1
|
Zucconi L, Fierro-Vásquez N, Antunes A, Bendia AG, Lavin P, González-Aravena M, Sani RK, Banerjee A. Advocating microbial diversity conservation in Antarctica. NPJ BIODIVERSITY 2025; 4:5. [PMID: 40038369 DOI: 10.1038/s44185-025-00076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 01/27/2025] [Indexed: 03/06/2025]
Abstract
Antarctica, a seemingly barren and icy wilderness, is home to a diverse array of microbial life that plays a critical role in sustaining its ecosystems. These resilient microorganisms drive nutrient cycling and carbon sequestration, but their function in global processes remains unclear. This pristine environment faces mounting threats from human activities, climate change, and increasing tourism. Contaminants, non-native species, and microplastics are increasingly reaching even the most remote regions, disrupting delicate microbial communities existing for millions of years. Antarctic microorganisms are not only ecologically significant but also valuable for biotechnological advancements, making their conservation imperative. Climate change exacerbates these threats, altering microbial habitats and promoting shifts in community structure. Tourism growth, though beneficial for education and economic reasons, poses significant challenges through biological and chemical contamination. Despite efforts under the Antarctic Treaty System to protect the region, there is a critical need for enhanced measures specifically targeting microbial conservation. This article underscores the importance of conserving Antarctic microbial diversity. It highlights the intricate microbial ecosystems and the urgency of implementing strategies such as stringent biosecurity measures, sustainable tourism practices, and comprehensive monitoring programs. Additionally, fostering international collaboration and research initiatives is vital for understanding and designing strategies to mitigate the impacts of environmental changes on microbial life. By prioritizing microbial conservation in policy frameworks and strengthening global cooperation, we can safeguard these unique ecosystems and ensure their resilience for future generations.
Collapse
Affiliation(s)
- Laura Zucconi
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Natalia Fierro-Vásquez
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, 1240300, Chile
| | - André Antunes
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Macau SAR, China
- Institute of Science and Environment, University of Saint Joseph, Macau SAR, China
| | - Amanda Gonçalves Bendia
- Instituto Oceanográfico, Departamento de Oceanografia Biológica, Universidade de São Paulo, São Paulo, 05508-120, Brazil
| | - Paris Lavin
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, 1240300, Chile
- Centro de Investigación en Inmunología y Biotecnología Biomédica de Antofagasta, (CIIBBA), Universidad de Antofagasta, Antofagasta, 1240300, Chile
| | | | - Rajesh Kumar Sani
- Department of Chemical and Biological Engineering, South Dakota Mines, Rapid City, SD, USA
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota Mines, Rapid City, SD, USA
| | - Aparna Banerjee
- Functional Polysaccharides Research Group, Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Talca, 3467987, Chile.
| |
Collapse
|
2
|
Câmara PEAS, de Menezes GCA, Lopes FAC, da Silva Paiva T, Carvalho-Silva M, Convey P, Amorim ET, Rosa LH. Investigating non-fungal eukaryotic diversity in snow in the Antarctic Peninsula region using DNA metabarcoding. Extremophiles 2023; 28:3. [PMID: 37962679 DOI: 10.1007/s00792-023-01322-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/16/2023] [Indexed: 11/15/2023]
Abstract
Snow is a unique microhabitat, despite being a harsh environment, multiple life forms have adapted to survive in it. While algae, bacteria and fungi are dominant microorganisms in Antarctic snow, little is known about other organisms that may be present in this habitat. We used metabarcoding to investigate DNA sequence diversity of non-fungal eukaryotes present in snow obtained from six different sites across the Maritime Antarctica. A total of 20 taxa were assigned to obtained sequences, representing five Kingdoms (Chromista, Protozoa, Viridiplantae and Metazoa) and four phyla (Ciliophora, Cercozoa, Chlorophyta and Cnidaria). The highest diversity indices were detected in Trinity Peninsula followed by Robert Island, Arctowski Peninsula, Deception Island, King George Island and Snow Island. The most abundant assignments were to Trebouxiophyceae, followed by Chlamydomonas nivalis and Chlamidomonadales. No taxa were detected at all sites. Three potentially new records for Antarctica were detected: two Ciliophora (Aspidisca magna and Stokesia sp.) and the green algae Trebouxia potteri. Our data suggested that similarities found between the sites may be more related with snow physicochemical properties rather than geographic proximity or latitude. This study provides new insights into the diversity and distribution of eukaryotic organisms in Antarctic snow.
Collapse
Affiliation(s)
- Paulo E A S Câmara
- Departamento de Botânica, Universidade de Brasília, Brasília, 70910-900, Brasil.
- Algas E Plantas, Pós Graduação Em Fungos, Universidade Federal de Santa Catarina, Florianoplis, Santa Catarina, Brazil.
| | - Graciéle C A de Menezes
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brasil
| | - Fabyano A C Lopes
- Laboratório de Microbiologia, Universidade Federal Do Tocantins, Porto Nacional, Brazil
| | - Thiago da Silva Paiva
- Laboratório de Protistologia, Instituto de Biologia, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
- Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park, 2006, South Africa
- Biodiversity of Antarctic and Sub-Antarctic Ecosystems (BASE), Santiago, Chile
| | - Eduardo T Amorim
- Centro Nacional de Conservação da Flora/Instituto de Pesquisas Jardim Botânico Do Rio de Janeiro (CNCFlora/JBRJ), Rio de Janeiro, Brazil
| | - Luiz H Rosa
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brasil
| |
Collapse
|
3
|
Kezlya E, Tseplik N, Kulikovskiy M. Genetic Markers for Metabarcoding of Freshwater Microalgae: Review. BIOLOGY 2023; 12:1038. [PMID: 37508467 PMCID: PMC10376359 DOI: 10.3390/biology12071038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
The metabarcoding methods for studying the diversity of freshwater microalgae and routine biomonitoring are actively used in modern research. A lot of experience has been accumulated already, and many methodological questions have been solved (such as the influence of the methods and time of sample conservation, DNA extraction and bioinformatical processing). The reproducibility of the method has been tested and confirmed. However, one of the main problems-choosing a genetic marker for the study-still lacks a clear answer. We analyzed 70 publications and found out that studies on eukaryotic freshwater microalgae use 12 markers (different nuclear regions 18S and ITS and plastids rbcL, 23S and 16S). Each marker has its peculiarities; they amplify differently and have various levels of efficiency (variability) in different groups of algae. The V4 and V9 18S and rbcL regions are used most often. We concentrated especially on the studies that compare the results of using different markers and microscopy. We summarize the data on the primers for each region and on how the choice of a marker affects the taxonomic composition of a community.
Collapse
Affiliation(s)
- Elena Kezlya
- Laboratory of Molecular Systematics of Aquatic Plants, K.A. Timiryazev Institute of Plant Physiology RAS, IPP RAS, 127276 Moscow, Russia
| | - Natalia Tseplik
- Laboratory of Molecular Systematics of Aquatic Plants, K.A. Timiryazev Institute of Plant Physiology RAS, IPP RAS, 127276 Moscow, Russia
| | - Maxim Kulikovskiy
- Laboratory of Molecular Systematics of Aquatic Plants, K.A. Timiryazev Institute of Plant Physiology RAS, IPP RAS, 127276 Moscow, Russia
| |
Collapse
|
4
|
Rybalka N, Blanke M, Tzvetkova A, Noll A, Roos C, Boy J, Boy D, Nimptsch D, Godoy R, Friedl T. Unrecognized diversity and distribution of soil algae from Maritime Antarctica (Fildes Peninsula, King George Island). Front Microbiol 2023; 14:1118747. [PMID: 37434717 PMCID: PMC10332270 DOI: 10.3389/fmicb.2023.1118747] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/05/2023] [Indexed: 07/13/2023] Open
Abstract
Introduction Eukaryotic algae in the top few centimeters of fellfield soils of ice-free Maritime Antarctica have many important effects on their habitat, such as being significant drivers of organic matter input into the soils and reducing the impact of wind erosion by soil aggregate formation. To better understand the diversity and distribution of Antarctic terrestrial algae, we performed a pilot study on the surface soils of Meseta, an ice-free plateau mountain crest of Fildes Peninsula, King George Island, being hardly influenced by the marine realm and anthropogenic disturbances. It is openly exposed to microbial colonization from outside Antarctica and connected to the much harsher and dryer ice-free zones of the continental Antarctic. A temperate reference site under mild land use, SchF, was included to further test for the Meseta algae distribution in a contrasting environment. Methods We employed a paired-end metabarcoding analysis based on amplicons of the highly variable nuclear-encoded ITS2 rDNA region, complemented by a clone library approach. It targeted the four algal classes, Chlorophyceae, Trebouxiophyceae, Ulvophyceae, and Xanthophyceae, representing key groups of cold-adapted soil algae. Results A surprisingly high diversity of 830 algal OTUs was revealed, assigned to 58 genera in the four targeted algal classes. Members of the green algal class Trebouxiophyceae predominated in the soil algae communities. The major part of the algal biodiversity, 86.1% of all algal OTUs, could not be identified at the species level due to insufficient representation in reference sequence databases. The classes Ulvophyceae and Xanthophyceae exhibited the most unknown species diversity. About 9% of the Meseta algae species diversity was shared with that of the temperate reference site in Germany. Discussion In the small portion of algal OTUs for which their distribution could be assessed, the entire ITS2 sequence identity with references shows that the soil algae likely have a wide distribution beyond the Polar regions. They probably originated from soil algae propagule banks in far southern regions, transported by aeolian transport over long distances. The dynamics and severity of environmental conditions at the soil surface, determined by high wind currents, and the soil algae's high adaptability to harsh environmental conditions may account for the high similarity of soil algal communities between the northern and southern parts of the Meseta.
Collapse
Affiliation(s)
- Nataliya Rybalka
- Department of Experimental Phycology and Culture Collection of Algae (EPSAG), Albrecht-von-Haller-Institute for Plant Sciences, Georg August University, Göttingen, Germany
| | - Matthias Blanke
- Department of Experimental Phycology and Culture Collection of Algae (EPSAG), Albrecht-von-Haller-Institute for Plant Sciences, Georg August University, Göttingen, Germany
- Department of Bioinformatics, Institute of Microbiology and Genetics, Georg August University, Göttingen, Germany
| | - Ana Tzvetkova
- Institute of Bioinformatics and Human Molecular Genetics Group, Department of Functional Genomics, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Angela Noll
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Christian Roos
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Jens Boy
- Institute of Soil Science, Leibniz University, Hanover, Germany
| | - Diana Boy
- Institute of Microbiology, Leibniz University, Hanover, Germany
| | - Daniel Nimptsch
- Department of Experimental Phycology and Culture Collection of Algae (EPSAG), Albrecht-von-Haller-Institute for Plant Sciences, Georg August University, Göttingen, Germany
| | - Roberto Godoy
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | - Thomas Friedl
- Department of Experimental Phycology and Culture Collection of Algae (EPSAG), Albrecht-von-Haller-Institute for Plant Sciences, Georg August University, Göttingen, Germany
| |
Collapse
|
5
|
Câmara PEAS, Bones FLV, Lopes FAC, Oliveira FS, Barreto CC, Knop Henriques D, Campos LP, Carvalho-Silva M, Convey P, Rosa LH. DNA Metabarcoding Reveals Cryptic Diversity in Forest Soils on the Isolated Brazilian Trindade Island, South Atlantic. MICROBIAL ECOLOGY 2023; 85:1056-1071. [PMID: 35484416 DOI: 10.1007/s00248-022-02018-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/19/2022] [Indexed: 05/04/2023]
Abstract
Located 1140 km from the South American coastline in the South Atlantic Ocean and with an age of 4 million years, Trindade Island is the most recent volcanic component of Brazilian territory. Its original native vegetation has been severely damaged by human influence, in particular through the introduction of exotic grazing animals such as goats. However, since the complete eradication of goats and other feral animals in the late 1990s, the island's vegetation has been recovering, and even some endemic species that had been considered extinct have been rediscovered. In this study, we set out to characterize the contemporary cryptic diversity in soils of the recovering native forest of Trindade Island using metabarcoding by high throughput sequencing (HTS). The sequence diversity obtained was dominated by microorganisms, including three domains (Bacteria, Archaea, and Eukarya) and five kingdoms (Fungi, Metazoa, Protozoa, Chromista, and Viridiplantae). Bacteria were represented by 20 phyla and 116 taxa, with Archaea by only one taxon. Fungi were represented by seven phyla and 250 taxa, Viridiplantae by five phyla and six taxa, Protozoa by five phyla and six taxa, Metazoa by three phyla and four taxa and Chromista by two phyla and two taxa. Even after the considerable anthropogenic impacts and devastation of the island's natural forest, our sequence data reveal the presence of a rich and complex diversity of microorganisms, invertebrates, and plants and provide important baseline biodiversity information that will contribute to ecological restoration efforts on the island.
Collapse
Affiliation(s)
- Paulo E A S Câmara
- Departamento de Botânica, Universidade de Brasília, Brasília, Brasil.
- Pós Graduação Em Plantas, Fungos E Algas, Universidade Federal de Santa Catarina, Florianópolis, Brasil.
| | - Fábio Leal Viana Bones
- Pós Graduação Em Plantas, Fungos E Algas, Universidade Federal de Santa Catarina, Florianópolis, Brasil
| | | | - Fabio S Oliveira
- Departamento de Geografia, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | | | | | | | | | - Peter Convey
- British Antarctic Survey, Cambridge, UK
- Department of Zoology, University of Johannesburg, Johannesburg, South Africa
| | - Luiz Henrique Rosa
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| |
Collapse
|
6
|
Schultz J, Argentino ICV, Kallies R, Nunes da Rocha U, Rosado AS. Polyphasic Analysis Reveals Potential Petroleum Hydrocarbon Degradation and Biosurfactant Production by Rare Biosphere Thermophilic Bacteria From Deception Island, an Active Antarctic Volcano. Front Microbiol 2022; 13:885557. [PMID: 35602031 PMCID: PMC9114708 DOI: 10.3389/fmicb.2022.885557] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/14/2022] [Indexed: 01/19/2023] Open
Abstract
Extreme temperature gradients in polar volcanoes are capable of selecting different types of extremophiles. Deception Island is a marine stratovolcano located in maritime Antarctica. The volcano has pronounced temperature gradients over very short distances, from as high as 100°C in the fumaroles to subzero next to the glaciers. These characteristics make Deception a promising source of a variety of bioproducts for use in different biotechnological areas. In this study, we isolated thermophilic bacteria from sediments in fumaroles at two geothermal sites on Deception Island with temperatures between 50 and 100°C, to evaluate the potential capacity of these bacteria to degrade petroleum hydrocarbons and produce biosurfactants under thermophilic conditions. We isolated 126 thermophilic bacterial strains and identified them molecularly as members of genera Geobacillus, Anoxybacillus, and Brevibacillus (all in phylum Firmicutes). Seventy-six strains grew in a culture medium supplemented with crude oil as the only carbon source, and 30 of them showed particularly good results for oil degradation. Of 50 strains tested for biosurfactant production, 13 showed good results, with an emulsification index of 50% or higher of a petroleum hydrocarbon source (crude oil and diesel), emulsification stability at 100°C, and positive results in drop-collapse, oil spreading, and hemolytic activity tests. Four of these isolates showed great capability of degrade crude oil: FB2_38 (Geobacillus), FB3_54 (Geobacillus), FB4_88 (Anoxybacillus), and WB1_122 (Geobacillus). Genomic analysis of the oil-degrading and biosurfactant-producer strain FB4_88 identified it as Anoxybacillus flavithermus, with a high genetic and functional diversity potential for biotechnological applications. These initial culturomic and genomic data suggest that thermophilic bacteria from this Antarctic volcano have potential applications in the petroleum industry, for bioremediation in extreme environments and for microbial enhanced oil recovery (MEOR) in reservoirs. In addition, recovery of small-subunit rRNA from metagenomes of Deception Island showed that Firmicutes is not among the dominant phyla, indicating that these low-abundance microorganisms may be important for hydrocarbon degradation and biosurfactant production in the Deception Island volcanic sediments.
Collapse
Affiliation(s)
- Júnia Schultz
- Microbial Ecogenomics and Biotechnology Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | - René Kallies
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Ulisses Nunes da Rocha
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Alexandre Soares Rosado
- Microbial Ecogenomics and Biotechnology Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
7
|
Diversity of Viridiplantae DNA present on rock surfaces in the Ellsworth Mountains, continental Antarctica. Polar Biol 2022. [DOI: 10.1007/s00300-022-03021-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Fonseca BM, Câmara PEAS, Ogaki MB, Pinto OHB, Lirio JM, Coria SH, Vieira R, Carvalho-Silva M, Amorim ET, Convey P, Rosa LH. Green algae (Viridiplantae) in sediments from three lakes on Vega Island, Antarctica, assessed using DNA metabarcoding. Mol Biol Rep 2021; 49:179-188. [PMID: 34686990 DOI: 10.1007/s11033-021-06857-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/19/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Vega Island is located off the eastern tip of the Antarctic Peninsula (Maritime Antarctica), in the Weddell Sea. In this study, we used metabarcoding to investigate green algal DNA sequence diversity present in sediments from three lakes on Vega Island (Esmeralda, Copépodo, and Pan Negro Lakes). METHODS AND RESULTS Total DNA was extracted and the internal transcribed spacer 2 region of the nuclear ribosomal DNA was used as a DNA barcode for molecular identification. Green algae were represented by sequences representing 78 taxa belonging to Phylum Chlorophyta, of which 32% have not previously been recorded from Antarctica. Sediment from Pan Negro Lake generated the highest number of DNA reads (11,205), followed by Esmeralda (9085) and Copépodo (1595) Lakes. Esmeralda Lake was the richest in terms of number of taxa (59), with Copépodo and Pan Negro Lakes having 30 taxa each. Bray-Curtis dissimilarity among lakes was high (~ 0.80). The Order Chlamydomonadales (Chlorophyceae) gave the highest contribution in terms of numbers of taxa and DNA reads in all lakes. The most abundant taxon was Chlorococcum microstigmatum. CONCLUSIONS The study confirms the utility of DNA metabarcoding in assessing potential green algal diversity in Antarctic lakes, generating new Antarctic records.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rosemary Vieira
- Instituto de Geociências, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | | | | | - Peter Convey
- British Antarctic Survey, Cambridge, UK
- Department of Zoology, University of Johannesburg, Auckland Park, South Africa
| | - Luiz Henrique Rosa
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
9
|
Câmara PEAS, Eisenlohr PV, Coelho LC, Carvalho-Silva M, Amorim ET, Convey P, Pinto OHB, Rosa LH. Fairy ring disease affects epiphytic algal assemblages associated with the moss Sanionia uncinata (Hedw.) Loeske (Bryophyta) on King George Island, Antarctica. Extremophiles 2021; 25:501-512. [PMID: 34643818 DOI: 10.1007/s00792-021-01246-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/27/2021] [Indexed: 11/27/2022]
Abstract
Since the nineteenth century, a ring-forming disease attacking Antarctic mosses has been reported. However, to date, only the effects on the mosses themselves are known. In this study, we used DNA metabarcoding to investigate the effects on the moss epiphytic algal community at different stages of disease progression. As the disease progressed, algal species richness decreased, although overall abundance was not significantly affected. Prasiolales appeared unaffected, whereas Ulotrichales were more sensitive. Trebouxiales dominated the advanced disease stage, suggesting a possible benefit from the disease, either through the elimination of competition or creation of new niches. Infection is responsible for moss death, leading to habitat loss for other organisms, but pathogenic effects on algae cannot be ruled out. Our data indicate that the disease not only impacts mosses but also other groups, potentially resulting in loss of Antarctic biodiversity. This study provides the first report of the disease effects on epiphytic algal communities of Antarctic bryophytes.
Collapse
Affiliation(s)
| | - Pedro V Eisenlohr
- Universidade do Estado de Mato Grosso, Campus Alta Floresta, Alta Floresta, Brazil
| | - Lívia C Coelho
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Eduardo T Amorim
- Centro Nacional de Conservação da Flora, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro (CNCFlora/JBRJ), Rio de Janeiro, Brazil
| | - Peter Convey
- British Antarctic Survey, Cambridge, UK
- Department of Zoology, University of Johannesburg, Auckland Park, South Africa
| | - Otavio H B Pinto
- Departamento de Biologia Celular e Molecular, Universidade de Brasília, Brasília, Brazil
| | - Luiz Henrique Rosa
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
10
|
Kolter A, Gemeinholzer B. Internal transcribed spacer primer evaluation for vascular plant metabarcoding. METABARCODING AND METAGENOMICS 2021. [DOI: 10.3897/mbmg.5.68155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The unprecedented ongoing biodiversity decline necessitates scalable means of monitoring in order to fully understand the underlying causes. DNA metabarcoding has the potential to provide a powerful tool for accurate and rapid biodiversity monitoring. Unfortunately, in many cases, a lack of universal standards undermines the widespread application of metabarcoding. One of the most important considerations in metabarcoding of plants, aside from selecting a potent barcode marker, is primer choice. Our study evaluates published ITS primers in silico and in vitro, through mock communities and presents newly designed primers. We were able to show that a large proportion of previously available ITS primers have unfavourable attributes. Our combined results support the recommendation of the introduced primers ITS-3p62plF1 and ITS-4unR1 as the best current universal plant specific ITS2 primer combination. We also found that PCR optimisation, such as the addition of 5% DMSO, is essential to obtain meaningful results in ITS2 metabarcoding. Finally, we conclude that continuous quality assurance is indispensable for reliable metabarcoding results.
Collapse
|
11
|
Câmara PEAS, Convey P, Rangel SB, Konrath M, Barreto CC, Pinto OHB, Silva MC, Henriques DK, de Oliveira HC, Rosa LH. The largest moss carpet transplant in Antarctica and its bryosphere cryptic biodiversity. Extremophiles 2021; 25:369-384. [PMID: 34117569 DOI: 10.1007/s00792-021-01235-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/01/2021] [Indexed: 01/16/2023]
Abstract
As part of the reconstruction of the Brazilian Antarctic Station on King George Island, three areas of moss carpet were transplanted to minimize the impact of the new facilities on the local biodiversity. A total of 650 m2 of moss carpet was transplanted to neighboring but previously uncolonized locations and has subsequently survived for the last 3 years. Antarctic moss carpets typically comprise low moss species diversity and are often monospecific. We investigated the cryptic biodiversity that was transplanted along with the carpets using a metabarcoding approach through high throughput sequencing. We targeted 16S rRNA for Bacteria and Archaea, ITS for Fungi and Viridiplantae and Cox1 for Metazoa. We detected DNA representing 263 taxa from five Kingdoms (Chromista, Fungi, Metazoa, Protista and Viridiplantae), two Domains (Archaea and Bacteria) and 33 Phyla associated with the carpet. This diversity included one Archaea, 189 Bacteria, 24 Chromista, 19 Fungi, eight Metazoa, seven Protista and 16 Viridiplantae. Bacteria was the most abundant, rich and diverse group, with Chromista second in diversity and richness. Metazoa was less diverse but second highest in dominance. This is the first study to attempt transplanting a significant area of moss carpet to minimize anthropogenic environmental damage in Antarctica and to use metabarcoding as a proxy to assess diversity associated with Antarctic moss carpets, further highlighting the importance of such habitats for other organisms and their importance for conservation.
Collapse
Affiliation(s)
| | | | - Sandro B Rangel
- Instituto Brasileiro Do Meio Ambiente, IBAMA, Brasilia, Brazil
| | - Marcelo Konrath
- China National Electronics Import and Export Corporation, CEIEC, Beijing, China
| | | | - Otavio H B Pinto
- Departamento de Biologia Molecular, Universidade de Brasília, Brasilia, Brazil
| | | | | | | | - Luiz H Rosa
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|