1
|
Castelli M, Petroni G. An Evolutionary-Focused Review of the Holosporales (Alphaproteobacteria): Diversity, Host Interactions, and Taxonomic Re-ranking as Holosporineae Subord. Nov. MICROBIAL ECOLOGY 2025; 88:15. [PMID: 40085262 PMCID: PMC11909080 DOI: 10.1007/s00248-025-02509-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
The order Holosporales is a broad and ancient lineage of bacteria obligatorily associated with eukaryotic hosts, mostly protists. Significantly, this is similar to other evolutionary distinct bacterial lineages (e.g. Rickettsiales and Chlamydiae). Here, we provide a detailed and comprehensive account on the current knowledge on the Holosporales. First, acknowledging the up-to-date phylogenetic reconstructions and recent nomenclatural proposals, we reevaluate their taxonomy, thus re-ranking them as a suborder, i.e. Holosporineae, within the order Rhodospirillales. Then, we examine the phylogenetic diversity of the Holosporineae, presenting the 20 described genera and many yet undescribed sub-lineages, as well as the variety of the respective environments of provenance and hosts, which belong to several different eukaryotic supergroups. Noteworthy representatives of the Holosporineae are the infectious intranuclear Holospora, the host manipulator 'Caedimonas', and the farmed shrimp pathogen 'Candidatus Hepatobacter'. Next, we put these bacteria in the broad context of the whole Holosporineae, by comparing with the available data on the least studied representatives, including genome sequences. Accordingly, we reason on the most probable evolutionary trajectories for host interactions, host specificity, and emergence of potential pathogens in aquaculture and possibly humans, as well as on future research directions to investigate those many open points on the Holosporineae.
Collapse
Affiliation(s)
- Michele Castelli
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
| | | |
Collapse
|
2
|
Wardani RK, Ahsan R, Shin MK. Unraveling the Evolutionary Patterns of Genus Frontonia: An Integrative Approach with Morphological and Molecular Data. BIOLOGY 2025; 14:289. [PMID: 40136545 PMCID: PMC11940073 DOI: 10.3390/biology14030289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/27/2025]
Abstract
Ciliates of the genus Frontonia have been extensively studied to resolve their phylogenetic and evolutionary history, but challenges remain. This study used molecular analyses of SSU rRNA genes, phylogenetic tree reconstruction, molecular dating, and diversification analysis, together with ancestral state reconstruction of morphological traits and habitat preferences. Data included newly sequenced Korean species, GenBank records and published morphological information. Phylogenetic trees revealed paraphyly within Frontonia, identifying four groups that emerged in the Mesozoic era: Group I (~172 mya), Group II (~83 mya), Group III (~115 mya), and Group IV (~190 mya), with a common ancestor dating to ~420 mya in the Palaeozoic era. Diversification analysis revealed higher extinction rates (0.826 and 0.613 species/year) than speciation rates (0.011 and 0.016 species/year). Morphological evolution showed habitat adaptation and plasticity, with habitat transitions unrelated to contractile vacuolar traits. The SSU rRNA gene polymorphism likely contributed to the paraphyletic state of Frontonia. These results highlight the complex evolutionary patterns of the genus, shaped by genetic diversity, morphology, and environmental constraints.
Collapse
Affiliation(s)
- Ratih Kusuma Wardani
- Department of Biological Science, University of Ulsan, Ulsan 44610, Republic of Korea; (R.K.W.); (R.A.)
| | - Ragib Ahsan
- Department of Biological Science, University of Ulsan, Ulsan 44610, Republic of Korea; (R.K.W.); (R.A.)
- Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Department of Biology Sciences, Smith College, Northampton, MA 01063, USA
| | - Mann Kyoon Shin
- Department of Biological Science, University of Ulsan, Ulsan 44610, Republic of Korea; (R.K.W.); (R.A.)
| |
Collapse
|
3
|
Castelli M, Gammuto L, Podushkina D, Vecchi M, Altiero T, Clementi E, Guidetti R, Rebecchi L, Sassera D. Hepatincolaceae (Alphaproteobacteria) are Distinct From Holosporales and Independently Evolved to Associate With Ecdysozoa. Environ Microbiol 2025; 27:e70028. [PMID: 39797518 PMCID: PMC11724238 DOI: 10.1111/1462-2920.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/11/2024] [Accepted: 12/03/2024] [Indexed: 01/13/2025]
Abstract
The Hepatincolaceae (Alphaproteobacteria) are a group of bacteria that inhabit the gut of arthropods and other ecdysozoans, associating extracellularly with microvilli. Previous phylogenetic studies, primarily single-gene analyses, suggested their relationship to the Holosporales, which includes intracellular bacteria in protist hosts. However, the genomics of Hepatincolaceae is still in its early stages. In this study, the number of available Hepatincolaceae genomes was increased to examine their evolutionary and functional characteristics. It was found that the previous phylogenetic grouping with Holosporales was incorrect due to sequence compositional biases and that Hepatincolaceae form an independent branch within the Hepatincolaceae. This led to a reinterpretation of their features, proposing a new evolutionary scenario that involves an independent adaptation to host association compared to the Holosporales, with distinct specificities. The Hepatincolaceae exhibit greater nutritional flexibility, utilising various molecules available in the host gut and thriving in anaerobic conditions. However, they have a less complex mechanism for modulating host interactions, which are likely less direct than those of intracellular bacteria. In addition, representatives of Hepatincolaceae show several lineage-specific traits related to differences in host species and life conditions.
Collapse
Affiliation(s)
- Michele Castelli
- Department of Biology and BiotechnologyUniversity of PaviaPaviaItaly
| | - Leandro Gammuto
- Department of Biology and BiotechnologyUniversity of PaviaPaviaItaly
| | - Diona Podushkina
- Department of Biology and BiotechnologyUniversity of PaviaPaviaItaly
| | - Matteo Vecchi
- Dipartimento di Scienze Della VitaUniversità degli Studi di Modena e Reggio EmiliaModenaItaly
- Institute of Systematics and Evolution of AnimalsPolish Academy of SciencesKrakowPoland
| | - Tiziana Altiero
- Dipartimento Educazione e Scienze UmaneUniversità degli Studi di Modena e Reggio EmiliaModenaItaly
| | - Emanuela Clementi
- Department of Biology and BiotechnologyUniversity of PaviaPaviaItaly
| | - Roberto Guidetti
- Dipartimento di Scienze Della VitaUniversità degli Studi di Modena e Reggio EmiliaModenaItaly
| | - Lorena Rebecchi
- Dipartimento di Scienze Della VitaUniversità degli Studi di Modena e Reggio EmiliaModenaItaly
| | - Davide Sassera
- Department of Biology and BiotechnologyUniversity of PaviaPaviaItaly
- Fondazione IRCCS Policlinico San MatteoPaviaItaly
| |
Collapse
|
4
|
Lanzoni O, Szokoli F, Schrallhammer M, Sabaneyeva E, Krenek S, Doak TG, Verni F, Berendonk TU, Castelli M, Petroni G. "Candidatus Intestinibacterium parameciiphilum"-member of the "Candidatus Paracaedibacteraceae" family (Alphaproteobacteria, Holosporales) inhabiting the ciliated protist Paramecium. Int Microbiol 2024; 27:659-671. [PMID: 37615902 PMCID: PMC11144129 DOI: 10.1007/s10123-023-00414-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/25/2023]
Abstract
Protists frequently host diverse bacterial symbionts, in particular those affiliated with the order Holosporales (Alphaproteobacteria). All characterised members of this bacterial lineage have been retrieved in obligate association with a wide range of eukaryotes, especially multiple protist lineages (e.g. amoebozoans, ciliates, cercozoans, euglenids, and nucleariids), as well as some metazoans (especially arthropods and related ecdysozoans). While the genus Paramecium and other ciliates have been deeply investigated for the presence of symbionts, known members of the family "Candidatus Paracaedibacteraceae" (Holosporales) are currently underrepresented in such hosts. Herein, we report the description of "Candidatus Intestinibacterium parameciiphilum" within the family "Candidatus Paracaedibacteraceae", inhabiting the cytoplasm of Paramecium biaurelia. This novel bacterium is almost twice as big as its relative "Candidatus Intestinibacterium nucleariae" from the opisthokont Nuclearia and does not present a surrounding halo. Based on phylogenetic analyses of 16S rRNA gene sequences, we identified six further potential species-level lineages within the genus. Based on the provenance of the respective samples, we investigated the environmental distribution of the representatives of "Candidatus Intestinibacterium" species. Obtained results are consistent with an obligate endosymbiotic lifestyle, with protists, in particular freshwater ones, as hosts. Thus, available data suggest that association with freshwater protists could be the ancestral condition for the members of the "Candidatus Intestinibacterium" genus.
Collapse
Affiliation(s)
| | - Franziska Szokoli
- Department of Biology, University of Pisa, Pisa, Italy
- Institut für Hydrobiologie, Technische Universität Dresden, Dresden, Germany
| | - Martina Schrallhammer
- Mikrobiologie, Institut für Biologie II, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Elena Sabaneyeva
- Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Sascha Krenek
- Institut für Hydrobiologie, Technische Universität Dresden, Dresden, Germany
| | | | - Franco Verni
- Department of Biology, University of Pisa, Pisa, Italy
| | - Thomas U Berendonk
- Institut für Hydrobiologie, Technische Universität Dresden, Dresden, Germany
| | - Michele Castelli
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
| | | |
Collapse
|
5
|
Ichige R, Urabe J. Divergence of the Host-Associated Microbiota with the Genetic Distance of Host Individuals Within a Parthenogenetic Daphnia Species. MICROBIAL ECOLOGY 2023; 86:2097-2108. [PMID: 37093231 DOI: 10.1007/s00248-023-02219-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/06/2023] [Indexed: 05/03/2023]
Abstract
The taxonomic composition of the microbiota in the gut and epidermis of animals is known to vary among genetically and physiologically different host individuals within the same species. However, it is not clear whether the taxonomic composition diverges with increasing genetic distance of the host individuals. To unveil this uncertainty, we compared the host-associated microbiota among the genotypes within and between genetically distant lineages of parthenogenetic Daphnia cf. pulex across different physiological states, namely, well-fed, starved, and dead. Metagenomic analysis with 16S rRNA showed that, regardless of the host genotypes, diversity of the host-associated microbiota was high when the host individuals were fed food and gradually decreased when they were starved until they died. However, the difference in the host-associated microbiota, that is, β-diversity, was significant among the genotypes within and between the host lineages when they were fed. Although some bacteria in the microbiota, such as Limnohabitans, Rhodococcus, and Aeromicrobium, were found abundantly and commonly in all host genotypes; others, such as those of Holosoporacea, were found only in the genotypes of a specific lineage. Accordingly, the β-diversity tended to increase with increasing genetic distance of the host individuals. These results support an idea that the host-associated microbiota diverged with genetic divergence in the host species and that at least some bacteria are highly dependent on the genetically specific metabolites produced by the host individuals.
Collapse
Affiliation(s)
- Ryotaro Ichige
- Graduate School of Life Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-Ku, Sendai, 980-8578, Japan.
| | - Jotaro Urabe
- Graduate School of Life Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-Ku, Sendai, 980-8578, Japan
| |
Collapse
|
6
|
Fokin SI, Lebedeva NA, Potekhin A, Gammuto L, Petroni G, Serra V. Holospora-like bacteria "Candidatus Gortzia yakutica" and Preeria caryophila: Ultrastructure, promiscuity, and biogeography of the symbionts. Eur J Protistol 2023; 90:125998. [PMID: 37356197 DOI: 10.1016/j.ejop.2023.125998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/06/2023] [Indexed: 06/27/2023]
Abstract
Two already known representatives of Holospora-like bacteria, "Candidatus Gortzia yakutica" from Paramecium putrinum and Preeria caryophila, originally retrieved from the Paramecium aurelia complex, were found in new hosts: Paramecium nephridiatum and Paramecium polycaryum, respectively. In the present study, these bacteria were investigated using morphological and molecular methods. For "Ca. G. yakutica", the first details of the electron microscopic structure in the main and new hosts were provided. Regarding Pr. caryophila, the ultrastructural description of this species was implemented by several features previously unknown, such as the so called "membrane cluster" dividing periplasm from cytoplasm and fine composition of infectious forms before and during its releasing from the infected macronucleus. The new combinations of these Holospora-like bacteria with ciliate hosts were discussed from biogeographical and ecological points of view. Host specificity of symbionts as a general paradigm was critically reviewed as well.
Collapse
Affiliation(s)
| | - Natalia A Lebedeva
- Centre of Core Facilities "Culture Collections of Microorganisms", Saint Petersburg State University, Russia
| | - Alexey Potekhin
- Laboratory of Cellular and Molecular Protistology, Zoological Institute of Russian Academy of Sciences, Saint Petersburg, Russia; Research Department for Limnology, University of Innsbruck, Mondsee, Austria
| | | | - Giulio Petroni
- Department of Biology, University of Pisa, Italy; CIME, Centro Interdipartimentale di Microscopia Elettronica, Università di Pisa, Pisa, Italy; CISUP, Centro per l'Integrazione della Strumentazione dell'Università di Pisa, Pisa, Italy
| | | |
Collapse
|
7
|
Together forever: Inseparable partners of the symbiotic system Paramecium multimicronucleatum/Ca. Trichorickettsia mobilis. Symbiosis 2022. [DOI: 10.1007/s13199-022-00854-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
8
|
Castelli M, Lanzoni O, Giovannini M, Lebedeva N, Gammuto L, Sassera D, Melekhin M, Potekhin A, Fokin S, Petroni G. 'Candidatus Gromoviella agglomerans', a novel intracellular Holosporaceae parasite of the ciliate Paramecium showing marked genome reduction. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:34-49. [PMID: 34766443 DOI: 10.1111/1758-2229.13021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Holosporales are an alphaproteobacterial lineage encompassing bacteria obligatorily associated with multiple diverse eukaryotes. For most representatives, little is known on the interactions with their hosts. In this study, we characterized a novel Holosporales symbiont of the ciliate Paramecium polycaryum. This bacterium inhabits the host cytoplasm, frequently forming quite large aggregates. Possibly due to such aggregates, host cells sometimes displayed lethal division defects. The symbiont was also able to experimentally stably infect another Paramecium polycaryum strain. The bacterium is phylogenetically related with symbionts of other ciliates and diplonemids, forming a putatively fast-evolving clade within the family Holosporaceae. Similarly to many close relatives, it presents a very small genome (<600 kbp), and, accordingly, a limited predicted metabolism, implying a heavy dependence on Paramecium, thanks also to some specialized membrane transporters. Characterized features, including the presence of specific secretion systems, are overall suggestive of a mild parasitic effect on the host. From an evolutionary perspective, a potential ancestral trend towards pronounced genome reduction and possibly linked to parasitism could be inferred, at least among fast-evolving Holosporaceae, with some lineage-specific traits. Interestingly, similar convergent features could be observed in other host-associated lineages, in particular Rickettsiales among Alphaproteobacteria.
Collapse
Affiliation(s)
- Michele Castelli
- Dipartimento di Biologia e Biotecnologie, Università degli studi di Pavia, Pavia, Italy
| | - Olivia Lanzoni
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy
- Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | | | - Natalia Lebedeva
- Centre of Core Facilities "Culture Collections of Microorganisms", Saint Petersburg State University, Saint Petersburg, Russia
| | | | - Davide Sassera
- Dipartimento di Biologia e Biotecnologie, Università degli studi di Pavia, Pavia, Italy
| | - Maksim Melekhin
- Department of Microbiology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
- Laboratory of Cellular and Molecular Protistology, Zoological Institute RAS, Saint Petersburg, Russia
| | - Alexey Potekhin
- Department of Microbiology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
- Laboratory of Cellular and Molecular Protistology, Zoological Institute RAS, Saint Petersburg, Russia
| | - Sergei Fokin
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy
- Department of Invertebrate Zoology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Giulio Petroni
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy
| |
Collapse
|
9
|
Li T, Pan X, Lu B, Miao M, Liu M. Taxonomy and molecular phylogeny of a new freshwater ciliate Frontonia apoacuminata sp. nov. (Protista, Ciliophora, Oligohymenophorea) from Qingdao, PR China. Int J Syst Evol Microbiol 2021; 71. [PMID: 34694984 DOI: 10.1099/ijsem.0.005071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The morphology and ciliature of a new freshwater ciliate, Frontonia apoacuminata sp. nov., isolated from an artificial pond in Qingdao, PR China, were investigated using live observation and silver staining methods. The main features separating F. apoacuminata sp. nov. from its congeners are as follows: a broad elliptical body that is slightly pointed at the posterior end, four ophryokineties, one or two spherical micronuclei of a 'compact' type, a dorsally positioned contractile vacuole, and peniculi 1-3 each with five kinetosome rows though the left-most two rows in peniculus 3 are extremely shortened (with only two or three kinetosomes each). Additionally, an improved diagnosis of F. acuminata is provided. Phylogenetic analyses based on the small subunit ribosomal RNA (SSU rRNA) gene show that F. apoacuminata sp. nov. clusters with F. atra, F. minuta, F. acuminata and F. terricola. These five species group with Disematostoma, Marituja and Stokesia rather than with other Frontonia species, causing polyphyly of the genus Frontonia.
Collapse
Affiliation(s)
- Tao Li
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China.,College of Fisheries and Key Laboratory of Mariculture of the Education Ministry of China, Ocean University of China, Qingdao, PR China
| | - Xuming Pan
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, PR China
| | - Borong Lu
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China.,College of Fisheries and Key Laboratory of Mariculture of the Education Ministry of China, Ocean University of China, Qingdao, PR China
| | - Miao Miao
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Mingjian Liu
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China.,College of Fisheries and Key Laboratory of Mariculture of the Education Ministry of China, Ocean University of China, Qingdao, PR China
| |
Collapse
|
10
|
Oren A, Garrity GM. Candidatus List No. 2. Lists of names of prokaryotic Candidatus taxa. Int J Syst Evol Microbiol 2021; 71. [PMID: 33881984 DOI: 10.1099/ijsem.0.004671] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - George M Garrity
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|
11
|
Multidisciplinary integrated characterization of a native Chlorella-like microalgal strain isolated from a municipal landfill leachate. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Serra V, D’Alessandro A, Nitla V, Gammuto L, Modeo L, Petroni G, Fokin SI. The neotypification of Frontonia vernalis (Ehrenberg, 1833) Ehrenberg, 1838 and the description of Frontonia paravernalis sp. nov. trigger a critical revision of frontoniid systematics. BMC ZOOL 2021; 6:4. [PMID: 37170316 PMCID: PMC10127333 DOI: 10.1186/s40850-021-00067-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 02/19/2021] [Indexed: 12/15/2022] Open
Abstract
Abstract
Background
Among Oligohymenophorea (Ciliophora, Alveolata) the subclass Peniculia stands as one of the most well-known groups. Frontonia is the largest genus of Peniculia, and its representatives are spread in any type of water bodies as well as in soil. At a first glance, Frontonia species exhibit an overall similar morphology, and form a well-recognizable taxon of ciliates. Despite the general morphological homogeneity, the phylogenetic analysis based on the 18S rDNA sequencing showed that Frontonia is a non-monophyletic group. The systematics of this genus should be deeply reviewed, although additional issues complicate the task solving. First, type species of the genus is not yet clearly established, and no type material is available. In this context, the situation of F. vernalis, one of the first Frontonia ever described, is somehow puzzled: the description of this ciliate made by Ehrenberg (in 1833 and 1838) contains several inaccuracies and subsequent misidentifications by other authors occurred. Moreover, the 18S rDNA sequence of a putative F. vernalis is available on GenBank, but no morphological description of the correspondent specimens is provided; thus, in our opinion, it should be only prudently associated with F. vernalis or at least indicated as “F. vernalis”.
Results
In the present work, we provide the neotypification of F. vernalis newly found in Italy, presenting its multidisciplinary description and its neotype material. Similarly, we describe a novel species bearing Chlorella-like endosymbionts, Frontonia paravernalis sp. nov., retrieved in two far distant locations (Italy, Russia). A critical discussion on the status of Frontonia taxonomy and phylogeny is also presented, based on the 18S rDNA sequencing of both these two newly collected species and other 14 frontoniids isolated in different parts of the world. Finally, in the present study F. leucas was neotypified and proposed as the type species of the genus.
Conclusions
Green frontoniids form a monophyletic clade of freshwater organisms characterized by having a single contractile vacuole and bearing intracytoplasmatic Chlorella-like symbionts. With the neotypification of F. vernalis and F. leucas a fundamental step in Frontonia systematics was taken, and the bases for further taxonomic studies were laid.
Collapse
|
13
|
Wang C, Gao Y, Lu B, Chi Y, Zhang T, El-Serehy HA, Al-Farraj SA, Li L, Song W, Gao F. Large-scale phylogenomic analysis provides new insights into the phylogeny of the class Oligohymenophorea (Protista, Ciliophora) with establishment of a new subclass Urocentria nov. subcl. Mol Phylogenet Evol 2021; 159:107112. [PMID: 33609708 DOI: 10.1016/j.ympev.2021.107112] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/28/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023]
Abstract
The class Oligohymenophorea is one of the most diverse assemblage of ciliated protists, which are particularly important in fundamental biological studies including understanding the evolutionary relationships among the lineages. Phylogenetic relationships within the class remain largely elusive, especially within the subclass Peniculia, which contains the long-standing problematic taxa Urocentrum and Paranassula. In the present study, we sequenced the genomes and/or transcriptomes of six non-culturable oligohymenophoreans using single-cell sequencing techniques. Phylogenomic analysis was performed based on expanded taxon sampling of 85 taxa, including 157 nuclear genes encoding 36,953 amino acids. The results indicate that: (1) urocentrids form an independent branch that is sister to the clade formed by Scuticociliatia and Hymenostomatia, which, together with the morphological data, supports the establishment of a new subclass, Urocentria n. subcl., within Oligohymenophorea; (2) phylogenomic analysis and ortholog comparison reveal a close relationship between Paranassula and peniculines, providing corroborative evidence for removing Paranassula from Nassulida and elevating it as an order, Paranassulida, within the subclass Peniculia; (3) based on the phylogenomic analyses and morphological data, we hypothesize that Peritrichia is the earliest diverging clade within Oligohymenophorea while Scuticociliatia and Hymenostomatia share the most common ancestor, followed successively by Urocentria and Peniculia. In addition, stop codon analyses indicate that oligohymenophoreans widely use UGA as the stop codon, while UAR are reassigned to glutamate (peritrichs) or glutamine (others), supporting the evolutionary hypothesis.
Collapse
Affiliation(s)
- Chundi Wang
- Laboratory of Marine Protozoan Biodiversity & Evolution, Ocean College, Shandong University, Weihai 264209, China; Institute of Evolution & Marine Biodiversity and College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Yunyi Gao
- Institute of Evolution & Marine Biodiversity and College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Borong Lu
- Institute of Evolution & Marine Biodiversity and College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Yong Chi
- Institute of Evolution & Marine Biodiversity and College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Tengteng Zhang
- Institute of Evolution & Marine Biodiversity and College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Hamed A El-Serehy
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Al-Farraj
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Lifang Li
- Laboratory of Marine Protozoan Biodiversity & Evolution, Ocean College, Shandong University, Weihai 264209, China
| | - Weibo Song
- Laboratory of Marine Protozoan Biodiversity & Evolution, Ocean College, Shandong University, Weihai 264209, China; Institute of Evolution & Marine Biodiversity and College of Fisheries, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Feng Gao
- Institute of Evolution & Marine Biodiversity and College of Fisheries, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
14
|
Mironov T, Sabaneyeva E. A Robust Symbiotic Relationship Between the Ciliate Paramecium multimicronucleatum and the Bacterium Ca. Trichorickettsia Mobilis. Front Microbiol 2020; 11:603335. [PMID: 33324385 PMCID: PMC7721670 DOI: 10.3389/fmicb.2020.603335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 10/28/2020] [Indexed: 12/22/2022] Open
Abstract
Close reciprocal interactions in symbiotic systems have suggested the holobiont concept, in which the host and its microbiota are considered as a single entity. Ciliates are known for their ability to form symbiotic associations with prokaryotes. Relationships between the partners in such systems vary from mutualism to parasitism and differ significantly in their robustness. We assessed the viability of the ciliate Paramecium multimicronucleatum and its ability to maintain its intranuclear endosymbiont Ca. Trichorickettsia mobilis (Rickettsiaceae) after treatment with antibiotics characterized by different mode of action, such as ampicillin, streptomycin, chloramphenicol, tetracycline. The presence of endosymbionts in the host cell was determined by means of living cell observations made using differential interference contrast or fluorescence in situ hybridization with the species-specific oligonucleotide probe (FISH). Administration of antibiotics traditionally used in treatments of rickettsioses, tetracycline and chloramphenicol, depending on the concentration used and the ciliate strain treated, either caused death of both, infected and control cells, or did not affect the ability of the host to maintain the intranuclear endosymbiont. The surviving cells always manifested motile bacteria in the macronucleus. Streptomycin treatment never led to the loss of endosymbionts in any of the four infected strains, and nearly all ciliates remained viable. Ampicillin treatment never caused host cell death, but resulted in formation of filamentous and immobile oval bacterial forms. Under repeated ampicillin treatments, a part of endosymbionts was registered in the host cytoplasm, as evidenced both by FISH and transmission electron microscopy. Endosymbionts located in the host cytoplasm were enclosed in vacuoles, apparently, corresponding to autophagosomes. Nevertheless, the bacteria seemed to persist in this compartment and might cause relapse of the infection. Although the antibiotic sensitivity profile of Trichorickettsia seems to resemble that of other representatives of Rickettsiaceae, causative agents of severe diseases in humans, neither of the antibiotic treatments used in this study resulted in an aposymbiotic cell line, apparently, due to the protists’ sensitivity to tetracyclines, the drugs of preference in rickettsiosis treatment. The observed robustness of this symbiotic system makes it a good model for further elaboration of the holobiont concept.
Collapse
Affiliation(s)
- Timofey Mironov
- Department of Cytology and Histology, Biological Faculty, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Elena Sabaneyeva
- Department of Cytology and Histology, Biological Faculty, Saint-Petersburg State University, Saint-Petersburg, Russia
| |
Collapse
|
15
|
Serra V, Fokin SI, Gammuto L, Nitla V, Castelli M, Basuri CK, Satyaveni A, Sandeep BV, Modeo L, Petroni G. Phylogeny of
Neobursaridium
reshapes the systematics of
Paramecium
(Oligohymenophorea, Ciliophora). ZOOL SCR 2020. [DOI: 10.1111/zsc.12464] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | - Sergei I. Fokin
- Department of Biology University of Pisa Pisa Italy
- Department of Invertebrate Zoology St. Petersburg State University St. Petersburg Russia
- St. Petersburg Branch of the S.I. Vavilov Institute of History of Science and Technology Russian Academy of Sciences St. Petersburg Russia
| | | | | | - Michele Castelli
- Department of Biology and Biotechnology ‘Lazzaro Spallanzani’ Pavia University Pavia Italy
| | - Charan Kumar Basuri
- National Centre for Coastal Research Ministry of Earth Sciences Government of IndiaNIOT Campus Pallikaranai, Chennai India
- Department of Zoology Andhra University Visakhapatnam India
| | | | | | - Letizia Modeo
- Department of Biology University of Pisa Pisa Italy
- CIME Centro Interdipartimentale di Microscopia Elettronica Università di Pisa Pisa Italy
- CISUP, Centro per l'Integrazione della Strumentazione dell'Università di Pisa Pisa Italy
| | - Giulio Petroni
- Department of Biology University of Pisa Pisa Italy
- CIME Centro Interdipartimentale di Microscopia Elettronica Università di Pisa Pisa Italy
- CISUP, Centro per l'Integrazione della Strumentazione dell'Università di Pisa Pisa Italy
| |
Collapse
|
16
|
Serra V, Gammuto L, Nitla V, Castelli M, Lanzoni O, Sassera D, Bandi C, Sandeep BV, Verni F, Modeo L, Petroni G. Morphology, ultrastructure, genomics, and phylogeny of Euplotes vanleeuwenhoeki sp. nov. and its ultra-reduced endosymbiont "Candidatus Pinguicoccus supinus" sp. nov. Sci Rep 2020; 10:20311. [PMID: 33219271 PMCID: PMC7679464 DOI: 10.1038/s41598-020-76348-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/30/2020] [Indexed: 01/30/2023] Open
Abstract
Taxonomy is the science of defining and naming groups of biological organisms based on shared characteristics and, more recently, on evolutionary relationships. With the birth of novel genomics/bioinformatics techniques and the increasing interest in microbiome studies, a further advance of taxonomic discipline appears not only possible but highly desirable. The present work proposes a new approach to modern taxonomy, consisting in the inclusion of novel descriptors in the organism characterization: (1) the presence of associated microorganisms (e.g.: symbionts, microbiome), (2) the mitochondrial genome of the host, (3) the symbiont genome. This approach aims to provide a deeper comprehension of the evolutionary/ecological dimensions of organisms since their very first description. Particularly interesting, are those complexes formed by the host plus associated microorganisms, that in the present study we refer to as "holobionts". We illustrate this approach through the description of the ciliate Euplotes vanleeuwenhoeki sp. nov. and its bacterial endosymbiont "Candidatus Pinguicoccus supinus" gen. nov., sp. nov. The endosymbiont possesses an extremely reduced genome (~ 163 kbp); intriguingly, this suggests a high integration between host and symbiont.
Collapse
Affiliation(s)
- Valentina Serra
- Department of Biology, University of Pisa, Via Volta 4/6, 56126, Pisa, Italy
| | - Leandro Gammuto
- Department of Biology, University of Pisa, Via Volta 4/6, 56126, Pisa, Italy
| | - Venkatamahesh Nitla
- Department of Biology, University of Pisa, Via Volta 4/6, 56126, Pisa, Italy
| | - Michele Castelli
- Department of Biosciences, Romeo and Enrica Invernizzi Pediatric Research Center, University of Milan, Milan, Italy
- Department of Biology and Biotechnology "Lazzaro Spallanzani", Pavia University, Pavia, Italy
| | - Olivia Lanzoni
- Department of Biology, University of Pisa, Via Volta 4/6, 56126, Pisa, Italy
| | - Davide Sassera
- Department of Biology and Biotechnology "Lazzaro Spallanzani", Pavia University, Pavia, Italy
| | - Claudio Bandi
- Department of Biosciences, Romeo and Enrica Invernizzi Pediatric Research Center, University of Milan, Milan, Italy
| | | | - Franco Verni
- Department of Biology, University of Pisa, Via Volta 4/6, 56126, Pisa, Italy
| | - Letizia Modeo
- Department of Biology, University of Pisa, Via Volta 4/6, 56126, Pisa, Italy.
- CIME, Centro Interdipartimentale di Microscopia Elettronica, Università di Pisa, Pisa, Italy.
- CISUP, Centro per l'Integrazione della Strumentazione dell'Università di Pisa, Pisa, India.
| | - Giulio Petroni
- Department of Biology, University of Pisa, Via Volta 4/6, 56126, Pisa, Italy.
- CIME, Centro Interdipartimentale di Microscopia Elettronica, Università di Pisa, Pisa, Italy.
- CISUP, Centro per l'Integrazione della Strumentazione dell'Università di Pisa, Pisa, India.
| |
Collapse
|
17
|
Yakovleva Y, Nassonova E, Lebedeva N, Lanzoni O, Petroni G, Potekhin A, Sabaneyeva E. The first case of microsporidiosis in Paramecium. Parasitology 2020; 147:957-971. [PMID: 32338239 PMCID: PMC10317679 DOI: 10.1017/s0031182020000633] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/29/2020] [Accepted: 04/08/2020] [Indexed: 11/06/2022]
Abstract
A new microsporidian species, Globosporidium paramecii gen. nov., sp. nov., from Paramecium primaurelia is described on the basis of morphology, fine structure, and SSU rRNA gene sequence. This is the first case of microsporidiosis in Paramecium reported so far. All observed stages of the life cycle are monokaryotic. The parasites develop in the cytoplasm, at least some part of the population in endoplasmic reticulum and its derivates. Meronts divide by binary fission. Sporogonial plasmodium divides by rosette-like budding. Early sporoblasts demonstrate a well-developed exospore forming blister-like structures. Spores with distinctive spherical shape are dimorphic in size (3.7 ± 0.2 and 1.9 ± 0.2 μm). Both types of spores are characterized by a thin endospore, a short isofilar polar tube making one incomplete coil, a bipartite polaroplast, and a large posterior vacuole. Experimental infection was successful for 5 of 10 tested strains of the Paramecium aurelia species complex. All susceptible strains belong to closely related P. primaurelia and P. pentaurelia species. Phylogenetic analysis placed the new species in the Clade 4 of Microsporidia and revealed its close relationship to Euplotespora binucleata (a microsporidium from the ciliate Euplotes woodruffi), to Helmichia lacustris and Mrazekia macrocyclopis, microsporidia from aquatic invertebrates.
Collapse
Affiliation(s)
- Yulia Yakovleva
- Department of Cytology and Histology, Saint Petersburg State University, Universitetskaya emb. 7/9, 199034Saint Petersburg, Russian Federation
| | - Elena Nassonova
- Laboratory of Cytology of Unicellular Organisms, Institute of Cytology RAS, Tikhoretsky ave. 4, 194064Saint Petersburg, Russian Federation
- Department of Invertebrate Zoology, Saint Petersburg State University, Universitetskaya emb. 7/9, 199034Saint Petersburg, Russian Federation
| | - Natalia Lebedeva
- Core Facility Center for Cultivation of Microorganisms, Saint Petersburg State University, Peterhof, Botanicheskaya st. 17, 198504Saint Petersburg, Russian Federation
| | - Olivia Lanzoni
- Department of Biology, University of Pisa, via A Volta 4, 56126Pisa, Italy
| | - Giulio Petroni
- Department of Biology, University of Pisa, via A Volta 4, 56126Pisa, Italy
| | - Alexey Potekhin
- Department of Microbiology, Saint Petersburg State University, 16th line, Vasilyevsky Island, 29, 199178Saint Petersburg, Russian Federation
| | - Elena Sabaneyeva
- Department of Cytology and Histology, Saint Petersburg State University, Universitetskaya emb. 7/9, 199034Saint Petersburg, Russian Federation
| |
Collapse
|
18
|
Pasqualetti C, Szokoli F, Rindi L, Petroni G, Schrallhammer M. The Obligate Symbiont " Candidatus Megaira polyxenophila" Has Variable Effects on the Growth of Different Host Species. Front Microbiol 2020; 11:1425. [PMID: 32733401 PMCID: PMC7360802 DOI: 10.3389/fmicb.2020.01425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/02/2020] [Indexed: 12/18/2022] Open
Abstract
"Candidatus Megaira polyxenophila" is a recently described member of Rickettsiaceae which comprises exclusively obligate intracellular bacteria. Interestingly, these bacteria can be found in a huge diversity of eukaryotic hosts (protist, green algae, metazoa) living in marine, brackish or freshwater habitats. Screening of amplicon datasets revealed a high frequency of these bacteria especially in freshwater environments, most likely associated to eukaryotic hosts. The relationship of "Ca. Megaira polyxenophila" with their hosts and their impact on host fitness have not been studied so far. Even less is known regarding the responses of these intracellular bacteria to potential stressors. In this study, we used two phylogenetically close species of the freshwater ciliate Paramecium, Paramecium primaurelia and Paramecium pentaurelia (Ciliophora, Oligohymenophorea) naturally infected by "Ca. Megaira polyxenophila". In order to analyze the effect of the symbiont on the fitness of these two species, we compared the growth performance of both infected and aposymbiotic paramecia at different salinity levels in the range of freshwater and oligohaline brackish water i.e., at 0, 2, and 4.5 ppt. For the elimination of "Ca. Megaira polyxenophila" we established an antibiotic treatment to obtain symbiont-free lines and confirmed its success by fluorescence in situ hybridization (FISH). The population and infection dynamics during the growth experiment were observed by cell density counts and FISH. Paramecia fitness was compared applying generalized additive mixed models. Surprisingly, both infected Paramecium species showed higher densities under all salinity concentrations. The tested salinity concentrations did not significantly affect the growth of any of the two species directly, but we observed the loss of the endosymbiont after prolonged exposure to higher salinity levels. This experimental data might explain the higher frequency of "Ca. M. polyxenophila" in freshwater habitats as observed from amplicon data.
Collapse
Affiliation(s)
- Chiara Pasqualetti
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy.,Mikrobiologie, Institut für Biologie II, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Franziska Szokoli
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy.,Institut für Hydrobiologie, Technische Universität Dresden, Dresden, Germany
| | - Luca Rindi
- Dipartimento di Biologia, CoNISMa, Università di Pisa, Pisa, Italy
| | - Giulio Petroni
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy
| | - Martina Schrallhammer
- Mikrobiologie, Institut für Biologie II, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| |
Collapse
|
19
|
“Candidatus Mystax nordicus” Aggregates with Mitochondria of Its Host, the Ciliate Paramecium nephridiatum. DIVERSITY 2020. [DOI: 10.3390/d12060251] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Extensive search for new endosymbiotic systems in ciliates occasionally reverts us to the endosymbiotic bacteria described in the pre-molecular biology era and, hence, lacking molecular characterization. A pool of these endosymbionts has been referred to as a hidden bacterial biodiversity from the past. Here, we provide a description of one of such endosymbionts, retrieved from the ciliate Paramecium nephridiatum. This curve-shaped endosymbiont (CS), which shared the host cytoplasm with recently described “Candidatus Megaira venefica”, was found in the same host and in the same geographic location as one of the formerly reported endosymbiotic bacteria and demonstrated similar morphology. Based on morphological data obtained with DIC, TEM and AFM and molecular characterization by means of sequencing 16S rRNA gene, we propose a novel genus, “Candidatus Mystax”, with a single species “Ca. Mystax nordicus”. Phylogenetic analysis placed this species in Holosporales, among Holospora-like bacteria. Contrary to all Holospora species and many other Holospora-like bacteria, such as “Candidatus Gortzia”, “Candidatus Paraholospora” or “Candidatus Hafkinia”, “Ca. Mystax nordicus” was never observed inside the host nucleus. “Ca. Mystax nordicus” lacked infectivity and killer effect. The striking peculiarity of this endosymbiont was its ability to form aggregates with the host mitochondria, which distinguishes it from Holospora and Holospora-like bacteria inhabiting paramecia.
Collapse
|
20
|
New Intranuclear Symbiotic Bacteria from Macronucleus of Paramecium putrinum—“Candidatus Gortzia Yakutica”. DIVERSITY 2020. [DOI: 10.3390/d12050198] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Holospora-like bacteria (HLB) are obligate intracellular Alphaproteobacteria, inhabiting nuclei of Paramecium and other ciliates such as “Candidatus Hafkinia” is in Frontonia. The HLB clade is comprised of four genera, Holospora, Preeria, “Candidatus Gortzia”, and “Candidatus Hafkinia”. These bacteria have a peculiar life cycle with two morphological forms and some degree of specificity to the host species and the type of nucleus they inhabit. Here we describe a novel species of HLB—“Candidatus Gortzia yakutica” sp. nov.—a symbiont from the macronucleus of Paramecium putrinum, the first described HLB for this Paramecium species. The new endosymbiont shows morphological similarities with other HLB. The phylogenetic analysis of the SSU rRNA gene places it into the “Candidatus Gortzia” clade.
Collapse
|
21
|
Modeo L, Salvetti A, Rossi L, Castelli M, Szokoli F, Krenek S, Serra V, Sabaneyeva E, Di Giuseppe G, Fokin SI, Verni F, Petroni G. "Candidatus Trichorickettsia mobilis", a Rickettsiales bacterium, can be transiently transferred from the unicellular eukaryote Paramecium to the planarian Dugesia japonica. PeerJ 2020; 8:e8977. [PMID: 32351785 PMCID: PMC7183750 DOI: 10.7717/peerj.8977] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 03/24/2020] [Indexed: 01/10/2023] Open
Abstract
Most of the microorganisms responsible for vector-borne diseases (VBD) have hematophagous arthropods as vector/reservoir. Recently, many new species of microorganisms phylogenetically related to agents of VBD were found in a variety of aquatic eukaryotic hosts; in particular, numerous new bacterial species related to the genus Rickettsia (Alphaproteobacteria, Rickettsiales) were discovered in protist ciliates and other unicellular eukaryotes. Although their pathogenicity for humans and terrestrial animals is not known, several indirect indications exist that these bacteria might act as etiological agents of possible VBD of aquatic organisms, with protists as vectors. In the present study, a novel strain of the Rickettsia-Like Organism (RLO) endosymbiont "Candidatus (Ca.) Trichorickettsia mobilis" was identified in the macronucleus of the ciliate Paramecium multimicronucleatum. We performed transfection experiments of this RLO to planarians (Dugesia japonica) per os. Indeed, the latter is a widely used model system for studying bacteria pathogenic to humans and other Metazoa. In transfection experiments, homogenized paramecia were added to food of antibiotic-treated planarians. Treated and non-treated (i.e. control) planarians were investigated at day 1, 3, and 7 after feeding for endosymbiont presence by means of PCR and ultrastructural analyses. Obtained results were fully concordant and suggest that this RLO endosymbiont can be transiently transferred from ciliates to metazoans, being detected up to day 7 in treated planarians' enterocytes. Our findings might offer insights into the potential role of ciliates or other protists as putative vectors for diseases caused by Rickettsiales or other RLOs and occurring in fish farms or in the wild.
Collapse
Affiliation(s)
- Letizia Modeo
- Department of Biology, University of Pisa, Pisa, Italy.,CIME, Centro Interdipartimentale di Microscopia Elettronica, University of Pisa, Pisa, Italy.,CISUP, Centro per l'Integrazione della Strumentazione, University of Pisa, Pisa, Italy
| | - Alessandra Salvetti
- CIME, Centro Interdipartimentale di Microscopia Elettronica, University of Pisa, Pisa, Italy.,CISUP, Centro per l'Integrazione della Strumentazione, University of Pisa, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Leonardo Rossi
- CIME, Centro Interdipartimentale di Microscopia Elettronica, University of Pisa, Pisa, Italy.,CISUP, Centro per l'Integrazione della Strumentazione, University of Pisa, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Michele Castelli
- Centro Romeo ed Enrica Invernizzi Ricerca Pediatrica, Department of Biosciences, University of Milan, Milan, Italy
| | - Franziska Szokoli
- Institute of Hydrobiology, Dresden University of Technology, Dresden, Germany
| | - Sascha Krenek
- Institute of Hydrobiology, Dresden University of Technology, Dresden, Germany.,Department of River Ecology, Helmholtz Center for Environmental Research-UFZ, Magdeburg, Germany
| | | | - Elena Sabaneyeva
- Department of Cytology and Histology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | | | - Sergei I Fokin
- Department of Biology, University of Pisa, Pisa, Italy.,CIME, Centro Interdipartimentale di Microscopia Elettronica, University of Pisa, Pisa, Italy.,Department of Invertebrate Zoology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Franco Verni
- Department of Biology, University of Pisa, Pisa, Italy.,CIME, Centro Interdipartimentale di Microscopia Elettronica, University of Pisa, Pisa, Italy.,CISUP, Centro per l'Integrazione della Strumentazione, University of Pisa, Pisa, Italy
| | - Giulio Petroni
- Department of Biology, University of Pisa, Pisa, Italy.,CIME, Centro Interdipartimentale di Microscopia Elettronica, University of Pisa, Pisa, Italy.,CISUP, Centro per l'Integrazione della Strumentazione, University of Pisa, Pisa, Italy
| |
Collapse
|
22
|
Sigona C, Bardi A, Modeo L, Mori G, Potekhin A, Verni F, Munz G, Petroni G. Role of bacterivorous organisms on fungal-based systems for natural tannin degradation. Heliyon 2020; 6:e03604. [PMID: 32258507 PMCID: PMC7118291 DOI: 10.1016/j.heliyon.2020.e03604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 08/04/2019] [Accepted: 03/11/2020] [Indexed: 11/29/2022] Open
Abstract
Tannery wastewater presents high concentrations of organic load and pollutant recalcitrant molecules (e.g. tannins), which reduce the efficiency of biological treatment processes. Recent studies showed that several fungal species and strains are effective in the degradation of tannins. However, high bacterial load can negatively affect fungal growth, reducing system stability and degradation performances. The aim of the present study was to evaluate the effects of the introduction of bacterivorous grazers (ciliates and/or rotifers) in batch scale experiments using fungi to remove Tara tannin, i.e. to check the potential synergistic effect between fungi and bacterivorous grazers in the degradation of recalcitrant compounds. In this context, the ciliated grazers Paramecium calkinsi, Tetrahymena sp., Pseudovorticella sp., and the rotifer Lecane inermis, preliminary selected according to their ability to grow in a solution prepared with Tara tannin, were separately tested. Activated sludge, including a complex mixture of native grazers, was used as experimental control. The following parameters were monitored: bacterial load, number of grazers/mL and Soluble Chemical Oxygen Demand (SCOD). Colony Forming Unit (CFU)/grazers ratio was also calculated. Particular attention was paid to: i) bacterial load reduction and ii) enhancement of recalcitrant compounds degradation, and we observed that in all experimental conditions where grazers occurred bacterial load was significantly reduced and the system achieved a higher SCOD removal in a shorter time. Our findings provide useful insights for the stabilization of fungal-based systems in non-sterile conditions.
Collapse
Affiliation(s)
- Cristiana Sigona
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Catalonia, Spain
| | - Alessandra Bardi
- Department of Civil and Environmental Engineering, University of Florence, Via Santa Marta 3, 50139, Florence, Italy
| | - Letizia Modeo
- Department of Biology, University of Pisa, Via Alessandro Volta 4, 56126, Pisa, Italy.,CIME, Centro Interdipartimentale di Microscopia Elettronica, Univerisità di Pisa, via A. Volta 4, 56126, Pisa, Italy.,CISUP, Centro per l'Integrazione della Strumentazione dell'Università di Pisa, Lungarno Pacinotti 43, Pisa, Italy
| | - Gualtiero Mori
- CER2CO (Centro Ricerca Reflui Conciari), Via Arginale Ovest 81, 56028, San Romano-San Miniato, Pisa, Italy
| | - Alexey Potekhin
- Department of Microbiology, Faculty of Biology, Saint-Petersburg State University, 7/9 University Embankment, 199034, Saint Petersburg, Russia
| | - Franco Verni
- Department of Biology, University of Pisa, Via Alessandro Volta 4, 56126, Pisa, Italy.,CIME, Centro Interdipartimentale di Microscopia Elettronica, Univerisità di Pisa, via A. Volta 4, 56126, Pisa, Italy.,CISUP, Centro per l'Integrazione della Strumentazione dell'Università di Pisa, Lungarno Pacinotti 43, Pisa, Italy
| | - Giulio Munz
- Department of Civil and Environmental Engineering, University of Florence, Via Santa Marta 3, 50139, Florence, Italy
| | - Giulio Petroni
- Department of Biology, University of Pisa, Via Alessandro Volta 4, 56126, Pisa, Italy.,CIME, Centro Interdipartimentale di Microscopia Elettronica, Univerisità di Pisa, via A. Volta 4, 56126, Pisa, Italy.,CISUP, Centro per l'Integrazione della Strumentazione dell'Università di Pisa, Lungarno Pacinotti 43, Pisa, Italy
| |
Collapse
|
23
|
Campello-Nunes PH, Fernandes NM, Szokoli F, Fokin SI, Serra V, Modeo L, Petroni G, Soares CA, Paiva TDS, Silva-Neto IDD. Parablepharisma (Ciliophora) is not a Heterotrich: A Phylogenetic and Morphological Study with the Proposal of New Taxa. Protist 2020; 171:125716. [DOI: 10.1016/j.protis.2020.125716] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/30/2020] [Accepted: 02/02/2020] [Indexed: 12/13/2022]
|
24
|
Epidemiology of Nucleus-Dwelling Holospora: Infection, Transmission, Adaptation, and Interaction with Paramecium. Results Probl Cell Differ 2020; 69:105-135. [PMID: 33263870 DOI: 10.1007/978-3-030-51849-3_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The chapter describes the exceptional symbiotic associations formed between the ciliate Paramecium and Holospora, highly infectious bacteria residing in the host nuclei. Holospora and Holospora-like bacteria (Alphaproteobacteria) are characterized by their ability for vertical and horizontal transmission in host populations, a complex biphasic life cycle, and pronounced preference for host species and colonized cell compartment. These bacteria are obligate intracellular parasites; thus, their metabolic repertoire is dramatically reduced. Nevertheless, they perform complex interactions with the host ciliate. We review ongoing efforts to unravel the molecular adaptations of these bacteria to their unusual lifestyle and the host's employment in the symbiosis. Furthermore, we summarize current knowledge on the genetic and genomic background of Paramecium-Holospora symbiosis and provide insights into the ecological and evolutionary consequences of this interaction. The diversity and occurrence of symbioses between ciliates and Holospora-like bacteria in nature is discussed in connection with transmission modes of symbionts, host specificity and compatibility of the partners. We aim to summarize 50 years of research devoted to these symbiotic systems and conclude trying to predict some perspectives for further studies.
Collapse
|
25
|
Takeshita K, Yamada T, Kawahara Y, Narihiro T, Ito M, Kamagata Y, Shinzato N. Tripartite Symbiosis of an Anaerobic Scuticociliate with Two Hydrogenosome-Associated Endosymbionts, a Holospora-Related Alphaproteobacterium and a Methanogenic Archaeon. Appl Environ Microbiol 2019; 85:e00854-19. [PMID: 31585988 PMCID: PMC6881808 DOI: 10.1128/aem.00854-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/17/2019] [Indexed: 11/20/2022] Open
Abstract
A number of anaerobic ciliates, unicellular eukaryotes, intracellularly possess methanogenic archaea and bacteria as symbiotic partners. Although this tripartite relationship is of interest in terms of the fact that each participant is from a different domain, the difficulty in culture and maintenance of those host species with symbiotic partners has disturbed both ecological and functional studies so far. In this study, we obtained a stable culture of a small anaerobic scuticociliate, strain GW7. By transmission electron microscopic observation and fluorescent in situ hybridization with domain-specific probes, we demonstrate that GW7 possesses both archaeal and bacterial endosymbionts in its cytoplasm. These endosymbionts are in dependently associated with hydrogenosomes, which are organelle producing hydrogen and ATP under anaerobic conditions. Clone library analyses targeting prokaryotic 16S rRNA genes, fluorescent in situ hybridization with endosymbiont-specific probes, and molecular phylogenetic analyses revealed the phylogenetic affiliations and intracellular localizations of these endosymbionts. The endosymbiotic archaeon is a methanogen belonging to the genus Methanoregula (order Methanomicrobiales); a member of this genus has previously been described as the endosymbiont of an anaerobic ciliate from the genus Metopus (class Armophorea), which is only distantly related to strain GW7 (class Oligohymenophorea). The endosymbiotic bacterium belongs to the family Holosporaceae of the class Alphaproteobacteria, which also comprises several endosymbionts of various aerobic ciliates. For this endosymbiotic bacterium, we propose a novel candidate genus and species, "Candidatus Hydrogenosomobacter endosymbioticus."IMPORTANCE Tripartite symbioses between anaerobic ciliated protists and their intracellular archaeal and bacterial symbionts are not uncommon, but most reports have been based mainly on microscopic observations. Deeper insights into the function, ecology, and evolution of these fascinating symbioses involving partners from all three domains of life have been hampered by the difficulties of culturing anaerobic ciliates in the laboratory and the frequent loss of their prokaryotic partners during long-term cultivation. In the present study, we report the isolation of an anaerobic scuticociliate, strain GW7, which has been stably maintained in our laboratory for more than 3 years without losing either of its endosymbionts. Unexpectedly, molecular characterization of the endosymbionts revealed that the bacterial partner of GW7 is phylogenetically related to intranuclear endosymbionts of aerobic ciliates. This strain will enable future genomic, transcriptomic, and proteomic analyses of the interactions in this tripartite symbiosis and a comparison with endosymbioses in aerobic ciliates.
Collapse
Affiliation(s)
- Kazutaka Takeshita
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Takanori Yamada
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Yuto Kawahara
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Takashi Narihiro
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Michihiro Ito
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Yoichi Kamagata
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Naoya Shinzato
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| |
Collapse
|
26
|
Lanzoni O, Plotnikov A, Khlopko Y, Munz G, Petroni G, Potekhin A. The core microbiome of sessile ciliate Stentor coeruleus is not shaped by the environment. Sci Rep 2019; 9:11356. [PMID: 31388025 PMCID: PMC6684585 DOI: 10.1038/s41598-019-47701-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/22/2019] [Indexed: 12/29/2022] Open
Abstract
Microbiomes of multicellular organisms are one of the hottest topics in microbiology and physiology, while only few studies addressed bacterial communities associated with protists. Protists are widespread in all environments and can be colonized by plethora of different bacteria, including also human pathogens. The aim of this study was to characterize the prokaryotic community associated with the sessile ciliate Stentor coeruleus. 16S rRNA gene metabarcoding was performed on single cells of S. coeruleus and on their environment, water from the sewage stream. Our results showed that the prokaryotic community composition differed significantly between Stentor cells and their environment. The core microbiome common for all ciliate specimens analyzed could be defined, and it was composed mainly by representatives of bacterial genera which include also potential human pathogens and commensals, such as Neisseria, Streptococcus, Capnocytophaga, Porphyromonas. Numerous 16S rRNA gene contigs belonged to endosymbiont “Candidatus Megaira polyxenophila”. Our data suggest that each ciliate cell can be considered as an ecological microniche harboring diverse prokaryotic organisms. Possible benefits for persistence and transmission in nature for bacteria associated with protists are discussed. Our results support the hypothesis that ciliates attract potentially pathogenic bacteria and play the role of natural reservoirs for them.
Collapse
Affiliation(s)
| | - Andrey Plotnikov
- Center of Shared Scientific Equipment, Institute for Cellular and Intracellular Symbiosis, Ural Division of RAS, Orenburg, Russia
| | - Yuri Khlopko
- Center of Shared Scientific Equipment, Institute for Cellular and Intracellular Symbiosis, Ural Division of RAS, Orenburg, Russia
| | - Giulio Munz
- Department of Civil and Environmental Engineering, University of Florence, Florence, Italy
| | | | - Alexey Potekhin
- Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia.
| |
Collapse
|
27
|
Illa K, Shameem U, Serra V, Melai M, Mangam S, Basuri CK, Petroni G, Modeo L. Multidisciplinary investigation on the catfish parasite Hamatopeduncularia Yamaguti, 1953 (Monogenoidea: Dactylogyridae): description of two new species from India, and phylogenetic considerations. EUROPEAN ZOOLOGICAL JOURNAL 2019. [DOI: 10.1080/24750263.2019.1597931] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- K. Illa
- Department of Zoology, Andhra University, Visakhapatnam, India
| | - U. Shameem
- Department of Zoology, Andhra University, Visakhapatnam, India
| | - V. Serra
- Department of Biology, University of Pisa, Pisa, Italy
| | - M. Melai
- Department of Biology, University of Pisa, Pisa, Italy
| | - S. Mangam
- Department of Zoology, Andhra University, Visakhapatnam, India
| | - C. K. Basuri
- National Centre for Coastal Research, NIOT Campus, Ministry of Earth Science, Chennai, India
| | - G. Petroni
- Department of Biology, University of Pisa, Pisa, Italy
| | - L. Modeo
- Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
28
|
Detection of a new bacterium of the family Holosporaceae (Alphaproteobacteria: Holosporales) associated with the oribatid mite Achipteria coleoptrata. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00251-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AbstractWe detected an unknown bacterium in Achipteria coleoptrata (Acari: Oribatida). Its 16S rDNA gene sequence showed 89% identity to the endosymbiont “Candidatus Nucleicultrix amoebiphila” from amoebae and “Candidatus Gortzia sp.” from ciliates. Phylogenetic analysis revealed that the microorganism is a member of the family Holosporaceae, order Holosporales of Alphaproteobacteria. Its occurrence in Oribatida is enigmatic. It cannot be excluded that it is a symbiont of Oribatida as well as it is an endosymbiont of a smaller, even unicellular, organisms living inside the mite. The issue of the occurrence of this microorganism is interesting and further research is needed to gain the knowledge of its role and the nature of bacterium-host interaction.
Collapse
|
29
|
Chiellini C, Pasqualetti C, Lanzoni O, Fagorzi C, Bazzocchi C, Fani R, Petroni G, Modeo L. Harmful Effect of Rheinheimera sp. EpRS3 ( Gammaproteobacteria) Against the Protist Euplotes aediculatus (Ciliophora, Spirotrichea): Insights Into the Ecological Role of Antimicrobial Compounds From Environmental Bacterial Strains. Front Microbiol 2019; 10:510. [PMID: 31001206 PMCID: PMC6457097 DOI: 10.3389/fmicb.2019.00510] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/27/2019] [Indexed: 01/24/2023] Open
Abstract
Rheinheimera sp. strain EpRS3, isolated from the rhizosphere of Echinacea purpurea, is already known for its ability to produce antibacterial compounds. By use of culture experiments, we verified and demonstrated its harmful effect against the ciliated protist Euplotes aediculatus (strain EASCc1), which by FISH experiments resulted to harbor in its cytoplasm the obligate bacterial endosymbiont Polynucleobacter necessarius (Betaproteobacteria) and the secondary endosymbiont "Candidatus Nebulobacter yamunensis" (Gammaproteobacteria). In culture experiments, the number of ciliates treated both with liquid broth bacteria-free (Supernatant treatment) and bacteria plus medium (Tq treatment), decreases with respect to control cells, with complete disappearance of ciliates within 6 h after Tq treatment. Results suggest that Rheinheimera sp. EpRS3 produces and releases in liquid culture one or more bioactive molecules affecting E. aediculatus survival. TEM analysis of control (not treated) ciliates allowed to morphologically characterize both kind of E. aediculatus endosymbionts. In treated ciliates, collected soon after the arising of cell suffering leading to death, TEM observations revealed some ultrastructural damages, indicating that P. necessarius endosymbionts went into degradation and vacuolization after both Supernatant and Tq treatments. Additionally, TEM investigation showed that when the ciliate culture was inoculated with Tq treatment, both a notable decrease of P. necessarius number and an increase of damaged and degraded mitochondria occur. FISH experiments performed on treated ciliates confirmed TEM results and, by means of the specific probe herein designed, disclosed the presence of Rheinheimera sp. EpRS3 both inside phagosomes and free in cytoplasm in ciliates after Tq treatment. This finding suggests a putative ability of Rheinheimera sp. EpRS3 to reintroduce itself in the environment avoiding ciliate digestion.
Collapse
Affiliation(s)
| | | | | | - Camilla Fagorzi
- Department of Biology, University of Florence, Florence, Italy
| | - Chiara Bazzocchi
- Department of Veterinary Medicine, University of Milan, Milan, Italy
| | - Renato Fani
- Department of Biology, University of Florence, Florence, Italy
| | | | - Letizia Modeo
- Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|