeso M, Haro C, Navas-Cortés JA, Landa BB. Primer Choice and Xylem-Microbiome-Extraction Method Are Important Determinants in Assessing Xylem Bacterial Community in Olive Trees. PLANTS (BASEL, SWITZERLAND) 2022; 11:1320. [PMID: 35631745 PMCID: PMC9144944 DOI: 10.3390/plants11101320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Understanding the unique and unexplored microbial environment of xylem sap is starting to be of relevant importance for plant health, as it could include microbes that may protect plants against xylem-limited pathogens, such as Verticillium dahliae and Xylella fastidiosa. In this study, we evaluated the effects that the method for extracting the xylem bacterial communities, the plant age and the PCR primers may have on characterizing the xylem-bacterial-community composition by using an NGS approach. Xylem sap was extracted from xylem vessels by using a Scholander pressure chamber, or by macerating wood shavings that were obtained from xylem tissues by using branches from 10-year-old olive trees, or the entire canopy of 1-year-old olive plantlets. Additionally, we compared four different PCR-primer pairs that target 16S rRNA for their efficacy to avoid the coamplification of mitochondria and chloroplast 16S rRNA, as this represents an important drawback in metabarcoding studies. The highest amplifications in the mitochondria and chloroplast reads were obtained when using xylem woody chips with the PCR1-799F/1062R (76.05%) and PCR3-967F/1391R (99.96%) primer pairs. To the contrary, the PCR2-799F/1115R and PCR4-799F/1193R primer pairs showed the lowest mitochondria 16S rRNA amplification (<27.48%), no chloroplast sequences and the highest numbers of bacterial OTUs identified (i.e., 254 and 266, respectively). Interestingly, only 73 out of 172 and 46 out of 181 genera were shared between the xylem sap and woody chips after amplification with PCR2 or PCR4 primers, respectively, which indicates a strong bias of the bacterial-community description, depending on the primers used. Globally, the most abundant bacterial genera (>60% of reads) included Anoxybacillus, Cutibacterium, Pseudomonas, Spirosoma, Methylobacterium-Methylorubrum and Sphingomonas; however, their relative importance varied, depending on the matrix that was used for the DNA extraction and the primer pairs that were used, with the lowest effect due to plant age. These results will help to optimize the analysis of xylem-inhabiting bacteria, depending on whether whole xylematic tissue or xylem sap is used for the DNA extraction. More importantly, it will help to better understand the driving and modifying factors that shape the olive-xylem-bacterial-community composition.
Collapse
Affiliation(s)
- Manuel Anguita-Maeso
- Department of Crop Protection, Institute for Sustainable Agriculture, Spanish National Research Council (CSIC), 14004 Córdoba, Spain; (C.H.); (J.A.N.-C.)
| | | | | | - Blanca B. Landa
- Department of Crop Protection, Institute for Sustainable Agriculture, Spanish National Research Council (CSIC), 14004 Córdoba, Spain; (C.H.); (J.A.N.-C.)
| |
Collapse
|
2
|
Matys ED, Mackey T, Grettenberger C, Mueller E, Jungblut A, Sumner DY, Hawes I, Summons RE. Environmental controls on bacteriohopanepolyol profiles of benthic microbial mats from Lake Fryxell, Antarctica. GEOBIOLOGY 2019; 17:551-563. [PMID: 31325234 DOI: 10.1111/gbi.12353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/20/2019] [Accepted: 05/04/2019] [Indexed: 06/10/2023]
Abstract
Bacteriohopanepolyols (BHPs) are pentacyclic triterpenoid lipids that contribute to the structural integrity and physiology of some bacteria. Because some BHPs originate from specific classes of bacteria, BHPs have potential as taxonomically and environmentally diagnostic biomarkers. For example, a stereoisomer of bacteriohopanetetrol (informally BHT II) has been associated with anaerobic ammonium oxidation (anammox) bacteria and suboxic to anoxic marine environments where anammox is active. As a result, the detection of BHT II in the sedimentary record and fluctuations in the relative abundance of BHT II may inform reconstructions of nitrogen cycling and ocean redox changes through the geological record. However, there are uncertainties concerning the sources of BHT II and whether or not BHT II is produced in abundance in non-marine environments, both of which are pertinent to interpretations of BHT II signatures in sediments. To address these questions, we investigate the BHP composition of benthic microbial mats from Lake Fryxell, Antarctica. Lake Fryxell is a perennially ice-covered lake with a sharp oxycline in a density-stabilized water column. We describe the diversity and abundance of BHPs in benthic microbial mats across a transect from oxic to anoxic conditions. Generally, BHP abundances and diversity vary with the morphologies of microbial mats, which were previously shown to reflect local environmental conditions, such as irradiance and oxygen and sulfide concentrations. BHT II was identified in mats that exist within oxic to anoxic portions of the lake. However, anammox bacteria have yet to be identified in Lake Fryxell. We examine our results in the context of BHPs as biomarkers in modern and ancient environments.
Collapse
Affiliation(s)
- Emily D Matys
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Tyler Mackey
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | | | - Elliott Mueller
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Anne Jungblut
- Department of Life Sciences, The Natural History Museum, London, UK
| | - Dawn Y Sumner
- Department of Earth and Planetary Sciences, University of California, Davis, California
| | - Ian Hawes
- University of Waikato, Tauranga, New Zealand
| | - Roger E Summons
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
3
|
Kharbush JJ, Thompson LR, Haroon MF, Knight R, Aluwihare LI. Hopanoid-producing bacteria in the Red Sea include the major marine nitrite oxidizers. FEMS Microbiol Ecol 2019; 94:4969676. [PMID: 29668882 DOI: 10.1093/femsec/fiy063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 01/26/2023] Open
Abstract
Hopanoids, including the extended side chain-containing bacteriohopanepolyols, are bacterial lipids found abundantly in the geological record and across Earth's surface environments. However, the physiological roles of this biomarker remain uncertain, limiting interpretation of their presence in current and past environments. Recent work investigating the diversity and distribution of hopanoid producers in the marine environment implicated low-oxygen regions as important loci of hopanoid production, and data from marine oxygen minimum zones suggested that the dominant hopanoid producers in these environments are nitrite-utilizing organisms, revealing a potential connection between hopanoid production and the marine nitrogen cycle. Here, we use metagenomic data from the Red Sea to investigate the ecology of hopanoid producers in an environmental setting that is biogeochemically distinct from those investigated previously. The distributions of hopanoid production and nitrite oxidation genes in the Red Sea are closely correlated, and the majority of hopanoid producers are taxonomically affiliated with the major marine nitrite oxidizers, Nitrospinae and Nitrospirae. These results suggest that the relationship between hopanoid production and nitrite oxidation is conserved across varying biogeochemical conditions in dark ocean microbial ecosystems.
Collapse
Affiliation(s)
- Jenan J Kharbush
- Department of Earth and Plantary Sciences, Harvard University, Cambridge, MA, USA.,Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Luke R Thompson
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.,Atlantic Oceanographic and Meteorological Laboratory, Ocean Chemistry and Ecosystems Division, National Oceanic and Atmospheric Administration, La Jolla, CA, USA
| | - Mohamed Fauzi Haroon
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.,Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA.,Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Lihini I Aluwihare
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
4
|
Matys ED, Sepúlveda J, Pantoja S, Lange CB, Caniupán M, Lamy F, Summons RE. Bacteriohopanepolyols along redox gradients in the Humboldt Current System off northern Chile. GEOBIOLOGY 2017; 15:844-857. [PMID: 28771908 DOI: 10.1111/gbi.12250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 06/21/2017] [Indexed: 06/07/2023]
Abstract
Marine oxygen minimum zones (OMZs) are characterized by the presence of subsurface suboxic or anoxic waters where diverse microbial processes are responsible for the removal of fixed nitrogen. OMZs have expanded over past decades and are expected to continue expanding in response to the changing climate. The implications for marine biogeochemistry, particularly nitrogen cycling, are uncertain. Cell membrane lipids (biomarkers), such as bacterial bacteriohopanepolyols (BHPs) and their degradation products (hopanoids), have distinctive structural attributes that convey information about their biological sources. Since the discovery of fossil hopanoids in ancient sediments, the study of BHPs has been of great biogeochemical interest due to their potential to serve as proxies for bacteria in the geological record. A stereoisomer of bacteriohopanetetrol (BHT), BHT II, has been previously identified in OMZ waters and has as been unequivocally identified in culture enrichments of anammox bacteria, a key group contributing to nitrogen loss in marine OMZs. We tested BHT II as a proxy for suboxia/anoxia and anammox bacteria in suspended organic matter across OMZ waters of the Humboldt Current System off northern Chile, as well as in surface and deeply buried sediments (125-150 ky). The BHT II ratio (BHT II/total BHT) increases as oxygen content decreases through the water column, consistent with previous results from Perú, the Cariaco Basin and the Arabian Sea, and in line with microbiological evidence indicating intense anammox activity in the Chilean OMZ. Notably, BHT II is transported from the water column to surface sediments, and preserved in deeply buried sediments, where the BHT II ratio correlates with changes in δ15 N sediment values during glacial-interglacial transitions. This study suggests that BHT II offers a proxy for past changes in the relative importance of anammox, and fluctuations in nitrogen cycling in response to ocean redox changes through the geological record.
Collapse
Affiliation(s)
- E D Matys
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - J Sepúlveda
- Department of Geological Sciences, Institute of Arctic and Alpine Research (INSTAAR), University of Colorado Boulder, Boulder, CO, USA
| | - S Pantoja
- Department of Oceanography and COPAS Sur-Austral, University of Concepción, Concepción, Chile
| | - C B Lange
- Department of Oceanography and COPAS Sur-Austral, University of Concepción, Concepción, Chile
| | - M Caniupán
- Department of Oceanography and COPAS Sur-Austral, University of Concepción, Concepción, Chile
| | - F Lamy
- Alfred Wegener Institute for Polar and Marine Research (AWI), Bremerhaven, Germany
| | - R E Summons
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|