1
|
Rahnama A, Vaithiyanathan M, Briceno-Mena L, Dugas TM, Yates KL, Romagnoli JA, Melvin AT. A microfluidic approach to study variations in Chlamydomonas reinhardtii alkaline phosphatase activity in response to phosphate availability. Analyst 2024; 149:4256-4266. [PMID: 38895826 DOI: 10.1039/d4an00619d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Algal growth depends strongly on phosphorus (P) as a key nutrient, underscoring the significance of monitoring P levels. Algal species display a sensitive response to fluctuations in P availability, notably through the expression of alkaline phosphatase (AP) when challenged with P-depletion. As such, alkaline phosphatase activity (APA) serves as a valuable metric for P availability, offering insights into how algae utilize and fix available P resources. However, current APA quantification methods lack single cell resolution, while also being time- and reagent consuming. Microfluidics offers a promising cost-effective solution to these limitations, providing a platform for precise single-cell analysis. In this study, a trap-based microfluidic device was integrated with a commercially available AP live stain to study the single cell APA response of a model algae strain, Chlamydomonas reinhardtii, when exposed to different exogenous P levels. A three-step culture-starve-spike process was used to induce APA in cells cultured under two different basal P levels (1 and 21 mM). When challenged with different spiked P levels (ranging from 0.1-41 mM), C. reinhardtii cells demonstrated a highly heterogeneous APA response. Two-way ANOVA confirmed that this response is influenced by both spiked and basal P levels. Utilizing an unsupervised machine learning approach (HDBSCAN), distinct subpopulations of C. reinhardtii cells were identified exhibiting varying levels of APA at the single-cell level. These subpopulations encompass significant groups of individual cells with either notably high or low APA, contributing to the overall behavior of the cohorts. Considerable intrapopulation differences in APA were observed across cohorts with similar average behavior. For instance, while some cohorts exhibited a concentrated distribution around the overall average APA, others displayed subpopulations dispersed across a wider range of APA levels. This underscores the potential bias introduced by analyzing a small number of cells in bulk, which may skew results by overrepresenting extreme behavioral subpopulations. The findings if this study highlight the need for analytical approaches that account for single cell heterogeneity in APA and demonstrate the utility of microfluidics as a well-suited means for such investigations. This study illuminates the complexities of APA regulation at the single cell level, providing crucial insights that advance our understanding of algal phosphorus metabolism and environmental responses.
Collapse
Affiliation(s)
- Alireza Rahnama
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana, 70803, USA.
| | - Manibarathi Vaithiyanathan
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana, 70803, USA.
| | - Luis Briceno-Mena
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana, 70803, USA.
| | - Travis M Dugas
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana, 70803, USA.
| | - Kelly L Yates
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana, 70803, USA.
| | - Jose A Romagnoli
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana, 70803, USA.
| | - Adam T Melvin
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana, 70803, USA.
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina, 29634, USA
| |
Collapse
|
2
|
Zhang X, Yu K, Li M, Jiang H, Gao W, Zhao J, Li K. Diatom-dinoflagellate succession in the Bohai Sea: The role of N/P ratios and dissolved organic nitrogen components. WATER RESEARCH 2024; 251:121150. [PMID: 38246079 DOI: 10.1016/j.watres.2024.121150] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/04/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
Dissolved organic nitrogen (DON) is a pivotal component of total dissolved nitrogen pools, serving as a crucial nitrogen source for phytoplankton. This study investigated the impact of nitrogen-to-phosphorus (N/P) ratios and different DON components (hydrophilic vs hydrophobic DON) on diatom-dinoflagellate succession through field culture experiments. Results showed that dinoflagellates have a competitive advantage under high N/P ratios and phosphorus limitation, regardless of DON or DIN treatments. Hydrophilic DON exhibits greater bioavailability than hydrophobic DON (40.6% vs. 21.7 %), resulting in increased algal biomass and diatoms dominance in the community. Additionally, DON was categorized into labile and refractory components (LDON and RDON) based on bioavailability. LDON primarily consists of protein-like components that can be readily consumed by algae, whereas RDON is primarily composed of humic-like components that are less accessible to algae. Diatoms and dinoflagellates exhibited differential responses to LDON and RDON, with diatoms thriving in high LDON environments, while dinoflagellates gained a competitive advantage when RDON was the predominant nitrogen source. Furthermore, a significant negative correlation was observed between bioavailable nitrogen concentration (BAN: DIN + LDON) and the ratio of dinoflagellates to diatoms (p<0.05). In conclusion, our study highlights the role of LDON in promoting diatom dominance, whereas environments dominated by RDON foster dinoflagellate success. These findings enhance our comprehension of diatom-dinoflagellate succession dynamics.
Collapse
Affiliation(s)
- Xiansheng Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 2066061, China
| | - Kunlong Yu
- Key Laboratory of Marine Chemistry Theory and Technology, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 2066061, China
| | - Min Li
- Key Laboratory of Marine Chemistry Theory and Technology, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 2066061, China
| | - Heng Jiang
- Key Laboratory of Marine Chemistry Theory and Technology, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 2066061, China
| | - Weimin Gao
- Key Laboratory of Marine Chemistry Theory and Technology, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 2066061, China
| | - Jing Zhao
- Key Laboratory of Marine Chemistry Theory and Technology, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Keqiang Li
- Key Laboratory of Marine Chemistry Theory and Technology, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 2066061, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
3
|
Li DW, Tan JZ, Li ZF, Ou LJ. Membrane lipid remodeling and autophagy to cope with phosphorus deficiency in the dinoflagellate Prorocentrum shikokuense. CHEMOSPHERE 2024; 349:140844. [PMID: 38042419 DOI: 10.1016/j.chemosphere.2023.140844] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Dinoflagellates, which are responsible for more than 80% of harmful algal blooms in coastal waters, are competitive in low-phosphate environments. However, the specific acclimated phosphorus strategies to adapt to phosphorus deficiency in dinoflagellates, particularly through intracellular phosphorus metabolism, remain largely unknown. Comprehensive physiological, biochemical, and transcriptomic analyses were conducted to investigate intracellular phosphorus modulation in a model dinoflagellate, Prorocentrum shikokuense, with a specific focus on membrane lipid remodeling and autophagy in response to phosphorus deficiency. Under phosphorus deficiency, P. shikokuense exhibited a preference to spare phospholipids with nonphospholipids. The major phospholipid classes of phosphatidylcholine and phosphatidylethanolamine decreased in content, whereas the betaine lipid class of diacylglyceryl carboxyhydroxymethylcholine increased in content. Furthermore, under phosphorus deficiency, P. shikokuense induced autophagy as a mechanism to conserve and recycle cellular phosphorus resources. The present study highlights the effective modulation of intracellular phosphorus in P. shikokuense through membrane phospholipid remodeling and autophagy and contributes to a comprehensive understanding of the acclimation strategies to low-phosphorus conditions in dinoflagellates.
Collapse
Affiliation(s)
- Da-Wei Li
- College of Life Science and Technology, and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, Jinan University, Guangzhou, China
| | - Jin-Zhou Tan
- College of Life Science and Technology, and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, Jinan University, Guangzhou, China
| | - Zhuo-Fan Li
- College of Life Science and Technology, and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, Jinan University, Guangzhou, China
| | - Lin-Jian Ou
- College of Life Science and Technology, and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, Jinan University, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| |
Collapse
|
4
|
Huang XL, Zhuang YQ, Xiong YY, Li DW, Ou LJ. Efficient modulation of cellular phosphorus components in response to phosphorus deficiency in the dinoflagellate Karenia mikimotoi. Appl Environ Microbiol 2023; 89:e0086723. [PMID: 37850723 PMCID: PMC10686090 DOI: 10.1128/aem.00867-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/29/2023] [Indexed: 10/19/2023] Open
Abstract
IMPORTANCE Dinoflagellates are the most common phytoplankton group and account for more than 75% of harmful algal blooms in coastal waters. In recent decades, dinoflagellates seem to prevail in phosphate-depleted waters. However, the underlying acclimation mechanisms and competitive strategies of dinoflagellates in response to phosphorus deficiency are poorly understood, especially in terms of intracellular phosphorus modulation and recycling. Here, we focused on the response of intracellular phosphorus metabolism to phosphorus deficiency in the model dinoflagellate Karenia mikimotoi. Our work reveals the strong capability of K. mikimotoi to efficiently regulate intracellular phosphorus resources, particularly through membrane phospholipid remodeling and miRNA regulation of energy metabolism. Our research improved the understanding of intracellular phosphorus metabolism in marine phytoplankton and underscored the advantageous strategies of dinoflagellates in the efficient modulation of internal phosphorus resources to maintain active physiological activity and growth under unsuitable phosphorus conditions, which help them outcompete other species in coastal phosphate-depleted environments.
Collapse
Affiliation(s)
- Xue-Ling Huang
- College of Life Science and Technology and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, Jinan University, Guangzhou, China
| | - Yan-Qing Zhuang
- College of Life Science and Technology and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, Jinan University, Guangzhou, China
| | - Yue-Yue Xiong
- College of Life Science and Technology and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, Jinan University, Guangzhou, China
| | - Da-Wei Li
- College of Life Science and Technology and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, Jinan University, Guangzhou, China
| | - Lin-Jian Ou
- College of Life Science and Technology and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, Jinan University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|
5
|
Jin WY, Chen XW, Tan JZ, Lin X, Ou LJ. Variation in intracellular polyphosphate and associated gene expression in response to different phosphorus conditions in the dinoflagellate Karenia mikimotoi. HARMFUL ALGAE 2023; 129:102532. [PMID: 37951614 DOI: 10.1016/j.hal.2023.102532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 11/14/2023]
Abstract
Polyphosphate (polyP) has long been recognized as a crucial intracellular reservoir for phosphorus in microorganisms. However, the dynamics of polyP and its regulatory mechanism in eukaryotic phytoplankton in response to variations in external phosphorus conditions remain poorly understood. A comprehensive investigation was conducted to examine the intracellular polyP-associated metabolic response of the dinoflagellate Karenia mikimotoi, a harmful algal bloom species, through integrated physiological, biochemical, and transcriptional analyses under varying external phosphorus conditions. Comparable growth curves and Fv/Fm between phosphorus-replete conditions and phosphorus-depleted conditions suggested that K. mikimotoi has a strong capability to mobilize the intracellular phosphorus pool for growth under phosphorus deficiency. Intracellular phosphate (IPi) and polyP contributed approximately 6-23 % and 1-3 %, respectively, to the overall particulate phosphorus (PP) content under different phosphorus conditions. The significant decrease in PP and increase in polyP:PP suggested that cellular phosphorus components other than polyP are preferred for utilization under phosphorus deficiency. Genes involved in polyP synthesis and hydrolysis were upregulated to maintain phosphorus homeostasis in K. mikimotoi. These findings provide novel insights into the specific cellular strategies for phosphorus storage and the transcriptional response in intracellular polyP metabolism in K. mikimotoi. Additionally, these results also indicate that polyP may not play a crucial role in cellular phosphorus storage in phytoplankton, at least in dinoflagellates.
Collapse
Affiliation(s)
- Wen-Yu Jin
- Research Center of Harmful Algae and Marine Biology, Jinan University, Guangzhou, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China; Wenzhou Marine Center, Ministry of Natural Resources, Wenzhou, China
| | - Xiang-Wu Chen
- Research Center of Harmful Algae and Marine Biology, Jinan University, Guangzhou, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Jin-Zhou Tan
- Research Center of Harmful Algae and Marine Biology, Jinan University, Guangzhou, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Xin Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, China.
| | - Lin-Jian Ou
- Research Center of Harmful Algae and Marine Biology, Jinan University, Guangzhou, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| |
Collapse
|
6
|
Kalinina V, Berdieva M, Aksenov N, Skarlato S. Phosphorus deficiency induces sexual reproduction in the dinoflagellate Prorocentrum cordatum. Sci Rep 2023; 13:14191. [PMID: 37648777 PMCID: PMC10468533 DOI: 10.1038/s41598-023-41339-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023] Open
Abstract
Nitrogen (N) and phosphorus (P) are essential elements whose availability promotes successful growth of phytoplankton and governs aquatic primary productivity. In this study, we investigated the effect of N and/or P deficiency on the sexual reproduction of Prorocentrum cordatum, the dinoflagellate with the haplontic life cycle which causes harmful algal blooms worldwide. In P. cordatum cultures, N and the combined N and P deficiency led to the arrest of the cell cycle in the G0/G1 phases and attenuation of cell culture growth. We observed, that P, but not N deficiency triggered the transition in the life cycle of P. cordatum from vegetative to the sexual stage. This resulted in a sharp increase in percentage of cells with relative nuclear DNA content 2C (zygotes) and the appearance of cells with relative nuclear DNA content 4C (dividing zygotes). Subsequent supplementation with phosphate stimulated meiosis and led to a noticeable increase in the 4C cell number (dividing zygotes). Additionally, we performed transcriptomic data analysis and identified putative phosphate transporters and enzymes involved in the phosphate uptake and regulation of its metabolism by P. cordatum. These include high- and low-affinity inorganic phosphate transporters, atypical alkaline phosphatase, purple acid phosphatases and SPX domain-containing proteins.
Collapse
Affiliation(s)
- Vera Kalinina
- Laboratory of Cytology of Unicellular Organisms, Institute of Cytology of the Russian Academy of Sciences, St.-Petersburg, 194064, Russia.
| | - Mariia Berdieva
- Laboratory of Cytology of Unicellular Organisms, Institute of Cytology of the Russian Academy of Sciences, St.-Petersburg, 194064, Russia
| | - Nikolay Aksenov
- Laboratory of Intracellular Membrane Dynamics, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, 194064, Russia
| | - Sergei Skarlato
- Laboratory of Cytology of Unicellular Organisms, Institute of Cytology of the Russian Academy of Sciences, St.-Petersburg, 194064, Russia
| |
Collapse
|
7
|
Ma Q, Zhang L. The influences of dissolved inorganic and organic phosphorus on arsenate toxicity in marine diatom Skeletonema costatum and dinoflagellate Amphidinium carterae. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131432. [PMID: 37080037 DOI: 10.1016/j.jhazmat.2023.131432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/05/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
In this study, arsenate (As(V)) uptake, bioaccumulation, subcellular distribution and biotransformation were assessed in the marine diatom Skeletonema costatum and dinoflagellate Amphidinium carterae cultured in dissolved inorganic phosphorus (DIP) and dissolved organic phosphorus (DOP). The results of 3-days As(V) exposure showed that As(V) was more toxic in DOP cultures than in DIP counterparts. The higher As accumulation contributed to more severe As(V) toxicity. The 4-h As(V) uptake kinetics followed Michaelis-Menten kinetics. The maximum uptake rates were higher in DOP cultures than those in DIP counterparts. After P addition, the half-saturation constants remained constant in S. costatum (2.42-3.07 μM) but decreased in A. carterae (from 10.9 to 3.8 μM) compared with that in the respective P-depleted counterparts. During long-term As(V) exposure, A. carterae accumulated more As than S. costatum. Simultaneously, As(V) was reduced and transformed into organic As species in DIP-cultured S. costatum, which was severely inhibited in their DOP counterparts. Only As(V) reduction occurred in A. carterae. Overall, this study demonstrated species-specific effects of DOP on As(V) toxicity, and thus provide a new insight into the relationship between As contamination and eutrophication on the basis of marine microalgae.
Collapse
Affiliation(s)
- Qunhuan Ma
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| |
Collapse
|
8
|
Chai X, Zheng L, Liu J, Zhan J, Song L. Comparison of photosynthetic responses between haptophyte Phaeocystis globosa and diatom Skeletonema costatum under phosphorus limitation. Front Microbiol 2023; 14:1085176. [PMID: 36756351 PMCID: PMC9899818 DOI: 10.3389/fmicb.2023.1085176] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/06/2023] [Indexed: 01/24/2023] Open
Abstract
The diatom Skeletonema costatum and the haptophyte Phaeocystis globosa often form blooms in the coastal waters of the South China Sea. Skeletonema costatum commonly dominates in nutrient enrichment coastal waters, whereas P. globosa starts flourishing after the diatom blooms when phosphorus (P) is limited. Therefore, P limitation was proposed to be a critical factor affecting diatom-haptophyte transition. To elucidate the tolerance to P limitation in P. globosa compared with S. costatum, the effect of P limitation on their photosystem II (PSII) performance was investigated and their photosynthesis acclimation strategies in response to P limitation were evaluated. P limitation did not affect the growth of P. globosa over 7 days but decreased it for S. costatum. Correspondingly, the PSII activity of S. costatum was significantly inhibited by P limitation. The decline in PSII activity in S. costatum under P limitation was associated with the impairment of the oxygen-evolving complex (the donor side of PSII), the hindrance of electron transport from QA - to QB (the acceptor side of PSII), and the inhibition of electron transport to photosystem I (PSI). The 100% decrease in D1 protein level of S. costatum after P limitation for 6 days and PsbO protein level after 2 days of P limitation were attributed to its enhanced photoinhibition. In contrast, P. globosa maintained its photosynthetic activity with minor impairment of the function of PSII. With accelerated PSII repair and highly increased non-photochemical quenching (NPQ), P. globosa can avoid serious PSII damage under P limitation. On the contrary, S. costatum decreased its D1 restoration under P limitation, and the maximum NPQ value in S. costatum was only one-sixth of that in P. globosa. The present work provides extensive evidence that a close interaction exists between the tolerance to P limitation and photosynthetic responses of S. costatum and P. globosa.
Collapse
Affiliation(s)
- Xiaojie Chai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Lingling Zheng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jin Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jiao Zhan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China,*Correspondence: Jiao Zhan, ✉
| | - Lirong Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
9
|
Zhang X, Zhen G, Cui X, Zeng Y, Gao W, Yu K, Li K. Effect of dissolved organic nutrients on the bloom of Prorocentrum donghaiense in the East China Sea coastal waters. MARINE ENVIRONMENTAL RESEARCH 2023; 183:105841. [PMID: 36512865 DOI: 10.1016/j.marenvres.2022.105841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Prorocentrum donghaiense blooms occur annually in the East China Sea coastal waters, degrading ecosystem functions and impeding economic development. Dissolved organic nitrogen and phosphorus (DON and DOP) are the main components in the marine nutrient pools and are closely related to harmful algal blooms. From April to June 2019, a survey was conducted along the East China Sea coast (Sansha and Lianjiang counties) to investigate the relationship between dissolved organic nutrients and P. donghaiense bloom. Our findings showed that dinoflagellates dominated the phytoplankton community, and dissolved organic nutrients were the major factors influencing community structure during the P. donghaiense bloom. Redundancy analysis indicated that P. donghaiense abundance was primarily affected by DON in the Sansha area while it was primarily affected by DON and DOP in the Lianjiang area. Correlation analysis also confirmed a strong positive correlation between dissolved organic nutrients and P. donghaiense abundance both in the Sansha and Lianjiang coastal areas (p < 0.001). Furthermore, a culture experiment was carried out during the bloom to further investigate the effect of dissolved organic nutrients on the phytoplankton community structure. After 10 days of culture, dinoflagellates' relative abundance decreased from 97.1% to 28.2% in the inorganic treatment, whereas dinoflagellates continued to dominate the phytoplankton community in the organic treatment (76.9%). As a result, we propose that dissolved organic nutrients are responsible for the P. donghaiense bloom outbreak and promote the phytoplankton community shift from diatoms to dinoflagellates.
Collapse
Affiliation(s)
- Xiansheng Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, And Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 2066061, China
| | - Guangming Zhen
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 2066061, China
| | - Xiaoru Cui
- Key Laboratory of Marine Chemistry Theory and Technology, And Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yulan Zeng
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China
| | - Weimin Gao
- Key Laboratory of Marine Chemistry Theory and Technology, And Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 2066061, China
| | - Kunlong Yu
- Key Laboratory of Marine Chemistry Theory and Technology, And Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 2066061, China
| | - Keqiang Li
- Key Laboratory of Marine Chemistry Theory and Technology, And Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 2066061, China.
| |
Collapse
|
10
|
Zhang QC, Wang YF, Song MJ, Wang JX, Ji NJ, Liu C, Kong FZ, Yan T, Yu RC. First record of a Takayama bloom in Haizhou Bay in response to dissolved organic nitrogen and phosphorus. MARINE POLLUTION BULLETIN 2022; 178:113572. [PMID: 35381462 DOI: 10.1016/j.marpolbul.2022.113572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/01/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Since 1990s, harmful algal blooms (HABs) of Kareniaceae, primarily caused by species of Karenia and Karlodinium and rarely by Takayama species, have been substantially increasing in frequency and duration in the coastal waters of China. In this study, we recorded a bloom of high abundance of T. acrotrocha in the Haizhou Bay, the Yellow Sea in September 2020, which is the first record of a Takayama bloom in the temperate coastal waters of China. We found that high concentrations of DON and DOP accelerated the proliferation of T. acrotrocha in the Haizhou Bay. Intensive mariculture, and terrestrial nitrogen and phosphorus input may be responsible for the eutrophication in the Haizhou Bay featuring high concentrations of DON and DOP, and high DIN/DIP ratios. The results suggested that, under ocean warming, the HABs of Kareniaceae are becoming increasingly dominant in eutrophic temperate coasts with intensive mariculture activities.
Collapse
Affiliation(s)
- Qing-Chun Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yun-Feng Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Min-Jie Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin-Xiu Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan-Jing Ji
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Chao Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fan-Zhou Kong
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Tian Yan
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Ren-Cheng Yu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
11
|
Effiong K, Hu J, Xu C, Zhang Y, Yu S, Tang T, Huang Y, Lu Y, Li W, Zeng J, Xiao X. 3-Indoleacrylic acid from canola straw as a promising antialgal agent - Inhibition effect and mechanism on bloom-forming Prorocentrum donghaiense. MARINE POLLUTION BULLETIN 2022; 178:113657. [PMID: 35452911 DOI: 10.1016/j.marpolbul.2022.113657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Harmful algal blooms (HABs) have induced severe damage worldwide. A novel high-efficient antialgal natural chemical, 3-indoleacrylic acid (3-IDC) with a 5-day half-maximal inhibitory concentration (IC50, 5d), was discovered from canola straw, and its algal inhibition mechanism was investigated. Adverse effects were observed on the growth of P. donghaiense with 3-IDC addition, following an increase in reactive oxygen species (ROS) production. 3-IDC also hindered the photosynthetic mechanism of P. donghaiense cells. Transcriptional results showed 3-IDC inhibiting the functions of all the nutrient assimilating genes, down-regulated ribulose-1,5-bisphosphate carboxylase/oxygenase II, and cytochrome f genes. The expression of heat shock protein (HSP) 70 and 90 and rhodopsin genes were also suppressed. The binding affinity of investigated receptors was observed. The conformational changes induced by the spatial microstructural alteration through 3-IDC may further contribute to the perturbation of those enzyme catalytic activities. The present results provide new insights on controlling HABs using 3-IDC.
Collapse
Affiliation(s)
- Kokoette Effiong
- Department of Marine Science, Ocean College, Zhejiang University, Zhoushan 316021, People's Republic of China
| | - Jing Hu
- Department of Marine Science, Ocean College, Zhejiang University, Zhoushan 316021, People's Republic of China
| | - Caicai Xu
- Department of Marine Science, Ocean College, Zhejiang University, Zhoushan 316021, People's Republic of China
| | - Yiyi Zhang
- Department of Marine Science, Ocean College, Zhejiang University, Zhoushan 316021, People's Republic of China
| | - Shumiao Yu
- Department of Marine Science, Ocean College, Zhejiang University, Zhoushan 316021, People's Republic of China
| | - Tao Tang
- Department of Marine Science, Ocean College, Zhejiang University, Zhoushan 316021, People's Republic of China
| | - Yuzhou Huang
- Department of Marine Science, Ocean College, Zhejiang University, Zhoushan 316021, People's Republic of China
| | - Yongliang Lu
- China National Rice Research Institute, Hangzhou 310012, People's Republic of China
| | - Wei Li
- Academy of Agriculture and Forestry, Qinghai University, Xining 810016, People's Republic of China
| | - Jiangning Zeng
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, People's Republic of China
| | - Xi Xiao
- Department of Marine Science, Ocean College, Zhejiang University, Zhoushan 316021, People's Republic of China.
| |
Collapse
|
12
|
Lu S, Ou L, Dai X, Cui L, Dong Y, Wang P, Li D, Lu D. An overview of Prorocentrum donghaiense blooms in China: Species identification, occurrences, ecological consequences, and factors regulating prevalence. HARMFUL ALGAE 2022; 114:102207. [PMID: 35550289 DOI: 10.1016/j.hal.2022.102207] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 01/18/2022] [Accepted: 02/18/2022] [Indexed: 06/15/2023]
Abstract
Prorocentrum donghaiense Lu (also identified as Prorocentrum shikokuense Hada and Prorocentrum obtusidens Schiller) is a bloom-forming dinoflagellate species distributed worldwide. Blooms of P. donghaiense occur annually in adjacent waters of the East China Sea (ECS), especially in the waters near the Changjiang River Estuary. Blooms of this species have also been reported in nearby Japanese and Korean waters. There has been an apparent bloom-forming species succession pattern in the ECS since 2000, with diatom blooms in the early spring, shifting to long-lasting and large-scale dinoflagellate blooms dominated by P. donghaiense during the spring, and finally ended by diatom and/or Noctiluca scintillans blooms in summer. These bloom succession patterns were closely correlated with changes in environmental factors, such as temperature increase and anthropogenic eutrophication. Decreasing silicate by the construction of the Three Gorges Dam and increasing dissolved inorganic nitrogen flux were mainly influenced by high intensity human activities in the Changjiang River watershed, resulting in low Si/N ratio and high N/P ratios, possibly accelerating outbreak of P. donghaiense blooms. Phosphorous deficiency might be the most critical factor controlling the succession of microalgal blooms from diatoms to dinoflagellates. Prorocentrum donghaiense is a nontoxic species, but it can disrupt marine ecosystem by decreasing phytoplankton biodiversity and changing the structure of the food chain. Prorocentrum donghaiense blooms in the ECS have been intensively studied during the last two decades. Several possible mechanisms that contribute or trigger the annual blooms of this species have been proposed, but further research is required particularly on the aspect of nutrient budget, ecosystem impacts, as well as social-economic impact assessment.
Collapse
Affiliation(s)
- Songhui Lu
- Research Center of Harmful Algae and Marine Biology, Jinan University, Guangzhou 510632, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519000, China
| | - Linjian Ou
- Research Center of Harmful Algae and Marine Biology, Jinan University, Guangzhou 510632, China
| | - Xinfeng Dai
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
| | - Lei Cui
- Research Center of Harmful Algae and Marine Biology, Jinan University, Guangzhou 510632, China
| | - Yuelei Dong
- Research Center of Harmful Algae and Marine Biology, Jinan University, Guangzhou 510632, China
| | - Pengbin Wang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
| | - Dongmei Li
- Dalian Phycotoxin Key laboratory, National Marine Environmental Monitoring Center, Ministry of Ecological Environment, Dalian 116023, China
| | - Douding Lu
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China.
| |
Collapse
|
13
|
Kim DD, Wan L, Cao X, Klisarova D, Gerdzhikov D, Zhou Y, Song C, Yoon S. Metagenomic insights into co-proliferation of Vibrio spp. and dinoflagellates Prorocentrum during a spring algal bloom in the coastal East China Sea. WATER RESEARCH 2021; 204:117625. [PMID: 34530224 DOI: 10.1016/j.watres.2021.117625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Coastal harmful algal blooms (HABs), commonly termed 'red tides', have severe undesirable consequences to the marine ecosystems and local fishery and tourism industries. Increase in nitrogen and/or phosphorus loading is often regarded as the major culprits of increasing frequency and intensity of the coastal HAB; however, fundamental understanding is lacking as to the causes and mechanism of bloom formation despite decades of intensive investigation. In this study, we interrogated the prokaryotic microbiomes of surface water samples collected at two neighboring segments of East China Sea that contrast greatly in terms of the intensity and frequency of Prorocentrum-dominated HAB. Mantel tests identified significant correlations between the structural and functional composition of the microbiomes and the physicochemical state and the algal biomass density of the surface seawater, implying the possibility that prokaryotic microbiota may play key roles in the coastal HAB. A conspicuous feature of the microbiomes at the sites characterized with high trophic state index and eukaryotic algal cell counts was disproportionate proliferation of Vibrio spp., and their complete domination of the functional genes attributable to the dissimilatory nitrate reduction to ammonia (DNRA) pathway substantially enriched at these sites. The genes attributed to phosphorus uptake function were significantly enriched at these sites, presumably due to the Pi-deficiency induced by algal growth; however, the profiles of the phosphorus mineralization genes lacked consistency, barring any conclusive evidence with regard to contribution of prokaryotic microbiota to phosphorus bioavailability. The results of the co-occurrence network analysis performed with the core prokaryotic microbiome supported that the observed proliferation of Vibrio and HAB may be causally associated. The findings of this study suggest a previously unidentified association between Vibrio proliferation and the Prorocentrum-dominated HAB in the subtropical East China Sea, and opens a discussion regarding a theoretically unlikely, but still possible, involvement of Vibrio-mediated DNRA in Vibrio-Prorocentrum symbiosis. Further experimental substantiation of this supposed symbiotic mechanism may prove crucial in understanding the dynamics of explosive local algal growth in the region during spring algal blooms.
Collapse
Affiliation(s)
- Daehyun Daniel Kim
- Department of Civil and Environmental Engineerimng, KAIST, Daejeon, 34141, Republic of Korea
| | - Lingling Wan
- Key Laboratory of Algal Biology, State key laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiuyun Cao
- Key Laboratory of Algal Biology, State key laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Daniela Klisarova
- Department of Anatomy, Histology, Cytology and Biology, Faculty of Medicine, Medical University, Pleven, 5800, Bulgaria; Institute of Fish Resources, 9000 Varna, Bulgaria
| | | | - Yiyong Zhou
- Key Laboratory of Algal Biology, State key laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Chunlei Song
- Key Laboratory of Algal Biology, State key laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Sukhwan Yoon
- Department of Civil and Environmental Engineerimng, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
14
|
Huang K, Zhuang Y, Wang Z, Ou L, Cen J, Lu S, Qi Y. Bioavailability of Organic Phosphorus Compounds to the Harmful Dinoflagellate Karenia mikimotoi. Microorganisms 2021; 9:1961. [PMID: 34576855 PMCID: PMC8469735 DOI: 10.3390/microorganisms9091961] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
Karenia mikimotoi is one of the most well-known harmful bloom species in temperate coastal waters. The present study investigated the characteristics of alkaline phosphatase (APase) and phosphodiesterase (PDEase) activities in hydrolysis of two phosphomonoesters (adenosine triphosphate (ATP) and ribulose 5-phosphate (R5P)) and a phosphodiester (cyclic adenosine monophosphate (cAMP)) in K. mikimotoi and compared its growth and physiological responses to the different forms of phosphorus substrates. K. mikimotoi produced comparable quantities of APase and PDEase to hydrolyze the organic phosphorus substrates, although hydrolysis of the phosphomonoesters was much faster than that of the phosphodiester. The growth of K. mikimotoi on organic phosphorus substrates was comparable to or better than that on inorganic phosphate. The difference in particulate organic nutrients (carbon, nitrogen, and phosphorus) and hemolytic activity supported different rates of hydrolysis-assimilation of the various organic phosphorus substrates by K. mikimotoi. The hemolytic activities of K. mikimotoi in the presence of organic phosphorus substrates were several times those in the presence of inorganic phosphate during the exponential phase. This suggested the potential important role of organic phosphorus in K. mikimotoi blooms.
Collapse
Affiliation(s)
| | | | | | - Linjian Ou
- Research Center of Harmful Algae and Marine Biology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China; (K.H.); (Y.Z.); (Z.W.); (J.C.); (S.L.); (Y.Q.)
| | | | | | | |
Collapse
|
15
|
Chen Y, Xu Q, Gibson K, Chen N. Metabarcoding dissection of harmful algal bloom species in the East China Sea off Southern Zhejiang Province in late spring. MARINE POLLUTION BULLETIN 2021; 169:112586. [PMID: 34116370 DOI: 10.1016/j.marpolbul.2021.112586] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
The coastal region of the East China Sea (ECS) is a famous "hotspot" for harmful algal blooms (HABs) in China. We hypothesize that such frequent occurrences of diverse HABs in the ECS are determined by the presence of unique HAB species in this region. In this project, we identified 3966 amplicon sequence variants (ASVs) representing 35 classes in six protist phyla/divisions. Among the 237 annotated protist species, we identified 58 HAB species, of which 23 HAB species had never been previously reported in the ECS. Many HAB species also displayed unique spatial distribution patterns in the ECS. Notably, we identified three HAB species Prorocentrum donghaiense, Lebouridinium glaucum and Noctiluca scintillans in the site S05-1 with substantially elevated abundance, suggesting that this sampling site was experiencing a multiple-species HAB event. This study was the first attempt in applying ASV-based metabarcoding analysis in studying protist and HAB species in the ECS.
Collapse
Affiliation(s)
- Yang Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; University of Chinese Academy of Sciences, Beijing 10039, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Qing Xu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kate Gibson
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Nansheng Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada.
| |
Collapse
|
16
|
Nutrient deficiency and an algicidal bacterium improved the lipid profiles of a novel promising oleaginous dinoflagellate, Prorocentrum donghaiense, for biodiesel production. Appl Environ Microbiol 2021; 87:e0115921. [PMID: 34319787 PMCID: PMC8436737 DOI: 10.1128/aem.01159-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The lipid production potential of 8 microalgae species was investigated. Among these eight species, the best strain was a dominant bloom-causing dinoflagellate, Prorocentrum donghaiense; this species had a lipid content of 49.32±1.99% and exhibited a lipid productivity of 95.47±0.99 mg L-1 d-1, which was 2-fold higher than the corresponding values obtained for the oleaginous microalgae Nannochloropsis gaditana and Phaeodactylum tricornutum. P. donghaiense, which is enriched in C16:0 and C22:6, is appropriate for commercial DHA production. Nitrogen or phosphorus stress markedly induced lipid accumulation to levels surpassing 75% of the dry weight, increased the C18:0 and C17:1 contents, and decreased the C18:5 and C22:6 contents, and these effects resulted in decreases in the unsaturated fatty-acid levels and changes in the lipid properties of P. donghaiense such that the species met the biodiesel specification standards. Compared with the results obtained under N-deficient conditions, the enhancement in the activity of alkaline phosphatase of P. donghaiense observed under P-deficient conditions could partly alleviate the adverse effects on the photosynthetic system exerted by P deficiency to induce the production of more carbohydrates for lipogenesis. The supernatant of the algicidal bacterium Paracoccus sp. Y42 culture lysed P. donghaiense without decreasing its lipid content, which resulted in facilitation of the downstream oil extraction process and energy savings through the lysis of algal cells. The Y42 supernatant treatment improved the lipid profiles of algal cells by increasing their C16:0, C18:0 and C18:1 contents and decreasing their C18:5 and C22:6 contents, which is favourable for biodiesel production. IMPORTANCE This study demonstrates the high potential of P. donghaiense, a dominant bloom-causing dinoflagellate, for lipid production. Compared with previously studied oleaginous microalgae, P. donghaiense exhibit greater potential for practical application due to its higher biomass and lipid contents. Nutrient deficiency and the algicidal bacterium Paracoccus sp. Y42 could improve the suitability of the lipid profile of P. donghaiense for biodiesel production. Furthermore, Paracoccus sp. Y42 effectively lyse algal cells, which facilitates the downstream oil extraction process for biodiesel production and results in energy savings through the lysing of algal cells. This study provides a more promising candidate for the production of DHA for human nutritional products and of microalgal biofuel, as well as a more cost-effective method for breaking algal cells. The high lipid productivity of P. donghaiense and algal cell lysis by algicidal bacteria contribute to reductions in the production cost of microalgal oil.
Collapse
|
17
|
Qin X, Shi X, Gao Y, Dai X, Ou L, Guan W, Lu S, Cen J, Qi Y. Alkaline phosphatase activity during a phosphate replete dinoflagellate bloom caused by Prorocentrum obtusidens. HARMFUL ALGAE 2021; 103:101979. [PMID: 33980429 DOI: 10.1016/j.hal.2021.101979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 01/03/2021] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
Prorocentrum obtusidens Schiller (formerly P. donghaiense Lu), a harmful algal species common in the East China Sea (ECS), often thrives with the depletion of phosphate. Three cruises in the spring of 2013 sampled an entire P. obtusidens bloom process to investigate the dynamics of alkaline phosphatase activity (APA) and phosphorus (P) status of the bloom species using both bulk and cell-specific assays. Unlike previous studies, the bloom of P. obtusidens occurred in a phosphate replete environment. Very high APA, with an average of 76.62 ± 90.24 nmol L-1 h-1, was observed during the early-bloom phase, a value comparable to that in low phosphate environments. The alkaline phosphatase (AP) hydrolytic kinetics also suggested a more efficient AP system with a lower half-saturation constant (Ks), but higher maximum potential hydrolytic velocity (Vmax) in this period. The APA decreased significantly with an average of 24.98 ± 30.98 nmol L-1 h-1 when the bloom reached its peak. The lack of a correlation between dissolved inorganic phosphate (DIP) or dissolved organic phosphate (DOP) concentration and APA suggested that the APA was regulated by the internal P growth demand, rather than the external P availability during the phosphate replete P. obtusidens bloom. These findings facilitate an understanding of the P. obtusidens acclimation strategy with respect to P variations in terms of AP expression during blooms in the ECS.
Collapse
Affiliation(s)
- Xianling Qin
- School of Life Sciences, and State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Xiaoyong Shi
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, China; National Marine Hazard Mitigation Service, Beijing, China
| | - Yahui Gao
- School of Life Sciences, and State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Xinfeng Dai
- Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Linjian Ou
- Research Center of Harmful Algae and Marine Biology, and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, China.
| | - Weibing Guan
- Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Songhui Lu
- Research Center of Harmful Algae and Marine Biology, and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, China.
| | - Jingyi Cen
- Research Center of Harmful Algae and Marine Biology, and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, China
| | - Yuzao Qi
- Research Center of Harmful Algae and Marine Biology, and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, China
| |
Collapse
|
18
|
Xie E, Su Y, Deng S, Kontopyrgou M, Zhang D. Significant influence of phosphorus resources on the growth and alkaline phosphatase activities of Microcystis aeruginosa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115807. [PMID: 33096390 DOI: 10.1016/j.envpol.2020.115807] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
It is well-accepted that phosphorus, particularly orthophosphate, is a determinant factor in aquatic eutrophication. However, numerous kinds of phosphorus sources exist in real world scenario, and limited studies have characterized the pairwise relationships among abundant different phosphorus sources and the physiological behaviour of algae. The present study developed a high-throughput assay to investigate the effects of 59 different phosphorus sources (equal initial concentration of total phosphorus) on the growth and alkaline phosphatase (AKP) activities of Microcystis aeruginosa, a model cyanobacteria whose predominance holds sway in lake eutrophication. M. aeruginosa cultivated with nucleoside monophosphates (NMPs) had higher growth, relative AKP activities and residual orthophosphate, which were positively intercorrelated. Oppositely, non-NMPs cultivation of M. aeruginosa led to negative relationships between the relative AKP activities and their growth or residual orthophosphate. These results indicated distinct mechanisms for M. aeruginosa to utilize different phosphorus sources in real-world scenario, and both phosphorus source and content are determinant factors on the growth and physiological behaviour of M. aeruginosa. Given the complicated and vast phosphorus pool in the natural environment, phosphorus resources might significantly alter the abundance and physiological behaviour of M. aeruginosa and other bloom-forming algae, then influence the phytoplanktonic community structure and affect the possibility and intensity of algal bloom. Our work hints the underestimation of the restriction factors in lake eutrophication and provides a new tool to study the driven forces of phytoplanktonic community dynamics as phosphorus from both internal and external sources.
Collapse
Affiliation(s)
- En Xie
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, 100083, China
| | - Yuping Su
- Environmental Science and Engineering College, Fujian Normal University, Fuzhou, 350007, PR China
| | - Songqiang Deng
- Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou, 215163, PR China
| | - Maria Kontopyrgou
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 2YW, United Kingdom
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
19
|
Mo Y, Ou L, Lin L, Huang B. Temporal and spatial variations of alkaline phosphatase activity related to phosphorus status of phytoplankton in the East China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 731:139192. [PMID: 32417482 DOI: 10.1016/j.scitotenv.2020.139192] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/02/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
Phosphorus (P) is a potential limiting nutrient for primary production in the East China Sea (ECS). Four cruises over four seasons were conducted during 2009-2011 to evaluate the dynamics of alkaline phosphatase (AP) activity (APA) and the P status of phytoplankton in the ECS. Sampling for bulk and single-cell APA assays was performed across the ECS, which included the Changjiang River diluted water (CDW), the mid-shelf surface water (MSW), and the Kuroshio surface water (KSW) masses. The results showed that the distribution patterns of APA varied between water masses and with season. Higher APA was normally observed in the CDW, which was influenced by the Changjiang River plume. In the CDW, phytoplankton were P-stressed during the late spring with an average bulk APA of 20.4 ± 19.5 nmol h-1 L-1, which strengthened during the late summer (average APA maximizing at 106.2 ± 133.3 nmol h-1 L-1) and remained severe during the late autumn (average APA of 48.7 ± 34.1 nmol h-1 L-1) until reducing during the winter (average APA of 9.1 ± 13.6 nmol h-1 L-1). The variation patterns of APA and the P status of phytoplankton in the MSW were similar but with slight variations. In the KSW, a certain amount of APA occurred during the late spring and late autumn (averages of 18.7 ± 19.8 and 23.1 ± 18.7 nmol h-1 L-1, respectively). Single-cell APA coincided with the bulk APA to exhibit the temporal and spatial P-stress status of the dominant micro-phytoplankton. Phytoplankton were the main AP producers in the CDW, especially during the late summer, while pico-plankton contributed most to AP in the MSW and KSW. Our results suggest that phytoplankton suffer P-stress in most seasons, and emphasize the importance of AP in the recycling of organic P to support primary production in the P-deficient ECS.
Collapse
Affiliation(s)
- Yu Mo
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies/State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China; Key Laboratory of Marine Biological Resources Protection and Utilization, Guangxi University for Nationalities, Nanning 530006, China
| | - Linjian Ou
- Research Center of Harmful Algae and Marine Biology, and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China.
| | - Lizhen Lin
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies/State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China
| | - Bangqin Huang
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies/State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
20
|
Huang K, Feng Q, Zhang Y, Ou L, Cen J, Lu S, Qi Y. Comparative uptake and assimilation of nitrate, ammonium, and urea by dinoflagellate Karenia mikimotoi and diatom Skeletonema costatum s.l. in the coastal waters of the East China Sea. MARINE POLLUTION BULLETIN 2020; 155:111200. [PMID: 32469790 DOI: 10.1016/j.marpolbul.2020.111200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
The nitrogen uptake kinetics and physiological growth of Karenia mikimotoi and Skeletonema costatum sensu lato grown on different N substrates and concentrations were compared in the laboratory. In the presence of three N substrates, both species preferred to take up NH4+. K. mikimotoi and S. costatum s.l. showed the highest substrate affinities for urea and NO3-, respectively. Both species grew well on three N substrates, and the growth parameters were comparable among the different N substrates. However, K. mikimotoi assimilated urea more efficiently than it assimilated either NO3- or NH4+. Different with S. costatum s.l., K. mikimotoi grew slowly and steady and the physiological and growth activities in N-depleted conditions were higher than those in N-replete conditions. Our results suggested that K. mikimotoi shows a greater readiness for uptake and assimilation of urea, and that this species is more competitive in an N-depleted environment when compared with S. costatum s.l.
Collapse
Affiliation(s)
- Kaixuan Huang
- Research Center of Harmful Algae and Marine Biology, and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, 510632 Guangzhou, PR China
| | - Qingliang Feng
- Research Center of Harmful Algae and Marine Biology, and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, 510632 Guangzhou, PR China
| | - Yun Zhang
- Research Center of Harmful Algae and Marine Biology, and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, 510632 Guangzhou, PR China
| | - Linjian Ou
- Research Center of Harmful Algae and Marine Biology, and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, 510632 Guangzhou, PR China.
| | - Jingyi Cen
- Research Center of Harmful Algae and Marine Biology, and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, 510632 Guangzhou, PR China
| | - Songhui Lu
- Research Center of Harmful Algae and Marine Biology, and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, 510632 Guangzhou, PR China.
| | - Yuzao Qi
- Research Center of Harmful Algae and Marine Biology, and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, 510632 Guangzhou, PR China
| |
Collapse
|
21
|
Non-Conventional Metal Ion Cofactor Requirement of Dinoflagellate Alkaline Phosphatase and Translational Regulation by Phosphorus Limitation. Microorganisms 2019; 7:microorganisms7080232. [PMID: 31374942 PMCID: PMC6723241 DOI: 10.3390/microorganisms7080232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/15/2019] [Accepted: 07/30/2019] [Indexed: 12/30/2022] Open
Abstract
Alkaline phosphatase (AP) enables marine phytoplankton to utilize dissolved organic phosphorus (DOP) when dissolved inorganic phosphate (DIP) is depleted in the ocean. Dinoflagellate AP (Dino-AP) represents a newly classified atypical type of AP, PhoAaty. Despite While being a conventional AP, PhoAEC is known to recruit Zn2+ and Mg2+ in the active center, and the cofactors required by PhoAaty have been contended and remain unclear. In this study, we investigated the metal ion requirement of AP in five dinoflagellate species. After AP activity was eliminated by using EDTA to chelate metal ions, the enzymatic activity could be recovered by the supplementation of Ca2+, Mg2+ and Mn2+ in all cases but not by that of Zn2+. Furthermore, the same analysis conducted on the purified recombinant ACAAP (AP of Amphidinium carterae) verified that the enzyme could be activated by Ca2+, Mg2+, and Mn2+ but not Zn2+. We further developed an antiserum against ACAAP, and a western blot analysis using this antibody showed a remarkable up-regulation of ACAAP under a phosphate limitation, consistent with elevated AP activity. The unconventional metal cofactor requirement of Dino-AP may be an adaptation to trace metal limitations in the ocean, which warrants further research to understand the niche differentiation between dinoflagellates and other phytoplankton that use Zn–Mg AP in utilizing DOP.
Collapse
|