1
|
Li B, Liu F, He X, Liu Y, Liu X, Lu M. Leaf Beetle Symbiotic Bacteria Degrade Chlorogenic Acid of Poplar Induced by Egg Deposition to Enhance Larval Survival. PLANT, CELL & ENVIRONMENT 2025; 48:4212-4226. [PMID: 39925102 DOI: 10.1111/pce.15427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/11/2025]
Abstract
Insect symbiotic microbiota acting as a third-party force of plant-insect interactions, play a significant role in insect hosts tolerance to phytochemical defences. However, it remains unknown whether insect symbiotic bacteria can assist the host in degrading phytochemical defences induced by egg deposition. Plagiodera versicolora is a worldwide forest pest. Our study showed that P. versicolora egg deposition on Populus davidiana × Populus bolleana induced significant changes in the transcriptome and metabolome of leaves. Combined qRT-PCR and LC-MS quantitative analysis of metabolic pathways showed that the contents of chlorogenic acid and rutin were significantly increased upon egg deposition in poplar. Bioassays indicated that the high concentration of chlorogenic acid induced by egg deposition could significantly reduce the performance of germ-free larvae. Six symbiotic bacterial strains with potential ability to degrade chlorogenic acid were isolated and identified. Their degradation products did not affect larval survival either. In vivo inoculation assays showed that four of those symbiotic bacteria could assist in the degradation of high concentration of chlorogenic acid induced by egg deposition and improve the larval survival. Our study provides clear evidence that the insect symbiotic bacteria can mediate the tolerance of herbivorous insects against plant toxins induced by egg deposition.
Collapse
Affiliation(s)
- Bin Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Fengjie Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Xin He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Yipeng Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Xiaolong Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Min Lu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
2
|
Guo D, Ge J, Tang Z, Tian B, Li W, Li C, Xu L, Luo J. Dynamic Gut Microbiota of Apolygus lucorum Across Different Life Stages Reveals Potential Pathogenic Bacteria for Facilitating the Pest Management. MICROBIAL ECOLOGY 2023; 87:9. [PMID: 38047964 DOI: 10.1007/s00248-023-02324-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
Insect's gut microbiota has diverse effects on their fitness, and a comprehensive understanding of gut microbiota functions requires analyzing its diversity. Apolygus lucorum is a highly destructive pest that threatens many economically important crops in China. This study investigated the gut microbiota of A. lucorum across its life cycle using both culture-dependent and culture-independent methods. A total of 87 gut bacterial isolates were identified, belonging to 4 phyla, 27 families, and 45 genera, while Miseq sequencing detected 91 amplicon sequence variants (ASVs) assigned to 5 phyla, 28 families, and 39 genera. Proteobacteria and Firmicutes were the predominant phyla, with Staphylococcus and Serratia as the major genera. There were significant differences in the relative abundance of these genera between the nymph and adult stages. Staphylococcus was significantly more abundant in nymphs than it in adults, while Serratia was significantly more abundant in sexually mature adults than in other developmental stages. Notably, Serratia is a common opportunistic pathogen in many insects. Injecting the gut-dominant isolate Serratia marcescens verified its high pathogenicity. Additionally, immune indicators of the bug at different developmental stages supported the hypothesis that Serratia is a pathogen of A. lucorum. This study provides a foundation for understanding the role of gut bacteria in the life history of A. lucorum and developing new pest control strategies based on microbes.
Collapse
Affiliation(s)
- Danni Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Jingfan Ge
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Zhenzhen Tang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Baoku Tian
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Wanning Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Chong Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Jing Luo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
3
|
Peng X, Wang H, Yang Z. Differences in Male-Killing Rickettsia Bacteria between Lineages of the Invasive Gall-Causing Pest Leptocybe invasa. INSECTS 2023; 14:757. [PMID: 37754725 PMCID: PMC10532318 DOI: 10.3390/insects14090757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/22/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023]
Abstract
(1) Background: Leptocybe invasa (Hymenoptera: Eulophidae) is a global invasive pest that seriously damages eucalyptus plants and has caused serious harm to forestry production in many countries. Two genotypically distinct lineages of L. invasa have been detected outside of Australia, namely, lineage A and lineage B. However, the composition and abundance of endosymbiotic bacteria in L. invasa are still unclear between lineages. Therefore, the purpose of this study was to compare the bacterial communities in female adults of L. invasa of different lineages distributed in the same domain; (2) Methods: The PacBio Sequel II platform was used to compare bacterial community composition between lineages of L. invasa by sequencing the V1-V9 region of the 16S rRNA gene, and fluorescence quantitative PCR was used to compare the relative expression of Rickettsia between lineages of L. invasa; (3) Results: A total of 437 operational taxonomic units (OTUs) were obtained. These OTUs were subdivided into 20 phyla, 32 classes, 77 orders, 129 families, and 217 genera. At the genus level, the dominant bacteria in lineage A and lineage B were Rickettsia and Bacteroides, respectively. There were differences in the bacterial community of L. invasa between lineages, and the abundance and relative expression of Rickettsia in lineage A were significantly higher than those in lineage B; (4) Conclusions: There were differences in the bacterial community of L. invasa between lineages, and the abundance and relative expression of Rickettsia in lineage A were significantly higher than those in lineage B.
Collapse
Affiliation(s)
| | | | - Zhende Yang
- Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China; (X.P.); (H.W.)
| |
Collapse
|
4
|
Becker R, Ulrich K, Behrendt U, Schneck V, Ulrich A. Genomic Characterization of Aureimonas altamirensis C2P003-A Specific Member of the Microbiome of Fraxinus excelsior Trees Tolerant to Ash Dieback. PLANTS (BASEL, SWITZERLAND) 2022; 11:3487. [PMID: 36559599 PMCID: PMC9781493 DOI: 10.3390/plants11243487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Some European ash trees show tolerance towards dieback caused by the invasive pathogen Hymenoscyphus fraxineus. The microbiome of these trees harbours a range of specific bacterial groups. One of these groups belonging to the species Aureimonas altamirensis was studied in detail by genome analysis and a plant inoculation trial. The strain group was shown to be phylogenetically distinct from clinical isolates by 16S rRNA analysis and phylogenomics. Genome analysis of a representative strain C2P003 resulted in a large number of unique gene sequences in comparison to other well-studied strains of the species. A functional analysis of the genome revealed features associated with the synthesis of exopolysaccharides, protein secretion and biofilm production as well as genes for stress adaptation, suggesting the ability of C2P003 to effectively colonize ash leaves. The inoculation of ash seedlings with C2P003 showed a significant positive effect on the plant health of the seedlings that were exposed to H. fraxineus infection. This effect was maintained over a period of three years and was accompanied by a significant shift in the bacterial microbiome composition one year after inoculation. Overall, the results indicate that C2P003 may suppress H. fraxineus in or on ash leaves via colonization resistance or indirectly by affecting the microbiome.
Collapse
Affiliation(s)
- Regina Becker
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
| | - Kristina Ulrich
- Institute of Forest Genetics, Johann Heinrich von Thünen Institute, 15377 Waldsieversdorf, Germany
| | - Undine Behrendt
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
| | - Volker Schneck
- Institute of Forest Genetics, Johann Heinrich von Thünen Institute, 15377 Waldsieversdorf, Germany
| | - Andreas Ulrich
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
| |
Collapse
|
5
|
Tian H, Koski TM, Zhao L, Liu Z, Sun J. Invasion History of the Pinewood Nematode Bursaphelenchus xylophilus Influences the Abundance of Serratia sp. in Pupal Chambers and Tracheae of Insect-Vector Monochamus alternatus. FRONTIERS IN PLANT SCIENCE 2022; 13:856841. [PMID: 35668811 PMCID: PMC9164154 DOI: 10.3389/fpls.2022.856841] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/30/2022] [Indexed: 06/01/2023]
Abstract
Pine wilt disease (PWD) has caused extensive mortality in pine forests worldwide. This disease is a result of a multi-species interaction among an invasive pinewood nematode (PWN) Bursaphelenchus xylophilus, its vector Monochamus sp. beetle, and the host pine tree (Pinus sp.). In other systems, microbes have been shown to attenuate negative impacts on invasive species after the invasion has reached a certain time point. Despite that the role of PWD associated microbes involved in the PWD system has been widely studied, it is not known whether similar antagonistic "hidden microbial players" exist in this system due to the lack of knowledge about the potential temporal changes in the composition of associated microbiota. In this study, we investigated the bacteria-to-fungi ratio and isolated culturable bacterial isolates from pupal chambers and vector beetle tracheae across five sampling sites in China differing in the duration of PWN invasion. We also tested the pathogenicity of two candidate bacteria strains against the PWN-vector beetle complex. A total of 118 bacterial species belonging to 4 phyla, 30 families, and 54 genera were classified based on 16S sequencing. The relative abundance of the genus Serratia was lower in pupal chambers and tracheae in newly PWN invaded sites (<10 years) compared to the sites that had been invaded for more than 20 years. Serratia marcescens strain AHPC29 was widely distributed across all sites and showed nematicidal activity against PWN. The insecticidal activity of this strain was dependent on the life stage of the vector beetle Monochamus alternatus: no insecticidal activity was observed against final-instar larvae, whereas S. marcescens was highly virulent against pupae. Our findings improved the understanding of the temporal variation in the microbial community associated with the PWN-vector beetle complex and the progress of PWD and can therefore facilitate the development of biological control agents against PWN and its vector beetle.
Collapse
Affiliation(s)
- Haokai Tian
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Tuuli-Marjaana Koski
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Lilin Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Ziying Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jianghua Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| |
Collapse
|
6
|
The Diversity of Bacteria Associated with the Invasive Gall Wasp Dryocosmus kuriphilus, Its Galls and a Specialist Parasitoid on Chestnuts. INSECTS 2022; 13:insects13010086. [PMID: 35055929 PMCID: PMC8778799 DOI: 10.3390/insects13010086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 02/01/2023]
Abstract
Simple Summary The insect Dryocosmus kuriphilus induces galls on chestnut trees. Torymus sinensis is a host-specific parasitoid of D. kuriphilus and phenologically synchronizes with D. kuriphilus. The aim of this research is to investigate the bacterial communities and predominant bacteria of D. kuriphilus, T. sinensis, D. kuriphilus galls and the galled twigs of Castanea mollissima. We provide the first evidence that D. kuriphilus shares most bacterial species with T. sinensis, D. kuriphilus galls and galled twigs. The predominant bacteria of D. kuriphilus are Serratia sp. and Pseudomonas sp. Many species of the Serratia and Pseudomonas genera are plant pathogenic bacteria, and we suggest that D. kuriphilus may be a potential vector of plant pathogens. Furthermore, a total of 111 bacteria are common to D. kuriphilus adults, T. sinensis, D. kuriphilus galls and galled twigs, and we suggest that the bacteria may transmit horizontally among D. kuriphilus, T. sinensis, D. kuriphilus galls and galled twigs on the basis of their ecological associations. Abstract Dryocosmus kuriphilus (Hymenoptera: Cynipidae) induces galls on chestnut trees, which results in massive yield losses worldwide. Torymus sinensis (Hymenoptera: Torymidae) is a host-specific parasitoid that phenologically synchronizes with D. kuriphilus. Bacteria play important roles in the life cycle of galling insects. The aim of this research is to investigate the bacterial communities and predominant bacteria of D. kuriphilus, T. sinensis, D. kuriphilus galls and the galled twigs of Castanea mollissima. We sequenced the V5–V7 region of the bacterial 16S ribosomal RNA in D. kuriphilus, T. sinensis, D. kuriphilus galls and galled twigs using high-throughput sequencing for the first time. We provide the first evidence that D. kuriphilus shares most bacterial species with T. sinensis, D. kuriphilus galls and galled twigs. The predominant bacteria of D. kuriphilus are Serratia sp. and Pseudomonas sp. Furthermore, the bacterial community structures of D. kuriphilus and T. sinensis clearly differ from those of the other groups. Many species of the Serratia and Pseudomonas genera are plant pathogenic bacteria, and we suggest that D. kuriphilus may be a potential vector of plant pathogens. Furthermore, a total of 111 bacteria are common to D. kuriphilus adults, T. sinensis, D. kuriphilus galls and galled twigs, and we suggest that the bacteria may transmit horizontally among D. kuriphilus, T. sinensis, D. kuriphilus galls and galled twigs on the basis of their ecological associations.
Collapse
|
7
|
Guo C, Peng X, Wang H, Zheng X, Hu P, Zhou J, Ding Z, Wang X, Yang Z. Bacterial diversity of Leptocybe invasa Fisher & La Salle (Hymenoptera: Eulophidae) from different geographical conditions in China. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 108:e21847. [PMID: 34596262 DOI: 10.1002/arch.21847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Insects harbor numerous endosymbionts, including bacteria, fungi, yeast, and viruses, which could affect the ecology and behavior of their hosts. However, data regarding the effect of environmental factors on endosymbiotic bacteria of Leptocybe invasa (Hymenoptera: Eulophidae) are quite rare. In this study, we assessed the diversity of endosymbiotic bacteria of L. invasa from 10 different geographic populations collected across China through the Illumina MiSeq platform. A total of 547 OTUs were generated, which were annotated into 19 phyla, 33 classes, 75 orders, 137 families, and 274 genera. The dominant bacteria detected in L. invasa were Rickettsia, and Pantoea, Enterobacter, Pseudomonas, Acinetobacter, and Bacillus were also annotated among each population. Nevertheless, the endosymbiotic bacterial abundance and diversity varied among different populations, which was related to the local climate (annual mean high temperature). The bacterial function prediction analysis showed that these endosymbiotic bacteria were concentrated in metabolism, such as carbohydrate, amino acid, and energy metabolism. Overall, the results provide a comprehensive description of the endosymbiotic bacteria in 10 different populations of an important eucalyptus pest L. invasa, and help to understand the endosymbiotic bacterial diversity and adaptation of various conditions.
Collapse
Affiliation(s)
- Chunhui Guo
- College of Forestry, Guangxi University, Nanning, China
| | - Xin Peng
- College of Forestry, Guangxi University, Nanning, China
| | - Hantang Wang
- College of Forestry, Guangxi University, Nanning, China
| | - Xialin Zheng
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Ping Hu
- College of Forestry, Guangxi University, Nanning, China
| | - Jing Zhou
- College of Forestry, Guangxi University, Nanning, China
| | - Zhirou Ding
- College of Forestry, Guangxi University, Nanning, China
| | - Xue Wang
- College of Forestry, Guangxi University, Nanning, China
| | - Zhende Yang
- College of Forestry, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, Forestry College, Guangxi University, Nanning, China
| |
Collapse
|