1
|
Miebach J, Green D, Strittmatter M, Mallinger C, Le Garrec L, Zhang QY, Foucault P, Kunz C, Gachon CMM. Importance, structure, cultivability, and resilience of the bacterial microbiota during infection of laboratory-grown Haematococcus spp. by the blastocladialean pathogen Paraphysoderma sedebokerense: evidence for a domesticated microbiota and its potential for biocontrol. FEMS Microbiol Ecol 2025; 101:fiaf011. [PMID: 39832809 PMCID: PMC11797010 DOI: 10.1093/femsec/fiaf011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/18/2024] [Accepted: 01/17/2025] [Indexed: 01/22/2025] Open
Abstract
Industrial production of the unicellular green alga Haematococcus lacustris is compromised by outbreaks of the fungal pathogen Paraphysoderma sedebokerense (Blastocladiomycota). Here, using axenic algal and fungal cultures and antibiotic treatments, we show that the bacterial microbiota of H. lacustris is necessary for the infection by P. sedebokerense and that its modulation affects the outcome of the interaction. We combined metagenomics and laboratory cultivation to investigate the diversity of the bacterial microbiota associated to three Haematococcus species and monitor its change upon P. sedebokerense infection. We unveil three types of distinct, reduced bacterial communities, which likely correspond to keystone taxa in the natural Haematococcus spp. microbiota. Remarkably, the taxonomic composition and functionality of these communities remained stable during infection. The major bacterial taxa identified in this study have been cultivated by us or others, paving the way to developing synthetic communities to experimentally explore interactions within this tripartite system. We discuss our results in the light of emerging evidence concerning the structuring and domestication of plant and animal microbiota, thus providing novel experimental tools and a new conceptual framework necessary to enable the engineering of Haematococcus spp. microbiota toward the biocontrol of P. sedebokerense.
Collapse
Affiliation(s)
- Jeanne Miebach
- Faculté des Sciences et Ingénierie, Sorbonne Université, UFR 927, 75005 Paris, France
- MCAM (Molécules de Communication et Adaptation des Micro-organismes) UMR 7245 – Muséum National d'Histoire Naturelle, CNRS, 43 rue Buffon, 75005 Paris, France
| | - David Green
- Scottish Association for Marine Science, Oban PA37 1QA, United Kingdom
| | | | - Claire Mallinger
- MCAM (Molécules de Communication et Adaptation des Micro-organismes) UMR 7245 – Muséum National d'Histoire Naturelle, CNRS, 43 rue Buffon, 75005 Paris, France
| | - Lucie Le Garrec
- MCAM (Molécules de Communication et Adaptation des Micro-organismes) UMR 7245 – Muséum National d'Histoire Naturelle, CNRS, 43 rue Buffon, 75005 Paris, France
| | - Qian Yi Zhang
- Scottish Association for Marine Science, Oban PA37 1QA, United Kingdom
| | - Pierre Foucault
- MCAM (Molécules de Communication et Adaptation des Micro-organismes) UMR 7245 – Muséum National d'Histoire Naturelle, CNRS, 43 rue Buffon, 75005 Paris, France
- UMR7618 iEES-Paris, Sorbonne Université, 75005 Paris, France
| | - Caroline Kunz
- Faculté des Sciences et Ingénierie, Sorbonne Université, UFR 927, 75005 Paris, France
- MCAM (Molécules de Communication et Adaptation des Micro-organismes) UMR 7245 – Muséum National d'Histoire Naturelle, CNRS, 43 rue Buffon, 75005 Paris, France
| | - Claire M M Gachon
- MCAM (Molécules de Communication et Adaptation des Micro-organismes) UMR 7245 – Muséum National d'Histoire Naturelle, CNRS, 43 rue Buffon, 75005 Paris, France
- Scottish Association for Marine Science, Oban PA37 1QA, United Kingdom
| |
Collapse
|
2
|
Selivanova EA, Yakimov MM, Kataev VY, Khlopko YA, Balkin AS, Plotnikov AO. The Cultivation of Halophilic Microalgae Shapes the Structure of Their Prokaryotic Assemblages. Microorganisms 2024; 12:1947. [PMID: 39458257 PMCID: PMC11509377 DOI: 10.3390/microorganisms12101947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 10/28/2024] Open
Abstract
The influence of microalgae on the formation of associated prokaryotic assemblages in halophilic microbial communities is currently underestimated. The aim of this study was to characterize shifts in prokaryotic assemblages of halophilic microalgae upon their transition to laboratory cultivation. Monoalgal cultures belonging to the classes Chlorodendrophyceae, Bacillariophyceae, Trebouxiophyceae, and Chlorophyceae were isolated from habitats with intermediate salinity, about 100 g/L, nearby Elton Lake (Russia). Significant changes were revealed in the structure of algae-associated prokaryotic assemblages, indicating that microalgae supported sufficiently diverse and even communities of prokaryotes. Despite some similarities in their prokaryotic assemblages, taxon-specific complexes of dominant genera were identified for each microalga species. These complexes were most different among Alphaproteobacteria, likely due to their close association with microalgae. Other taxon-specific bacteria included members of phylum Verrucomicrobiota (Coraliomargarita in assemblages of Navicula sp.) and class Gammaproteobacteria (Salinispirillum in microbiomes of A. gracilis). After numerous washings of algal cells, only alphaproteobacteria Marivibrio remained in all assemblages of T. indica, likely due to a firm attachment to the microalgae cells. Our results may be useful for further efforts to develop technologies applied for industrial cultivation of halophilic microalgae and for developing approaches to obtain new prokaryotes with a microalgae-associated lifestyle.
Collapse
Affiliation(s)
- Elena A. Selivanova
- Institute for Cellular and Intracellular Symbiosis of the Ural Branch of Russian Academy of Sciences, Orenburg Federal Research Center of the Ural Branch of Russian Academy of Sciences, 460000 Orenburg, Russia; (V.Y.K.); (Y.A.K.); (A.S.B.)
| | - Michail M. Yakimov
- Extreme Microbiology, Biotechnology and Astrobiology Group, Institute of Polar Research, The Institute of Polar Sciences of the National Research Council (ISP-CNR), 98122 Messina, Italy;
| | - Vladimir Y. Kataev
- Institute for Cellular and Intracellular Symbiosis of the Ural Branch of Russian Academy of Sciences, Orenburg Federal Research Center of the Ural Branch of Russian Academy of Sciences, 460000 Orenburg, Russia; (V.Y.K.); (Y.A.K.); (A.S.B.)
| | - Yuri A. Khlopko
- Institute for Cellular and Intracellular Symbiosis of the Ural Branch of Russian Academy of Sciences, Orenburg Federal Research Center of the Ural Branch of Russian Academy of Sciences, 460000 Orenburg, Russia; (V.Y.K.); (Y.A.K.); (A.S.B.)
| | - Alexander S. Balkin
- Institute for Cellular and Intracellular Symbiosis of the Ural Branch of Russian Academy of Sciences, Orenburg Federal Research Center of the Ural Branch of Russian Academy of Sciences, 460000 Orenburg, Russia; (V.Y.K.); (Y.A.K.); (A.S.B.)
| | - Andrey O. Plotnikov
- Institute for Cellular and Intracellular Symbiosis of the Ural Branch of Russian Academy of Sciences, Orenburg Federal Research Center of the Ural Branch of Russian Academy of Sciences, 460000 Orenburg, Russia; (V.Y.K.); (Y.A.K.); (A.S.B.)
| |
Collapse
|
3
|
Krinos AI, Bowers RM, Rohwer RR, McMahon KD, Woyke T, Schulz F. Time-series metagenomics reveals changing protistan ecology of a temperate dimictic lake. MICROBIOME 2024; 12:133. [PMID: 39030632 PMCID: PMC11265017 DOI: 10.1186/s40168-024-01831-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 05/06/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Protists, single-celled eukaryotic organisms, are critical to food web ecology, contributing to primary productivity and connecting small bacteria and archaea to higher trophic levels. Lake Mendota is a large, eutrophic natural lake that is a Long-Term Ecological Research site and among the world's best-studied freshwater systems. Metagenomic samples have been collected and shotgun sequenced from Lake Mendota for the last 20 years. Here, we analyze this comprehensive time series to infer changes to the structure and function of the protistan community and to hypothesize about their interactions with bacteria. RESULTS Based on small subunit rRNA genes extracted from the metagenomes and metagenome-assembled genomes of microeukaryotes, we identify shifts in the eukaryotic phytoplankton community over time, which we predict to be a consequence of reduced zooplankton grazing pressures after the invasion of a invasive predator (the spiny water flea) to the lake. The metagenomic data also reveal the presence of the spiny water flea and the zebra mussel, a second invasive species to Lake Mendota, prior to their visual identification during routine monitoring. Furthermore, we use species co-occurrence and co-abundance analysis to connect the protistan community with bacterial taxa. Correlation analysis suggests that protists and bacteria may interact or respond similarly to environmental conditions. Cryptophytes declined in the second decade of the timeseries, while many alveolate groups (e.g., ciliates and dinoflagellates) and diatoms increased in abundance, changes that have implications for food web efficiency in Lake Mendota. CONCLUSIONS We demonstrate that metagenomic sequence-based community analysis can complement existing efforts to monitor protists in Lake Mendota based on microscopy-based count surveys. We observed patterns of seasonal abundance in microeukaryotes in Lake Mendota that corroborated expectations from other systems, including high abundance of cryptophytes in winter and diatoms in fall and spring, but with much higher resolution than previous surveys. Our study identified long-term changes in the abundance of eukaryotic microbes and provided context for the known establishment of an invasive species that catalyzes a trophic cascade involving protists. Our findings are important for decoding potential long-term consequences of human interventions, including invasive species introduction. Video Abstract.
Collapse
Affiliation(s)
- Arianna I Krinos
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
- Department of Earth, Atmospheric, and Planetary Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- MIT-WHOI Joint Program in Oceanography/Applied Ocean Science and Engineering, Cambridge, Woods Hole, MA, USA.
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Robert M Bowers
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Robin R Rohwer
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Katherine D McMahon
- Department of Bacteriology, University of Wisconsin at Madison, Madison, WI, USA
| | - Tanja Woyke
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Frederik Schulz
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
4
|
Bucheli J, Cella H, Nader C, Oliveira CYB, Bastolla CLV, Lopes RG, Pereira GDV, Karam J, Derner RB. Bacterial assemblages structure in intensive cultivations of the microalga Tetradesmus obliquus. J Basic Microbiol 2023; 63:1440-1450. [PMID: 37596061 DOI: 10.1002/jobm.202300362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/28/2023] [Accepted: 08/06/2023] [Indexed: 08/20/2023]
Abstract
The present study shows the characterization of the bacterial communities associated with different systems during the cultivation of the microalga Tetradesmus obliquus. For that, sequential cultivation was performed in three different systems: (1) Photobioreactor bench-scale; (2) flat-panel photobioreactor; and (3) thin-layer cascade. Cultures were monitored daily for growth parameters and biomass samples were collected for characterization of bacterial communities using metagenomic. A total of 195,177 reads were produced, resulting in the identification of 72 OTUs. In the grouping of bacterial communities, 3 phyla, 6 classes, 28 families, and 35 taxa were found. The bacteria Brevundimonas and Porphyrobacter had a higher relative abundance compared with other taxa found. These taxa were present in all cultivation systems forming a possible core community. Bacterial communities associated with different cultivation systems of the microalga T. obliquus showed an increase in taxa richness and diversity in the super-intensive and intensive systems.
Collapse
Affiliation(s)
- Jaimet Bucheli
- Laboratory of Algae Cultivation, Aquaculture Department, Center for Agrarian Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Herculano Cella
- Laboratory of Algae Cultivation, Aquaculture Department, Center for Agrarian Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Camila Nader
- Laboratory of Algae Cultivation, Aquaculture Department, Center for Agrarian Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Carlos Yure B Oliveira
- Laboratory of Phycology, Botany Department, Center for Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Camila Lisarb V Bastolla
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Center for Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Rafael Garcia Lopes
- Laboratory of Algae Cultivation, Aquaculture Department, Center for Agrarian Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Gabriella do Vale Pereira
- Laboratory of Algae Cultivation, Aquaculture Department, Center for Agrarian Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - João Karam
- Laboratory of Algae Cultivation, Aquaculture Department, Center for Agrarian Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Roberto Bianchini Derner
- Laboratory of Algae Cultivation, Aquaculture Department, Center for Agrarian Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
5
|
Iida H, Aburai N, Fujii K. Microalga-bacteria Community with High Level Carbon Dioxide Acclimation and Nitrogen-fixing Ability. Protist 2023; 174:125957. [PMID: 37105051 DOI: 10.1016/j.protis.2023.125957] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 03/27/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023]
Abstract
Microalgal conversion of high-level CO2 in industrial flue gas to value-added products is attractive technology for mitigating global warming. However, reduction of microalgal production costs for medium ingredients, particularly nitrogen salts, is essential. The use of atmospheric nitrogen as a nitrogen source for microalgal cultivation will dramatically reduce its production costs. We attempted to enrich a microalga-bacteria community, which fixes both CO2 and atmospheric nitrogen under high level CO2. By cultivating biofilm recovered from the surface of cobbles in a riverbank, a microalgal flora which grows in a nitrogen salts-free medium under 10% CO2 was enriched, and the coccoid microalgal strain MP5 was isolated from it. Phylogenetic analysis revealed that the strain MP5 belongs to the genus Coelastrella, and the closest known species was C. terrestris. With PCR-DGGE analysis, it was found that the enriched microalgal community includes bacteria, some of which are suggested diazotrophs. The addition of bactericides in culture medium inhibited MP5 growth, even though the strain MP5 is eukaryotic. Growth of bacteria-free MP5 was stimulated by addition of Agrobacterium sp. isolates in nitrogen salts-free medium, suggesting that MP5 and the bacteria have responsibility for photosynthetic carbon fixation and nitrogen fixation, respectively.
Collapse
Affiliation(s)
- Haruki Iida
- Department of Chemistry and Life Science, Graduate School of Engineering, Kogakuin University, 2665-1 Nakano-cho, Hachioji city, Tokyo 1920015, Japan
| | - Nobuhiro Aburai
- Department of Chemistry and Life Science, Graduate School of Engineering, Kogakuin University, 2665-1 Nakano-cho, Hachioji city, Tokyo 1920015, Japan
| | - Katsuhiko Fujii
- Department of Chemistry and Life Science, Graduate School of Engineering, Kogakuin University, 2665-1 Nakano-cho, Hachioji city, Tokyo 1920015, Japan.
| |
Collapse
|
6
|
Effect of Abscisic Acid on Growth, Fatty Acid Profile, and Pigment Composition of the Chlorophyte Chlorella (Chromochloris) zofingiensis and Its Co-Culture Microbiome. Life (Basel) 2023; 13:life13020452. [PMID: 36836809 PMCID: PMC9962398 DOI: 10.3390/life13020452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/20/2023] [Accepted: 01/28/2023] [Indexed: 02/09/2023] Open
Abstract
Microalga Chlorella (Chromochloris) zofingiensis has been gaining increasing attention of investigators as a potential competitor to Haematococcus pluvialis for astaxanthin and other xanthophylls production. Phytohormones, including abscisic acid (ABA), at concentrations relevant to that in hydroponic wastewater, have proven themselves as strong inductors of microalgae biomass productivity and biosynthesis of valuable molecules. The main goal of this research was to evaluate the influence of phytohormone ABA on the physiology of C. zofingiensis in a non-aseptic batch experiment. Exogenous ABA stimulated C. zofingiensis cell division, biomass production, as well as chlorophyll, carotenoid, and lipid biosynthesis. The relationship between exogenous ABA concentration and the magnitude of the observed effects was non-linear, with the exception of cell growth and biomass production. Fatty acid accumulation and composition depended on the concentration of ABA tested. Exogenous ABA induced spectacular changes in the major components of the culture microbiome of C. zofingiensis. Thus, the abundance of the representatives of the genus Rhodococcus increased drastically with an increase in ABA concentration, whereas the abundance of the representatives of Reyranella and Bradyrhizobium genera declined. The possibilities of exogenous ABA applications for the enhancing of the biomass, carotenoid, and fatty acid productivity of the C. zofingiensis cultures are discussed.
Collapse
|
7
|
Malik S, Ashraf MUF, Shahid A, Javed MR, Khan AZ, Usman M, Manivannan A, Mehmood MA, Ashraf GA. Characterization of a newly isolated self-flocculating microalga Bracteacoccus pseudominor BERC09 and its evaluation as a candidate for a multiproduct algal biorefinery. CHEMOSPHERE 2022; 304:135346. [PMID: 35714954 DOI: 10.1016/j.chemosphere.2022.135346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/29/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Microalgae have the highest capability to fix the atmospheric carbon and wastewater-derived nutrients to produce high-value bioproducts including lipids and carotenoids. However, their lower titers and single-product-oriented biomass processing have made the overall process expensive. Hence, increased metabolite titer and processing of the biomass for more than one product are required to ensure the commercial robustness of the algal biorefinery. In this study, a newly isolated algal strain was identified as Bracteacoccus pseudominor BERC09 through phylogenetic analysis based on the 18S rRNA gene sequence. Basic characterization of the strain revealed its promising potential to produce carotenoids and lipids. The lipids and carotenoid biosynthesis pathways of BERC09 were further triggered by manipulating the abiotic factors including nitrogen sources (NaNO3, KNO3, NH4Cl, Urea), nitrogen concentrations (0.06-0.36 gL-1), light intensity (150 μmolm-2s-1 to 300 μmolm-2s-1), and light quality (white and blue). Resultantly, 300 μmolm-2s-1 of blue light yielded 0.768 gL-1 of biomass, 8.4 mgg-1 of carotenoids, and 390 mgg-1 of lipids, and supplementation of 0.36 gL-1 of KNO3 further improved metabolism and yielded 0.814 gL-1 of biomass, 11.86 mgg-1 of carotenoids, and 424 mgg-1 of lipids. Overall, the optimal combination of light and nitrogen concurrently improved biomass, carotenoids, and lipids by 3.5-fold, 6-fold, and 4-fold than control, respectively. Besides, the excellent glycoproteins-based self-flocculation ability of the strain rendered an easier harvesting via gravity sedimentation. Hence, this biomass can be processed in a cascading fashion to use this strain as a candidate for a multiproduct biorefinery to achieve commercial robustness and environmental sustainability.
Collapse
Affiliation(s)
- Sana Malik
- Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Umer Farooq Ashraf
- Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ayesha Shahid
- Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Rizwan Javed
- Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Aqib Zafar Khan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Muhammad Usman
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Arthi Manivannan
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Muhammad Aamer Mehmood
- Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan.
| | - Ghulam Abbas Ashraf
- Department of Physics, Zhejiang Normal University, Zhejiang, 321004, Jinhua, China.
| |
Collapse
|
8
|
Identification of the bacteria associated to the phycosphere of the Chlorella-like strain SEC_LI_ChL_1. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Lee SA, Kim M, Esterhuizen M, Le VV, Kang M, Ko SR, Oh HM, Kim YJ, Ahn CY. An acceleration of carotenoid production and growth of Haematococcus lacustris induced by host-microbiota network interaction. Microbiol Res 2022; 262:127097. [PMID: 35751943 DOI: 10.1016/j.micres.2022.127097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023]
Abstract
Haematococcus lacustris is a chlamydomonadalean with high biotechnological interest owing to its capacity to produce astaxanthin, a valuable secondary carotenoid with extraordinary antioxidation properties. However, its prolonged growth has limited its utility commercially. Thus, rapid growth to attain high densities of H. lacustris cells optimally producing astaxanthin is an essential biotechnological target to facilitate profitable commercialisation. Our study focused on characterising the bacterial communities associated with the alga's phycosphere by metagenomics. Subsequently, we altered the bacterial consortia in combined co-culture with key beneficial bacteria to optimise the growth of H. lacustris. The algal biomass increased by up to 2.1-fold in co-cultures, leading to a 1.6-fold increase in the astaxanthin yield. This study attempted to significantly improve the H. lacustris growth rate and biomass yield via Next-Generation Sequencing analysis and phycosphere bacterial augmentation, highlighting the possibility to overcome the hurdles associated with astaxanthin production by H. lacustris at a commercial scale.
Collapse
Affiliation(s)
- Sang-Ah Lee
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Saarbrücken 66123, Germany; Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Minsik Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Maranda Esterhuizen
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Saarbrücken 66123, Germany; Helsinki Institute of Sustainability Science (HELSUS), Fabianinkatu 33, 00014 Helsinki, Finland; University of Helsinki, Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, Niemenkatu 73, 15140 Lahti, Finland; University of Manitoba, Clayton H. Riddell Faculty of Environment, Earth, and Resources, Wallace Building, 125 Dysart Road, Winnipeg MB R3T 2N2, Canada
| | - Ve Van Le
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Mingyeong Kang
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - So-Ra Ko
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Hee-Mock Oh
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Young Jun Kim
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Saarbrücken 66123, Germany.
| | - Chi-Yong Ahn
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea.
| |
Collapse
|
10
|
Combined Production of Astaxanthin and β-Carotene in a New Strain of the Microalga Bracteacoccus aggregatus BM5/15 (IPPAS C-2045) Cultivated in Photobioreactor. BIOLOGY 2021; 10:biology10070643. [PMID: 34356498 PMCID: PMC8301135 DOI: 10.3390/biology10070643] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 11/17/2022]
Abstract
Carotenoids astaxanthin and β-carotene are widely used natural antioxidants. They are key components of functional food, cosmetics, drugs and animal feeding. They hold leader positions on the world carotenoid market. In current work, we characterize the new strain of the green microalga Bracteacoccus aggregatus BM5/15 and propose the method of its culturing in a bubble-column photobioreactor for simultaneous production of astaxanthin and β-carotene. Culture was monitored by light microscopy and pigment kinetics. Fatty acid profile was evaluated by tandem gas-chromatography-mass spectrometry. Pigments were obtained by the classical two-stage scheme of autotrophic cultivation. At the first, vegetative, stage biomass accumulation occurred. Maximum specific growth rate and culture productivity at this stage were 100-200 mg∙L-1∙day-1, and 0.33 day-1, respectively. At the second, inductive, stage carotenoid synthesis was promoted. Maximal carotenoid fraction in the biomass was 2.2-2.4%. Based on chromatography data, astaxanthin and β-carotene constituted 48 and 13% of total carotenoid mass, respectively. Possible pathways of astaxanthin synthesis are proposed based on carotenoid composition. Collectively, a new strain B. aggregatus BM5/15 is a potential biotechnological source of two natural antioxidants, astaxanthin and β-carotene. The results give the rise for further works on optimization of B. aggregatus cultivation on an industrial scale.
Collapse
|
11
|
Chekanov K, Zaytseva A, Mamedov I, Solovchenko A, Lobakova E. The Dynamics of the Bacterial Community of the Photobioreactor-Cultivated Green Microalga Haematococcus lacustris during Stress-Induced Astaxanthin Accumulation. BIOLOGY 2021; 10:biology10020115. [PMID: 33557358 PMCID: PMC7915213 DOI: 10.3390/biology10020115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 12/02/2022]
Abstract
Simple Summary The microalga Haematococcus lacustris is a source of the natural colorant astaxanthin, a powerful antioxidant and key component of cosmetics and animal feed. Haematococcus is cultivated in photobioreactors. It can obtain energy just from a light illuminating photobioreactor and uses inorganic salts and CO2 as sources for chemical elements. The most widespread approach for Haematococcus cultivation is the two stage scheme. At the first stage, biomass accumulation under favorable growth conditions occurs. At the second stage, the cells are subjected to stress inducing astaxanthin synthesis. Generally, the culture of Haematococcus is not axenic. It exists in the form of a community with bacteria constituting its microbiome. The information on photobioreactor-cultivated Haematococcus microbiome is scarce. We analyzed its dynamic during astaxanthin production by DNA metabarcoding and microscopic observations. The main results of the work include the characterization of the daily dynamic of this microbiome and the revealing of contact between microalgae and bacteria. These findings are of potential significance for biotechnology. On one hand, they provide an insight into possible bacterial contamination of the harvested algal biomass. On the other hand, they reveal the presence of a core microbiome or bacteria essential for the growth of the microalga existing in all Haematococcus cultures. Abstract Haematococcus lacustris is a natural source of a valuable ketocarotenoid astaxanthin. Under autotrophic growth conditions, it exists in the form of a community with bacteria. The close coexistence of these microorganisms raises two questions: how broad their diversity is and how they interact with the microalga. Despite the importance these issues, little is known about microorganisms existing in Haematococcus cultures. For the first time, we characterize the dynamic of the H. lacustris microbiome of the microbiome of Haematococcus (a changeover of the bacterial associated species as function of the time) cultivated autotrophically in a photobioreactor based on 16S rRNA metabarcoding data. We found that Proteobacteria and Bacteroidetes are predominant phyla in the community. The Caulobacter bacterium became abundant during astaxanthin accumulation. These data were supported by microscopy. We discuss possible roles and interactions of the community members. These findings are of potential significance for biotechnology. They provide an insight into possible bacterial contamination in algal biomass and reveal the presence of bacteria essential for the algal growth.
Collapse
Affiliation(s)
- Konstantin Chekanov
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119192 Moscow, Russia; (A.Z.); (A.S.); (E.L.)
- Centre for Humanities Research and Technology, National Research Nuclear University MEPhI, 31 Kashirskoye Highway, 115522 Moscow, Russia
- Correspondence:
| | - Anna Zaytseva
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119192 Moscow, Russia; (A.Z.); (A.S.); (E.L.)
| | - Ilgar Mamedov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
| | - Alexei Solovchenko
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119192 Moscow, Russia; (A.Z.); (A.S.); (E.L.)
- Institute of Natural Sciences, Derzahvin Tambov State University, 39200 Tambov, Russia
| | - Elena Lobakova
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119192 Moscow, Russia; (A.Z.); (A.S.); (E.L.)
| |
Collapse
|
12
|
Nguyen CDH, Amoroso G, Ventura T, Elizur A. Assessing the Pyloric Caeca and Distal Gut Microbiota Correlation with Flesh Color in Atlantic Salmon ( Salmo salar L., 1758). Microorganisms 2020; 8:microorganisms8081244. [PMID: 32824332 PMCID: PMC7464769 DOI: 10.3390/microorganisms8081244] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 01/19/2023] Open
Abstract
The Atlantic salmon (Salmo salar L., 1758) is a temperate fish species native to the northern Atlantic Ocean. The distinctive pink–red flesh color (i.e., pigmentation) significantly affects the market price. Flesh paleness leads to customer dissatisfaction, a loss of competitiveness, a drop in product value and, consequently, severe economic losses. This work extends our knowledge on salmonid carotenoid dynamics to include the interaction between the gut microbiota and flesh color. A significant association between the flesh color and abundance of specific bacterial communities in the gut microbiota suggests that color may be affected either by seeding resilient beneficial bacteria or by inhibiting the negative effect of pathogenic bacteria. We sampled 96 fish, which covered all phenotypes of flesh color, including the average color and the evenness of color of different areas of the fillet, at both the distal intestine and the pyloric caeca of each individual, followed by 16S rRNA sequencing at the V3-V4 region. The microbiota profiles of these two gut regions were significantly different; however, there was a consistency in the microbiota, which correlated with the flesh color. Moreover, the pyloric caeca microbiota also showed high correlation with the evenness of the flesh color (beta diversity index, PERMANOVA, p = 0.002). The results from the pyloric caeca indicate that Carnobacterium, a group belonging to the lactic acid bacteria, is strongly related to the flesh color and the evenness of the color between the flesh areas.
Collapse
Affiliation(s)
- Chan D. H. Nguyen
- Genecology Research Centre and School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia; (C.D.H.N.); (G.A.)
| | - Gianluca Amoroso
- Genecology Research Centre and School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia; (C.D.H.N.); (G.A.)
- Petuna Aquaculture, East Devonport, Tasmania 7310, Australia
| | - Tomer Ventura
- Genecology Research Centre and School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia; (C.D.H.N.); (G.A.)
- Correspondence: (T.V.); (A.E.)
| | - Abigail Elizur
- Genecology Research Centre and School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia; (C.D.H.N.); (G.A.)
- Correspondence: (T.V.); (A.E.)
| |
Collapse
|
13
|
Kublanovskaya A, Baulina O, Chekanov K, Lobakova E. The microalga Haematococcus lacustris (Chlorophyceae) forms natural biofilms in supralittoral White Sea coastal rock ponds. PLANTA 2020; 252:37. [PMID: 32778946 DOI: 10.1007/s00425-020-03438-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
Haematococcus lacustris inhabits supralittoral rock ponds and forms, under natural conditions, biofilms including layered cyanobacterial and fermentative microbial mats. Dry mats, formed under extremely stressful conditions, contained only haematocysts. Under favorable growth conditions, modeled for dry biofilms in vitro, microalgal free-living stages were detected. Haematococcus lacustris is the microalga known for its high potential to survive under a wide range of unfavorable conditions, particularly in the supralittoral temporal rock ponds of the White Sea. Previously, we described microbial communities containing H. lacustris in this region. In many cases, they were organized into systems exhibiting complex three-dimensional structure similar to that of natural biofilms. In this study, for the first time, we clarify structural description and provide microscopic evidence that these communities of H. lacustris and bacteria are assembled into the true biofilms. There are (1) simple single layer biofilms on the surface of rocks and macrophytic algae, (2) floccules (or flocs) not attached to a surface, (3) as well as stratified (layered) biofilms, wet, and dehydrated in nature. Being involved into primary organic production, H. lacustris and cyanobacteria are located exclusively in the upper layers of stratified biofilms, where they are capable to absorb sufficient for photosynthesis amount of light. The presence of acidic polysaccharides in the extracellular matrix revealed by specific staining with ruthenium red in the H. lacustris-containing microbial communities is a biochemical evidence of biofilm formation. Meanwhile, the presence of bacterial L-form is an ultrastructural confirmation of that fact. Under favorable conditions, modeled in vitro, H. lacustris from the dry microbial mats moves to the free-living states represented by vegetative palmelloid cells and motile zoospores. Owing to the fact that inside biofilms cells of microorganisms exist under stable conditions, we consider the biofilm formation as an additional mechanism that contributes to the survival of H. lacustris in the supralittoral zone of the White Sea.
Collapse
Affiliation(s)
- Anna Kublanovskaya
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, 119192, Russia.
| | - Olga Baulina
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, 119192, Russia
| | - Konstantin Chekanov
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, 119192, Russia
- Centre for Humanities Research and Technology, National Research Nuclear University MEPhI, 31 Kashirskoye highway, Moscow, 115522, Russia
| | - Elena Lobakova
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, 119192, Russia
| |
Collapse
|