1
|
Ramírez-Arenas PJ, Latisnere-Barragán H, García-Maldonado JQ, López-Cortés A. Highly diverse-Low abundance methanogenic communities in hypersaline microbial mats of Guerrero Negro B.C.S., assessed through microcosm experiments. PLoS One 2024; 19:e0303004. [PMID: 39365803 PMCID: PMC11451985 DOI: 10.1371/journal.pone.0303004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/26/2024] [Indexed: 10/06/2024] Open
Abstract
Methanogenic communities of hypersaline microbial mats of Guerrero Negro, Baja California Sur, Mexico, have been recognized to be dominated by methylotrophic methanogens. However, recent studies of environmental samples have evidenced the presence of hydrogenotrophic and methyl-reducing methanogenic members, although at low relative abundances. Physical and geochemical conditions that stimulate the development of these groups in hypersaline environments, remains elusive. Thus, in this study the taxonomic diversity of methanogenic archaea of two sites of Exportadora de Sal S.A was assessed by mcrA gene high throughput sequencing from microcosm experiments with different substrates (both competitive and non-competitive). Results confirmed the dominance of the order Methanosarcinales in all treatments, but an increase in the abundance of Methanomassiliiccocales was also observed, mainly in the treatment without substrate addition. Moreover, incubations supplemented with hydrogen and carbon dioxide, as well as the mixture of hydrogen, carbon dioxide and trimethylamine, managed to stimulate the richness and abundance of other than Methanosarcinales methanogenic archaea. Several OTUs that were not assigned to known methanogens resulted phylogenetically distributed into at least nine orders. Environmental samples revealed a wide diversity of methanogenic archaea of low relative abundance that had not been previously reported for this environment, suggesting that the importance and diversity of methanogens in hypersaline ecosystems may have been overlooked. This work also provided insights into how different taxonomic groups responded to the evaluated incubation conditions.
Collapse
Affiliation(s)
| | | | - José Q. García-Maldonado
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Mérida, Yucatán, México
| | - Alejandro López-Cortés
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, Baja California Sur, México
| |
Collapse
|
2
|
Maza-Márquez P, Lee MD, Bebout BM. Community ecology and functional potential of bacteria, archaea, eukarya and viruses in Guerrero Negro microbial mat. Sci Rep 2024; 14:2561. [PMID: 38297006 PMCID: PMC10831059 DOI: 10.1038/s41598-024-52626-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/22/2024] [Indexed: 02/02/2024] Open
Abstract
In this study, the microbial ecology, potential environmental adaptive mechanisms, and the potential evolutionary interlinking of genes between bacterial, archaeal and viral lineages in Guerrero Negro (GN) microbial mat were investigated using metagenomic sequencing across a vertical transect at millimeter scale. The community composition based on unique genes comprised bacteria (98.01%), archaea (1.81%), eukarya (0.07%) and viruses (0.11%). A gene-focused analysis of bacteria archaea, eukarya and viruses showed a vertical partition of the community. The greatest coverages of genes of bacteria and eukarya were detected in first layers, while the highest coverages of genes of archaea and viruses were found in deeper layers. Many genes potentially related to adaptation to the local environment were detected, such as UV radiation, multidrug resistance, oxidative stress, heavy metals, salinity and desiccation. Those genes were found in bacterial, archaeal and viral lineages with 6477, 44, and 1 genes, respectively. The evolutionary histories of those genes were studied using phylogenetic analysis, showing an interlinking between domains in GN mat.
Collapse
Affiliation(s)
- P Maza-Márquez
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA, USA.
- University of Granada, Granada, Spain.
| | - M D Lee
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA, USA
- Blue Marble Space Institute of Science, Seattle, WA, USA
| | - B M Bebout
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA, USA
| |
Collapse
|
3
|
Xie L, Yu S, Lu X, Liu S, Tang Y, Lu H. Different Responses of Bacteria and Archaea to Environmental Variables in Brines of the Mahai Potash Mine, Qinghai-Tibet Plateau. Microorganisms 2023; 11:2002. [PMID: 37630563 PMCID: PMC10458105 DOI: 10.3390/microorganisms11082002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Salt mines feature both autochthonous and allochthonous microbial communities introduced by industrialization. It is important to generate the information on the diversity of the microbial communities present in the salt mines and how they are shaped by the environment representing ecological diversification. Brine from Mahai potash mine (Qianghai, China), an extreme hypersaline environment, is used to produce potash salts for hundreds of millions of people. However, halophiles preserved in this niche during deposition are still unknown. In this study, using high-throughput 16S rRNA gene amplicon sequencing and estimation of physicochemical variables, we examined brine samples collected from locations with the gradient of industrial activity intensity and discrete hydrochemical compositions in the Mahai potash mine. Our findings revealed a highly diverse bacterial community, mainly composed of Pseudomonadota in the hypersaline brines from the industrial area, whereas in the natural brine collected from the upstream Mahai salt lake, most of the 16S rRNA gene reads were assigned to Bacteroidota. Halobacteria and halophilic methanogens dominated archaeal populations. Furthermore, we discovered that in the Mahai potash mining area, bacterial communities tended to respond to anthropogenic influences. In contrast, archaeal diversity and compositions were primarily shaped by the chemical properties of the hypersaline brines. Conspicuously, distinct methanogenic communities were discovered in sets of samples with varying ionic compositions, indicating their strong sensitivity to the brine hydrochemical alterations. Our findings provide the first taxonomic snapshot of microbial communities from the Mahai potash mine and reveal the different responses of bacteria and archaea to environmental variations in this high-altitude aquatic ecosystem.
Collapse
Affiliation(s)
- Linglu Xie
- School of Earth and Space Sciences, Peking University, Beijing 100871, China; (L.X.)
| | - Shan Yu
- Beijing International Center for Gas Hydrate, School of Earth and Space Sciences, Peking University, Beijing 100871, China
- National Engineering Research Center for Gas Hydrate Exploration and Development, Guangzhou 511466, China
| | - Xindi Lu
- School of Earth and Space Sciences, Peking University, Beijing 100871, China; (L.X.)
| | - Siwei Liu
- School of Earth and Space Sciences, Peking University, Beijing 100871, China; (L.X.)
| | - Yukai Tang
- School of Earth and Space Sciences, Peking University, Beijing 100871, China; (L.X.)
| | - Hailong Lu
- School of Earth and Space Sciences, Peking University, Beijing 100871, China; (L.X.)
- Beijing International Center for Gas Hydrate, School of Earth and Space Sciences, Peking University, Beijing 100871, China
- National Engineering Research Center for Gas Hydrate Exploration and Development, Guangzhou 511466, China
| |
Collapse
|
4
|
Bueno de Mesquita CP, Wu D, Tringe SG. Methyl-Based Methanogenesis: an Ecological and Genomic Review. Microbiol Mol Biol Rev 2023; 87:e0002422. [PMID: 36692297 PMCID: PMC10029344 DOI: 10.1128/mmbr.00024-22] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Methyl-based methanogenesis is one of three broad categories of archaeal anaerobic methanogenesis, including both the methyl dismutation (methylotrophic) pathway and the methyl-reducing (also known as hydrogen-dependent methylotrophic) pathway. Methyl-based methanogenesis is increasingly recognized as an important source of methane in a variety of environments. Here, we provide an overview of methyl-based methanogenesis research, including the conditions under which methyl-based methanogenesis can be a dominant source of methane emissions, experimental methods for distinguishing different pathways of methane production, molecular details of the biochemical pathways involved, and the genes and organisms involved in these processes. We also identify the current gaps in knowledge and present a genomic and metagenomic survey of methyl-based methanogenesis genes, highlighting the diversity of methyl-based methanogens at multiple taxonomic levels and the widespread distribution of known methyl-based methanogenesis genes and families across different environments.
Collapse
Affiliation(s)
| | - Dongying Wu
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Susannah G. Tringe
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
5
|
Wang B, Kuang S, Shao H, Cheng F, Wang H. Improving soil fertility by driving microbial community changes in saline soils of Yellow River Delta under petroleum pollution. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 304:114265. [PMID: 34915391 DOI: 10.1016/j.jenvman.2021.114265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 11/28/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
It is promising to use indigenous microorganisms for fertility improvement in petroleum-contaminated coastal soil. As a result, the microbial community and physicochemical property are the base for the restoration. For the detailed information, the Phragmites Communis (P), Chinese Tamarisk (C), Suaeda salsa (S), and new Bare Land (B) soil of Yellow River Delta was 90 g in 100 mL sterile bottles simulated at 25 °C with soil: petroleum = 10:1 in the incubator for four months. The samples were detected at 60 and 120 days along with untreated soil and aged Oil Sludge (O) as control. The results showed that all the samples were alkaline (pH 7.99-8.83), which the salinity and NO3- content of incubate soil followed the in situ samples as P (1.09-1.72‰, 8.02-8.17 mg kg-1), C (10.61-13.79‰, 5.99-6.07 mg kg-1), S (10.19-12.43‰, 3.64-4.22 mg kg-1), B (31.85-32.45‰, 3.56-3.72 mg kg-1) and O (31.61-34.30‰, 0.89-0.90 mg kg-1). NO3- and organic carbon decreased after incubation, which the polluted samples (86.63-92.63 g kg-1) still had higher organic carbon than untreated ones with more NH4+ consumption. The high-throughput sequence results showed that the Gammaproteobacteria and Alphaproteobacteria were dominant in all samples, while sulfate reducting bacteria Alphaproteobacteria decreased at 120 days. Meanwhile, the electroactive Gammaproteobacteria might symbiosis with Methanosaetaceae and Methanosarcinaceae, degrading petroleum after electron receptors depletion. Nitrososphaeraceae and Nitrosopumilaceae oxidise NH4+ to NO2- for intra-aerobic anaerobes and denitrifying bacteria producing oxygen for biodegradation in polluted Phragmites Communis soil. The halotolerant Halomicrobiaceae and Haloferacaceae predominated in saline Chinese Tamarisk, Suaeda Salsa and Bare Land, which were potential electroactive degradater. As the ageing sludge formed, the hydrogen trophic methanogens Methanothermobacteraceae (73.90-92.72%) was prevalent with the petroleum pollution. In conclusion, petroleum initiated two-phase in the sludge forming progress: electron acceptor consumption and electron transfer between degradater and methanogens. Based on the results, the domestic sewage N, P removal coupling and electron transport will be the basement for polluted soils fertility improvement.
Collapse
Affiliation(s)
- Bingchen Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Shaoping Kuang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Hongbo Shao
- Salt-soil Agricultural Center, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agriculture Sciences(JAAS), Nanjing, 210014, PR China.
| | - Fei Cheng
- Weifang Municipal Public Utility Service Center, Wei Fang, 261061, PR China
| | - Huihui Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| |
Collapse
|
6
|
Kivenson V, Paul BG, Valentine DL. An Ecological Basis for Dual Genetic Code Expansion in Marine Deltaproteobacteria. Front Microbiol 2021; 12:680620. [PMID: 34335502 PMCID: PMC8318568 DOI: 10.3389/fmicb.2021.680620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/20/2021] [Indexed: 01/04/2023] Open
Abstract
Marine benthic environments may be shaped by anthropogenic and other localized events, leading to changes in microbial community composition evident decades after a disturbance. Marine sediments in particular harbor exceptional taxonomic diversity and can shed light on distinctive evolutionary strategies. Genetic code expansion is a strategy that increases the structural and functional diversity of proteins in cells, by repurposing stop codons to encode non-canonical amino acids: pyrrolysine (Pyl) and selenocysteine (Sec). Here, we report both a study of the microbiome at a deep sea industrial waste dumpsite and an unanticipated discovery of codon reassignment in its most abundant member, with potential ramifications for interpreting microbial interactions with ocean-dumped wastes. The genomes of abundant Deltaproteobacteria from the sediments of a deep-ocean chemical waste dump site have undergone genetic code expansion. Pyl and Sec in these organisms appear to augment trimethylamine (TMA) and one-carbon metabolism, representing an increased metabolic versatility. The inferred metabolism of these sulfate-reducing bacteria places them in competition with methylotrophic methanogens for TMA, a contention further supported by earlier isotope tracer studies and reanalysis of metatranscriptomic studies. A survey of genomic data further reveals a broad geographic distribution of a niche group of similarly specialized Deltaproteobacteria, including at sulfidic sites in the Atlantic Ocean, Gulf of Mexico, Guaymas Basin, and North Sea, as well as in terrestrial and estuarine environments. These findings reveal an important biogeochemical role for specialized Deltaproteobacteria at the interface of the carbon, nitrogen, selenium, and sulfur cycles, with their niche adaptation and ecological success potentially augmented by genetic code expansion.
Collapse
Affiliation(s)
- Veronika Kivenson
- Interdepartmental Graduate Program in Marine Science, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Blair G. Paul
- Department of Earth Science and Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - David L. Valentine
- Department of Earth Science and Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
7
|
Paul V, Banerjee Y, Ghosh P, Busi SB. Depthwise microbiome and isotopic profiling of a moderately saline microbial mat in a solar saltern. Sci Rep 2020; 10:20686. [PMID: 33244085 PMCID: PMC7693307 DOI: 10.1038/s41598-020-77622-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 11/09/2020] [Indexed: 11/23/2022] Open
Abstract
The solar salterns in Tuticorin, India, are man-made, saline to hypersaline systems hosting some uniquely adapted populations of microorganisms and eukaryotic algae that have not been fully characterized. Two visually different microbial mats (termed 'white' and 'green') developing on the reservoir ponds (53 PSU) were isolated from the salterns. Firstly, archaeal and bacterial diversity in different vertical layers of the mats were analyzed. Culture-independent 16S rRNA gene analysis revealed that both bacteria and archaea were rich in their diversity. The top layers had a higher representation of halophilic archaea Halobacteriaceae, phylum Chloroflexi, and classes Anaerolineae, Delta- and Gamma- Proteobacteria than the deeper sections, indicating that a salinity gradient exists within the mats. Limited presence of Cyanobacteria and detection of algae-associated bacteria, such as Phycisphaerae, Phaeodactylibacter and Oceanicaulis likely implied that eukaryotic algae and other phototrophs could be the primary producers within the mat ecosystem. Secondly, predictive metabolic pathway analysis using the 16S rRNA gene data revealed that in addition to the regulatory microbial functions, methane and nitrogen metabolisms were prevalent. Finally, stable carbon and nitrogen isotopic compositions determined from both mat samples showed that the δ13Corg and δ15Norg values increased slightly with depth, ranging from - 16.42 to - 14.73‰, and 11.17 to 13.55‰, respectively. The isotopic signature along the microbial mat profile followed a pattern that is distinctive to the community composition and net metabolic activities, and comparable to saline mats in other salterns. The results and discussions presented here by merging culture-independent studies, predictive metabolic analyses and isotopic characterization, provide a collective strategy to understand the compositional and functional characteristics of microbial mats in saline environments.
Collapse
Affiliation(s)
- Varun Paul
- Department of Geosciences, Mississippi State University, Starkville, MS, 39762, USA.
| | - Yogaraj Banerjee
- Interdisciplinary Centre for Water Research, Indian Institute of Science, Bangalore, 560012, India
| | - Prosenjit Ghosh
- Interdisciplinary Centre for Water Research, Indian Institute of Science, Bangalore, 560012, India
- Centre for Earth Sciences, Indian Institute of Science, Bangalore, 560012, India
| | - Susheel Bhanu Busi
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
8
|
Duan JL, Sun JW, Ji MM, Ma Y, Cui ZT, Tian RK, Xu PC, Sun WL, Yuan XZ. Indicatory bacteria and chemical composition related to sulfur distribution in the river-lake systems. Microbiol Res 2020; 236:126453. [DOI: 10.1016/j.micres.2020.126453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/24/2020] [Accepted: 03/05/2020] [Indexed: 12/19/2022]
|
9
|
Methylotrophic methanogens everywhere - physiology and ecology of novel players in global methane cycling. Biochem Soc Trans 2020; 47:1895-1907. [PMID: 31819955 DOI: 10.1042/bst20180565] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 01/14/2023]
Abstract
Research on methanogenic Archaea has experienced a revival, with many novel lineages of methanogens recently being found through cultivation and suggested via metagenomics approaches, respectively. Most of these lineages comprise Archaea (potentially) capable of methanogenesis from methylated compounds, a pathway that had previously received comparably little attention. In this review, we provide an overview of these new lineages with a focus on the Methanomassiliicoccales. These lack the Wood-Ljungdahl pathway and employ a hydrogen-dependent methylotrophic methanogenesis pathway fundamentally different from traditional methylotrophic methanogens. Several archaeal candidate lineages identified through metagenomics, such as the Ca. Verstraetearchaeota and Ca. Methanofastidiosa, encode genes for a methylotrophic methanogenesis pathway similar to the Methanomassiliicoccales. Thus, the latter are emerging as a model system for physiological, biochemical and ecological studies of hydrogen-dependent methylotrophic methanogens. Methanomassiliicoccales occur in a large variety of anoxic habitats including wetlands and animal intestinal tracts, i.e. in the major natural and anthropogenic sources of methane emissions, respectively. Especially in ruminant animals, they likely are among the major methane producers. Taken together, (hydrogen-dependent) methylotrophic methanogens are much more diverse and widespread than previously thought. Considering the role of methane as potent greenhouse gas, resolving the methanogenic nature of a broad range of putative novel methylotrophic methanogens and assessing their role in methane emitting environments are pressing issues for future research on methanogens.
Collapse
|