1
|
Karasartova D, Arslan-Akveran G, Sensoz S, Mumcuoglu KY, Taylan-Ozkan A. Hirudo verbana Microbiota Dynamics: A Key Factor in Hirudotherapy-Related Infections? Microorganisms 2025; 13:918. [PMID: 40284753 PMCID: PMC12029263 DOI: 10.3390/microorganisms13040918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
The gastrointestinal microbiota of medicinal leeches is particularly interesting due to their blood-feeding habits, increasing medical use, and risk of pathogen transmission. Three groups of Hirudo verbana were used to study the leech microbiota: farmed leeches fasting for a long time, farmed leeches recently fed with bovine blood, and wild specimens fed with amphibian blood. The microbiota of the leeches' mouth, pharynx, crop, and intestine was analyzed. Metasequencing analyses were performed using amplification of the 16S rRNA V3-V4 region on a NovaSeq Illumina platform. The relative abundance of bacterial microbiota included environmental bacteria from the families Rhizobiaceae, Comamonadaceae, Sphingobacteriaceae, Phreatobacteraceae, Myxococcaceae, Chitinophagaceae, Rhodospirillaceae, and Bdellovibrionaceae, as well as symbiotic/probiotic bacteria such as Mucinivorans, Aeromonas, Vagococcus, Lactobacillales, and Morganella. Significant differences were found in the different regions of the digestive system among the three groups of leeches, and environmental bacteria were present in all groups to varying degrees. A negative correlation was found between the dominant environmental and the symbiotic/probiotic bacteria. In contrast, a positive correlation was found between environmental and symbiotic/probiotic bacteria, indicating their association with host factors. Microbiota diversity, abundance, and bacterial correlations may be influenced by factors such as the leech's fasting state, blood meal source, and environmental conditions. The identified opportunistic pathogens, such as Rickettsia, Anaplasma, and Treponema, identified for the first time in H. verbana, should be taken into consideration when using this leech in hirudotherapy. Our results show that extensive screening for opportunistic and pathogenic agents should be performed on leeches intended for medical use. Long-fasting leeches and leeches cultured in specialized farms are recommended for hirudotherapy.
Collapse
Affiliation(s)
- Djursun Karasartova
- Department of Medical Microbiology, Faculty of Medicine, Hitit University, 19030 Corum, Turkey
| | - Gonul Arslan-Akveran
- Department of Food Processing, Alaca Avni Celik Vocational School, Hitit University, 19040 Corum, Turkey;
| | - Sabiha Sensoz
- Department of Nutrition and Dietetics, Faculty of Health Science, Hitit University, 19030 Corum, Turkey;
| | - Kosta Y. Mumcuoglu
- Parasitology Unit, Department of Microbiology and Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, Hadassah Medical School, The Hebrew University, Jerusalem 91120, Israel;
| | - Aysegul Taylan-Ozkan
- Department of Medical Microbiology, Faculty of Medicine, International Cyprus University, Nicosia 99258, Cyprus;
| |
Collapse
|
2
|
Dai C, Chen X, Qian S, Fan Y, Li L, Yuan J. Dysbiosis of intestinal homeostasis contribute to Whitmania pigra edema disease. Microb Biotechnol 2023; 16:1940-1956. [PMID: 37410351 PMCID: PMC10527190 DOI: 10.1111/1751-7915.14308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023] Open
Abstract
Whitmania pigra is widely used in traditional Chinese medicine. However, W. pigra is being threatened by an edema disease with unknown causes (WPE). In this study, a comprehensive exploration of virome, microbiome, and metabolome aberrations in the intestine of W. pigra was performed to address the aetiology of WPE. Virome analysis indicated that eukaryotic viruses did not contribute to WPE, whereas an expansion of Caudovirales was observed in WPE. Compared to the control, the microbial richness and diversity in diseased W. pigra decreased remarkably. Nine genera, including Aeromonas, Anaerotruncus, Vibrio, Proteocatella, Acinetobacter, and Brachyspira were overrepresented in WPE, whereas eleven genera, including Bifidobacterium, Phascolarctobacterium, Lactobacillus, Bacillus and AF12, were enriched in healthy individuals. Furthermore, certain metabolites, especially amino acids, short-chain fatty acids, and bile acids, were found to be linked to intestinal microbiota alterations in WPE. An integration of the microbiome and metabolome in WPE found that dysbiosis of the gut microbiota or metabolites caused WPE. Notably, W. pigra accepted intestinal microbiota transplantation from WPE donors developed WPE clinical signs eventually, and the dysbiotic intestinal microbiota can be recharacterized in this recipient W. pigra. Strikingly, pathological features of metanephridium and uraemic toxin enrichment in the gut indicated a putative interconnection between the gut and metanephridium in WPE, which represents the prototype of the gut-kidney axis in mammals. These finding exemplify the conservation of "microecological Koch's postulates" from annelids to insects and other vertebrates, which provides a direction of prevention and treatment for WPE and opens a new insight into the pathogenesis of aquatic animal diseases from an ecological perspective.
Collapse
Affiliation(s)
- Caijiao Dai
- Department of Aquatic Animal Medicine, College of FisheriesHuazhong Agricultural UniversityWuhanChina
- National Aquatic Animal Diseases Para‐reference laboratory (HZAU)WuhanChina
| | - Xin Chen
- Department of Aquatic Animal Medicine, College of FisheriesHuazhong Agricultural UniversityWuhanChina
- National Aquatic Animal Diseases Para‐reference laboratory (HZAU)WuhanChina
| | - Shiyu Qian
- Department of Aquatic Animal Medicine, College of FisheriesHuazhong Agricultural UniversityWuhanChina
- Hubei Engineering Research Centre for Aquatic Animal Diseases Control and PreventionWuhanChina
| | - Yihui Fan
- Department of Aquatic Animal Medicine, College of FisheriesHuazhong Agricultural UniversityWuhanChina
- Hubei Engineering Research Centre for Aquatic Animal Diseases Control and PreventionWuhanChina
| | - Lijuan Li
- Department of Aquatic Animal Medicine, College of FisheriesHuazhong Agricultural UniversityWuhanChina
- National Aquatic Animal Diseases Para‐reference laboratory (HZAU)WuhanChina
- Hubei Engineering Research Centre for Aquatic Animal Diseases Control and PreventionWuhanChina
| | - Junfa Yuan
- Department of Aquatic Animal Medicine, College of FisheriesHuazhong Agricultural UniversityWuhanChina
- National Aquatic Animal Diseases Para‐reference laboratory (HZAU)WuhanChina
- Hubei Engineering Research Centre for Aquatic Animal Diseases Control and PreventionWuhanChina
| |
Collapse
|
3
|
Draft Genome Sequence of Plesiomonas shigelloides MD22D9, Isolated from the Digestive Tract of Macrobdella decora. Microbiol Resour Announc 2023; 12:e0093922. [PMID: 36515507 PMCID: PMC9872628 DOI: 10.1128/mra.00939-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Here, we present a draft genome sequence of Plesiomonas shigelloides MD22D9, isolated from the digestive tract of the North American medicinal leech Macrobdella decora. The gut microbiome of the medicinal leech is hypothesized to be critical for maintaining host fitness. This genome can provide insights into this uncharacterized microbe-host relationship.
Collapse
|
4
|
Guizzo MG, Dolezelikova K, Neupane S, Frantova H, Hrbatova A, Pafco B, Fiorotti J, Kopacek P, Zurek L. Characterization and manipulation of the bacterial community in the midgut of Ixodes ricinus. Parasit Vectors 2022; 15:248. [PMID: 35810301 PMCID: PMC9271250 DOI: 10.1186/s13071-022-05362-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/08/2022] [Indexed: 11/25/2022] Open
Abstract
Background Ticks are obligate hematophagous arthropods transmitting a wide range of pathogens to humans and animals. They also harbor a non-pathogenic microbiota, primarily in the ovaries and the midgut. In the previous study on Ixodes ricinus, we used a culture-independent approach and showed a diverse but quantitatively poor midgut bacterial microbiome. Our analysis also revealed the absence of a core microbiome, suggesting an environmental origin of the tick midgut microbiota. Methods A bacterial analysis of the midgut of adult females collected by flagging from two localities in the Czech Republic was performed. Using the culture-independent approach, we tested the hypothesis that the midgut microbiome is of the environmental origin. We also cultured indigenous bacteria from the tick midgut and used these to feed ticks artificially in an attempt to manipulate the midgut microbiome. Results The midgut showed a very low prevalence and abundance of culturable bacteria, with only 37% of ticks positive for bacteria. The culture-independent approach revealed the presence of Borrelia sp., Spiroplasma sp., Rickettsia sp., Midichloria sp. and various mainly environmental Gram-positive bacterial taxa. The comparison of ticks from two regions revealed that the habitat influenced the midgut bacterial diversity. In addition, the midgut of ticks capillary fed with the indigenous Micrococcus luteus (Gram-positive) and Pantoea sp. (Gram-negative) could not be colonized due to rapid and effective clearance of both bacterial taxa. Conclusions The midgut microbiome of I. ricinus is diverse but low in abundance, with the exception of tick-borne pathogens and symbionts. The environment impacts the diversity of the tick midgut microbiome. Ingested extracellular environmental bacteria are rapidly eliminated and are not able to colonize the gut. We hypothesize that bacterial elimination triggered in the midgut of unfed adult females is critical to maintain low microbial levels during blood-feeding. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05362-z.
Collapse
Affiliation(s)
- Melina Garcia Guizzo
- Central European Institute of Technology (CEITEC), Center for Infectious Diseases and Microbiology, University of Veterinary Sciences, Brno, Czech Republic.,Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Kristyna Dolezelikova
- Central European Institute of Technology (CEITEC), Center for Infectious Diseases and Microbiology, University of Veterinary Sciences, Brno, Czech Republic
| | - Saraswoti Neupane
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| | - Helena Frantova
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Alena Hrbatova
- Central European Institute of Technology (CEITEC), Center for Infectious Diseases and Microbiology, University of Veterinary Sciences, Brno, Czech Republic
| | - Barbora Pafco
- Central European Institute of Technology (CEITEC), Center for Infectious Diseases and Microbiology, University of Veterinary Sciences, Brno, Czech Republic.,Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Jessica Fiorotti
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Petr Kopacek
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Ludek Zurek
- Central European Institute of Technology (CEITEC), Center for Infectious Diseases and Microbiology, University of Veterinary Sciences, Brno, Czech Republic. .,Department of Chemistry and Biochemistry, Mendel University, Brno, Czech Republic. .,Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences, Prague, Czech Republic.
| |
Collapse
|
5
|
Macrobdella decora: Old World Leech Gut Microbial Community Structure Conserved in a New World Leech. Appl Environ Microbiol 2021; 87:AEM.02082-20. [PMID: 33674439 DOI: 10.1128/aem.02082-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/18/2021] [Indexed: 01/04/2023] Open
Abstract
Leeches are found in terrestrial, aquatic, and marine habitats on all continents. Sanguivorous leeches have been used in medicine for millennia. Modern scientific uses include studies of neurons, anticoagulants, and gut microbial symbioses. Hirudo verbana, the European medicinal leech, maintains a gut community dominated by two bacterial symbionts, Aeromonas veronii and Mucinivorans hirudinis, which sometimes account for as much as 97% of the total crop microbiota. The highly simplified gut anatomy and microbiome of H. verbana make it an excellent model organism for studying gut microbial dynamics. The North American medicinal leech, Macrobdella decora, is a hirudinid leech native to Canada and the northern United States. In this study, we show that M. decora symbiont communities are very similar to those in H. verbana. We performed an extensive study using field-caught M. decora and purchased H. verbana from two suppliers. Deep sequencing of the V4 region of the 16S rRNA gene allowed us to determine that the core microbiome of M. decora consists of Bacteroides, Aeromonas, Proteocatella, and Butyricicoccus. The analysis revealed that the compositions of the gut microbiomes of the two leech species were significantly different at all taxonomic levels. The R 2 value was highest at the genus and amplicon sequence variant (ASV) levels and much lower at the phylum, class, and order levels. The gut and bladder microbial communities were distinct. We propose that M. decora is an alternative to H. verbana for studies of wild-caught animals and provide evidence for the conservation of digestive-tract and bladder symbionts in annelid models.IMPORTANCE Building evidence implicates the gut microbiome in critical animal functions such as regulating digestion, nutrition, immune regulation, and development. Simplified, phylogenetically diverse models for hypothesis testing are necessary because of the difficulty of assigning causative relationships in complex gut microbiomes. Previous research used Hirudo verbana as a tractable animal model of digestive-tract symbioses. Our data show that Macrobdella decora may work just as well without the drawback of being an endangered organism and with the added advantage of easy access to field-caught specimens. The similarity of the microbial community structures of species from two different continents reveals the highly conserved nature of the microbial symbionts in sanguivorous leeches.
Collapse
|
6
|
Grafskaia E, Pavlova E, Babenko VV, Latsis I, Malakhova M, Lavrenova V, Bashkirov P, Belousov D, Klinov D, Lazarev V. The Hirudo Medicinalis Microbiome Is a Source of New Antimicrobial Peptides. Int J Mol Sci 2020; 21:E7141. [PMID: 32992666 PMCID: PMC7582656 DOI: 10.3390/ijms21197141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/23/2022] Open
Abstract
Antimicrobial peptides (AMPs) are considered a promising new class of anti-infectious agents. This study reports new antimicrobial peptides derived from the Hirudo medicinalis microbiome identified by a computational analysis method applied to the H. medicinalis metagenome. The identified AMPs possess a strong antimicrobial activity against Gram-positive and Gram-negative bacteria (MIC range: 5.3 to 22.4 μM), including Staphylococcus haemolyticus, an opportunistic coagulase-negative pathogen. The secondary structure analysis of peptides via CD spectroscopy showed that all the AMPs except pept_352 have mostly disordered structures that do not change under different conditions. For peptide pept_352, the α-helical content increases in the membrane environment. The examination of the mechanism of action of peptides suggests that peptide pept_352 exhibits a direct membranolytic activity. Furthermore, the cytotoxicity assay demonstrated that the nontoxic peptide pept_1545 is a promising candidate for drug development. Overall, the analysis method implemented in the study may serve as an effective tool for the identification of new AMPs.
Collapse
Affiliation(s)
- Ekaterina Grafskaia
- Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia; (E.P.); (V.V.B.); (I.L.); (M.M.); (V.L.); (P.B.); (D.K.)
| | - Elizaveta Pavlova
- Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia; (E.P.); (V.V.B.); (I.L.); (M.M.); (V.L.); (P.B.); (D.K.)
- Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow 141701, Russia
| | - Vladislav V. Babenko
- Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia; (E.P.); (V.V.B.); (I.L.); (M.M.); (V.L.); (P.B.); (D.K.)
| | - Ivan Latsis
- Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia; (E.P.); (V.V.B.); (I.L.); (M.M.); (V.L.); (P.B.); (D.K.)
| | - Maja Malakhova
- Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia; (E.P.); (V.V.B.); (I.L.); (M.M.); (V.L.); (P.B.); (D.K.)
| | - Victoria Lavrenova
- Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia; (E.P.); (V.V.B.); (I.L.); (M.M.); (V.L.); (P.B.); (D.K.)
- Department of biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Pavel Bashkirov
- Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia; (E.P.); (V.V.B.); (I.L.); (M.M.); (V.L.); (P.B.); (D.K.)
| | - Dmitrii Belousov
- Sechenov First Moscow State Medical University Sechenov University, Moscow 119991, Russia;
| | - Dmitry Klinov
- Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia; (E.P.); (V.V.B.); (I.L.); (M.M.); (V.L.); (P.B.); (D.K.)
| | - Vassili Lazarev
- Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia; (E.P.); (V.V.B.); (I.L.); (M.M.); (V.L.); (P.B.); (D.K.)
- Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow 141701, Russia
| |
Collapse
|
7
|
Osório JB, de Mattos Pereira L, Giongo A, Marconatto L, Potriquet J, Candido RRF, Mulvenna J, Jones M, Graeff-Teixeira C, Morassutti AL. Mollusk microbiota shift during Angiostrongylus cantonensis infection in the freshwater snail Biomphalaria glabrata and the terrestrial slug Phillocaulis soleiformis. Parasitol Res 2020; 119:2495-2503. [PMID: 32556501 DOI: 10.1007/s00436-020-06743-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 06/01/2020] [Indexed: 02/01/2023]
Abstract
In the present work, we reported for the first time the microbiome from Phyllocaulis soleiformis and Biomphalaria glabrata assessed using high-throughput DNA sequencing pre- and post-infection with the helminth parasite Angiostrongylus cantonensis. B. glabrata and P. soleiformis were experimentally infected with A. cantonensis. Fecal DNAs from control and infected groups were extracted and subjected to 16S rRNA high-throughput sequencing survey. No significant differences were found in the alpha diversity indexes in Phyllocaulis and Biomphalaria experiments independently. PCoA analysis using the unweighted UniFrac measures showed that both microbiotas behaved differently depending on the host. In Biomphalaria microbiota, control and infected groups were significantly different (p = 0.0219), while Phyllocaulis samples were not (p = 0.5190). The microbiome of P. soleiformis infected with A. cantonensis showed a significant decrease of Sphingobacterium and a substantial increase of Cellvibrio when compared to a control group. The microbiome of B. glabrata infected with A. cantonensis showed a significant decline in the abundance of Flavobacterium, Fluviicola, Nitrospira, Vogesella and an OTU belonging to the family Comamonadaceae, and a significant increase of Uliginosibacterium and an OTU belonging to the family Weeksellaceae when compared to a control group. Overall, the microbiome data reported here provided valuable information with regard to the diversity of bacterial communities that comprise the gut microbiome of gastropods. Furthermore, we report here the effect of the infection of the helminth A. cantonensis in the ratio and distribution of the fecal microbiome of the snails. Further studies are highly valuable in order to better understand those interactions by comparing different microbiome profiles and mollusk models. By now, we anticipate that ecological studies will take significant advantage of these advances, particularly concerning improving our understanding of helminth-microbiome-host interactions.
Collapse
Affiliation(s)
- Joana Borges Osório
- Laboratório de Biologia Parasitária, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, Predio 12C, Porto Alegre, RS, 90060-900, Brazil
| | - Leandro de Mattos Pereira
- Laboratório de Biologia Parasitária, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, Predio 12C, Porto Alegre, RS, 90060-900, Brazil.,Laboratório de Ecologia Microbiana e Molecular, Bloco E - Predio CCS, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Adriana Giongo
- Instituto do Petróleo e Recursos Naturais, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, Predio 96J, Porto Alegre, RS, 90060-900, Brazil
| | - Letícia Marconatto
- Laboratório de Biologia Parasitária, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, Predio 12C, Porto Alegre, RS, 90060-900, Brazil.,Laboratório de Ecologia Microbiana e Molecular, Bloco E - Predio CCS, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto do Petróleo e Recursos Naturais, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, Predio 96J, Porto Alegre, RS, 90060-900, Brazil.,QIMR Berghofer Medical Research Institute, University of Queensland, Brisbane, Queensland, 4006, Australia.,Department of Physics, The University of Western Australia, M013, 35 Stirling Hwy, Crawley, 6009, Australia.,School of Veterinary Science, The University of Queensland, Gatton, Queensland, 4343, Australia
| | - Jeremy Potriquet
- QIMR Berghofer Medical Research Institute, University of Queensland, Brisbane, Queensland, 4006, Australia
| | | | - Jason Mulvenna
- Instituto do Petróleo e Recursos Naturais, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, Predio 96J, Porto Alegre, RS, 90060-900, Brazil
| | - Malcolm Jones
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, 4343, Australia
| | - Carlos Graeff-Teixeira
- Laboratório de Biologia Parasitária, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, Predio 12C, Porto Alegre, RS, 90060-900, Brazil
| | - Alessandra Loureiro Morassutti
- Laboratório de Biologia Parasitária, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, Predio 12C, Porto Alegre, RS, 90060-900, Brazil.
| |
Collapse
|
8
|
Draft Genome Sequence of Heavy Metal-Resistant Aeromonas veronii CTe-01, Isolated from a Peruvian Wastewater Treatment Plant. Microbiol Resour Announc 2019; 8:8/49/e01147-19. [PMID: 31806744 PMCID: PMC6895304 DOI: 10.1128/mra.01147-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Here, we report a draft genome sequence of Aeromonas veronii strain CTe-01 (4.5 Mb), a hemolytic, heavy metal-resistant bacterium isolated from a wastewater treatment plant located at Cachiche, Ica, Peru. These characteristics could be used for bioremediation of contaminated environments.
Collapse
|