1
|
Tang W, Ni R, Wang X, Song L. Different effects of seasonal impoundment and land use change on microbiome in a tributary sediment of the three gorgers reservoir. ENVIRONMENTAL RESEARCH 2024; 259:119559. [PMID: 38969316 DOI: 10.1016/j.envres.2024.119559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/07/2024]
Abstract
Anthropogenic activities significantly impact river ecosystem nutrient fluxes and microbial metabolism. Here, we examined the seasonal and spatial variation of sediments physicochemical parameters and the associated microbiome in the Pengxi river, a representative tributary of Three Gorges Reservoir, in response to seasonal impoundment and land use change by human activities. Results revealed that seasonal impoundment and land use change enhanced total organic carbon (TOC), total nitrogen (TN) and ammonium nitrogen (NH4+-N) concentration in the sediment, but have different effects on sediment microbiome. Sediment microbiota showed higher similarity during the seasonal high-water level (HWL) in consecutive two years. The abundant phyla Acidobacteria, Gemmatimonadetes, Cyanobacteria, Actinobacteria and Planctomycetes significantly increased as water level increased. Along the changes in bacterial taxa, we also observed changes in predicted carbon fixation functions and nitrogen-related functions, including the significantly higher levels of Calvin cycle, 4HB/3HP cycle, 3HP cycle and assimilatory nitrate reduction, while significantly lower level of denitrification. Though land use change significantly increased TOC, TN and NH4+-N concentration, its effects on spatial variation of bacterial community composition and predicted functions was not significant. The finding indicates that TGR hydrologic changes and land use change have different influences on the carbon and nitrogen fluxes and their associated microbiome in TGR sediments. A focus of future research will be on assessing on carbon and nitrogen flux balance and the associated carbon and nitrogen microbial cycling in TGR sediment.
Collapse
Affiliation(s)
- Wei Tang
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Renjie Ni
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
| | - Xingzu Wang
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.
| | - Liyan Song
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China.
| |
Collapse
|
2
|
Ji K, Ouyang W, Lin C, He M, Liu X. Eco-hydrological processes regulate lake riparian soil organic matter under dryness stress. WATER RESEARCH 2024; 260:121938. [PMID: 38878315 DOI: 10.1016/j.watres.2024.121938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/22/2024] [Accepted: 06/11/2024] [Indexed: 07/27/2024]
Abstract
As transitional zone between terrestrial and aquatic ecosystems, the soil properties of riparian zones are deeply influenced by the eco-hydrological conditions of lakes. However, with the increasing frequent drought events caused by climate change, the response of riparian soil organic matter (SOM) dynamics to the eco-hydrological process of lakes under dryness stress is unclear. In this study, we utilized the field research, indoor experiments, ecoenzymatic stoichiometry model and data analysis to identify whether riparian SOM and enzyme activity were affected by dryness stress and determine the feedback relationship between soil biochemical properties and lake eco-hydrological processes. The results showed that lake dryness stress reduced the non-vegetated riparian soil quality (the mean Carbon Pool Management Index decreased by 18 % and 6 % for water-land interface (WL) and bare land (BL), respectively), and the humification degree and molecular weight of the riparian soil dissolved organic matter (DOM) (with E2/E3 and E3/E4 value of WL 6.1 and 1.9 times higher than main lake sediment), which was not conducive to soil carbon storage. In addition, lake dryness stress reduced the C-hydrolytic enzyme activity and soil enzyme stoichiometry. The vector and Vector-TER analysis suggested the riparian soil was C and N limitation of the microbial community (vector length of 2.05 ± 0.57 and vector angle of 30.10° ± 7.70°), and dryness had reduced the limitations to some extent. Most notably, we combined structural equation model (SEM) analysis and found that lake dryness stress affects riparian soil organic carbon (SOC) dynamics by significantly affecting microbial biomass carbon (MBC) and soil pH. Finally, the response of riparian zone to eco-hydrological condition under climate change should receive further attention, which can effectively deepen our understanding of the carbon water cycle mechanism in riparian soil under changing environments.
Collapse
Affiliation(s)
- Kaiyue Ji
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; Advanced Interdisciplinary Institute of Environment and Ecology, Guangdong Provincial Key Laboratory of Wastewater Information Analysis and Early Warning, Beijing Normal University, Zhuhai 519087, China.
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
3
|
Wang J, Jia M, Zhang L, Li X, Zhang X, Wang Z. Biodegradable microplastics pose greater risks than conventional microplastics to soil properties, microbial community and plant growth, especially under flooded conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172949. [PMID: 38703848 DOI: 10.1016/j.scitotenv.2024.172949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/10/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Biodegradable plastics (bio-plastics) are often viewed as viable option for mitigating plastic pollution. Nevertheless, the information regarding the potential risks of microplastics (MPs) released from bio-plastics in soil, particularly in flooded soils, is lacking. Here, our objective was to investigate the effect of polylactic acid MPs (PLA-MPs) and polyethylene MPs (PE-MPs) on soil properties, microbial community and plant growth under both non-flooded and flooded conditions. Our results demonstrated that PLA-MPs dramatically increased soil labile carbon (C) content and altered its composition and chemodiversity. The enrichment of labile C stimulated microbial N immobilization, resulting in a depletion of soil mineral nitrogen (N). This specialized environment created by PLA-MPs further filtered out specific microbial species, resulting in a low diversity and simplified microbial community. PLA-MPs caused an increase in denitrifiers (Noviherbaspirillum and Clostridium sensu stricto) and a decrease in nitrifiers (Nitrospira, MND1, and Ellin6067), potentially exacerbating the mineral N deficiency. The mineral N deficit caused by PLA-MPs inhibited wheatgrass growth. Conversely, PE-MPs had less effect on soil ecosystems, including soil properties, microbial community and wheatgrass growth. Overall, our study emphasizes that PLA-MPs cause more adverse effect on the ecosystem than PE-MPs in the short term, and that flooded conditions exacerbate and prolong these adverse effects. These results offer valuable insights for evaluating the potential threats of bio-MPs in both uplands and wetlands.
Collapse
Affiliation(s)
- Jie Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Ecology, Jiangnan University, Wuxi 214122, China; College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Minghao Jia
- Institute of Environmental Processes and Pollution Control, School of Environmental and Ecology, Jiangnan University, Wuxi 214122, China
| | - Long Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution Control, School of Environmental and Ecology, Jiangnan University, Wuxi 214122, China
| | - Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Ecology, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
4
|
Li T, Wang X, Wang X, Huang J, Shen L. Mechanisms Driving the Distribution and Activity of Mineralization and Nitrification in the Reservoir Riparian Zone. MICROBIAL ECOLOGY 2023; 86:1829-1846. [PMID: 36702929 DOI: 10.1007/s00248-023-02180-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
The riparian zone ecosystems have greater energy flow and elemental cycling than adjacent terrestrial and aquatic ecosystems. Mineralization and nitrification are important initiating processes in the nitrogen cycle, but their distribution and activity under different environmental conditions in the riparian zone and the driving mechanisms are still not clear. We investigated the effects of environmental and microbial factors on mineralization and nitrification activities by analyzing the community of alkaline (apr) and neutral (npr) metallopeptidase, ammonia-oxidizing archaea (AOA), and bacteria (AOB) in soils and sediments under different land-use types in the riparian zone of Miyun Reservoir, as well as measuring potential nitrogen mineralization and ammonia oxidation rates (AOR). The results showed that the mineralization and nitrification activities of soils were greater than those of sediments. AOA and AOB dominate the ammonia oxidation activity of soil and sediment, respectively. NH4+ content was a key factor influencing the ecological niche differentiation between AOA and AOB. The high carbon and nitrogen content of the woodland significantly increased mineralization and nitrification activity. Microbial communities were significantly clustered in the woodland. The land-use type, not the flooding condition, determined the distribution of microbial community structure. The diversity of npr was significantly correlated with potential N mineralization rates, while the transcript abundance of AOA was significantly correlated with ammonia oxidation rates. Our study suggests that environmental changes regulate the distribution and activity of mineralization and nitrification processes in the reservoir riparian zone by affecting the transcript abundance, diversity and community structure of the microbial functional genes.
Collapse
Affiliation(s)
- Tingting Li
- College of Resources, Environment and Tourism, Capital Normal University, No. 105, North West Third Ring Road, Haidian District, Beijing, 100048, China
| | - Xiaoyan Wang
- College of Resources, Environment and Tourism, Capital Normal University, No. 105, North West Third Ring Road, Haidian District, Beijing, 100048, China.
| | - Xia Wang
- College of Resources, Environment and Tourism, Capital Normal University, No. 105, North West Third Ring Road, Haidian District, Beijing, 100048, China
| | - Jingyu Huang
- College of Resources, Environment and Tourism, Capital Normal University, No. 105, North West Third Ring Road, Haidian District, Beijing, 100048, China
| | - Lei Shen
- College of Resources, Environment and Tourism, Capital Normal University, No. 105, North West Third Ring Road, Haidian District, Beijing, 100048, China
| |
Collapse
|
5
|
Kan J, Peck EK, Zgleszewski L, Peipoch M, Inamdar S. Mill dams impact microbiome structure and depth distribution in riparian sediments. Front Microbiol 2023; 14:1161043. [PMID: 37455732 PMCID: PMC10339028 DOI: 10.3389/fmicb.2023.1161043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/02/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Damming has substantially fragmented and altered riverine ecosystems worldwide. Dams slow down streamflows, raise stream and groundwater levels, create anoxic or hypoxic hyporheic and riparian environments and result in deposition of fine sediments above dams. These sediments represent a good opportunity to study human legacies altering soil environments, for which we lack knowledge on microbial structure, depth distribution, and ecological function. Methods Here, we compared high throughput sequencing of bacterial/ archaeal and fungal community structure (diversity and composition) and functional genes (i.e., nitrification and denitrification) at different depths (ranging from 0 to 4 m) in riparian sediments above breached and existing milldams in the Mid-Atlantic United States. Results We found significant location- and depth-dependent changes in microbial community structure. Proteobacteria, Bacteroidetes, Firmicutes, Actinobacteria, Chloroflexi, Acidobacteria, Planctomycetes, Thaumarchaeota, and Verrucomicrobia were the major prokaryotic components while Ascomycota, Basidiomycota, Chytridiomycota, Mortierellomycota, Mucoromycota, and Rozellomycota dominated fungal sequences retrieved from sediment samples. Ammonia oxidizing genes (amoA for AOA) were higher at the sediment surface but decreased sharply with depth. Besides top layers, denitrifying genes (nosZ) were also present at depth, indicating a higher denitrification potential in the deeper layers. However, these results contrasted with in situ denitrification enzyme assay (DEA) measurements, suggesting the presence of dormant microbes and/or other nitrogen processes in deep sediments that compete with denitrification. In addition to enhanced depth stratification, our results also highlighted that dam removal increased species richness, microbial diversity, and nitrification. Discussion Lateral and vertical spatial distributions of soil microbiomes (both prokaryotes and fungi) suggest that not only sediment stratification but also concurrent watershed conditions are important in explaining the depth profiles of microbial communities and functional genes in dammed rivers. The results also provide valuable information and guidance to stakeholders and restoration projects.
Collapse
Affiliation(s)
- Jinjun Kan
- Stroud Water Research Center, Avondale, PA, United States
| | - Erin K Peck
- University of Delaware, Plant and Soil Sciences, Newark, DE, United States
| | | | - Marc Peipoch
- Stroud Water Research Center, Avondale, PA, United States
| | - Shreeram Inamdar
- University of Delaware, Plant and Soil Sciences, Newark, DE, United States
| |
Collapse
|
6
|
Yang Y, Chen Y, Li Z, Zhang Y, Lu L. Microbial community and soil enzyme activities driving microbial metabolic efficiency patterns in riparian soils of the Three Gorges Reservoir. Front Microbiol 2023; 14:1108025. [PMID: 37180230 PMCID: PMC10171112 DOI: 10.3389/fmicb.2023.1108025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
Riparian zones represent important transitional areas between aquatic and terrestrial ecosystems. Microbial metabolic efficiency and soil enzyme activities are important indicators of carbon cycling in the riparian zones. However, how soil properties and microbial communities regulate the microbial metabolic efficiency in these critical zones remains unclear. Thus, microbial taxa, enzyme activities, and metabolic efficiency were conducted in the riparian zones of the Three Gorges Reservoir (TGR). Microbial carbon use efficiency and microbial biomass carbon had a significant increasing trend along the TGR (from upstream to downstream); indicating higher carbon stock in the downstream, microbial metabolic quotient (qCO2) showed the opposite trend. Microbial community and co-occurrence network analysis revealed that although bacterial and fungal communities showed significant differences in composition, this phenomenon was not found in the number of major modules. Soil enzyme activities were significant predictors of microbial metabolic efficiency along the different riparian zones of the TGR and were significantly influenced by microbial α-diversity. The bacterial taxa Desulfobacterota, Nitrospirota and the fungal taxa Calcarisporiellomycota, Rozellomycota showed a significant positive correlation with qCO2. The shifts in key microbial taxa unclassified_k_Fungi in the fungi module #3 are highlighted as essential factors regulating the microbial metabolic efficiency. Structural equation modeling results also revealed that soil enzyme activities had a highly significant negative effect on microbial metabolism efficiency (bacteria, path coefficient = -0.63; fungi, path coefficient = -0.67).This work has an important impact on the prediction of carbon cycling in aquatic-terrestrial ecotones. Graphical abstract.
Collapse
Affiliation(s)
- Yining Yang
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, Chongqing, China
| | - Yao Chen
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, Chongqing, China
| | - Zhe Li
- CAS Key Laboratory of Reservoir Water Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Yuanyuan Zhang
- CAS Key Laboratory of Reservoir Water Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Lunhui Lu
- CAS Key Laboratory of Reservoir Water Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- *Correspondence: Lunhui Lu,
| |
Collapse
|
7
|
Ye F, Hong Y, Wu J, Yi X, Op den Camp HJM, Moore SS, Vamerali T, Wang Y. Succession of soil microbial community in a developing mid-channel bar: The role of environmental disturbance and plant community. Front Microbiol 2022; 13:970529. [PMID: 36060763 PMCID: PMC9428583 DOI: 10.3389/fmicb.2022.970529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/01/2022] [Indexed: 11/22/2022] Open
Abstract
Succession of microbial and plant communities is crucial for the development and the stability of soil ecological functions. The relative role of plant communities and environmental disturbance in shaping the microbial community in a newly established habitat remains unclear. In this study, a mid-channel bar (MCB) exposed to an environmental disturbance gradient in the Yangtze River was studied to explore the effects of such disturbance and plant community traits on the succession of the soil microbial community. Bulk and rhizospheric soils were collected from the MCB and classified according to their level of exposure to environmental disturbance: head, central and tail. These subsequently underwent high-throughput sequencing and interdomain ecological network (IDEN) analysis to identify and characterize the predominant microbial groups present in the soils at each disturbance level. Furthermore, at each site, the presence and distribution of the plant community was also noted. The present study demonstrated that both bulk soil nutrients and plant community exhibited significant spatial distribution dependent on the level of disturbance and this influenced the composition of the microbial community. In less eroded parts of the MCB, i.e., the central, nutrients accumulated, promoting growths of plants. This in turn encouraged a more diverse microbial community, dominated by the bacterial genus Pseudarthrobacter. Plant showed a stronger association with bulk soil microbial communities compared to rhizosphere soil microbial communities. Particularly, Triarrhena sacchariflora and Hemarthria altissima, present in sites of low disturbance, exhibiting a more extensive plant-microbe association. They thus played a key role in shaping the soil microbial community. In general, however, plant species did not directly determine the composition of the bacterial community, but instead altered the nutritive state of the soil to promote microbial growth. Such findings are of significant value for conservation practices of newly formed ecosystems, which requires an integrated understanding of the role of environmental disturbance and plants on soil microbial community assemblage.
Collapse
Affiliation(s)
- Fei Ye
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou, China
| | - Yiguo Hong
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou, China
| | - Jiapeng Wu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou, China
| | - Xuemei Yi
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Huub J. M. Op den Camp
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University Nijmegen, Nijmegen, Netherlands
| | - Selina Sterup Moore
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Padua, Italy
| | - Teofilo Vamerali
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Padua, Italy
| | - Yu Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou, China
| |
Collapse
|
8
|
The Relationship between Soil Particle Size Fractions, Associated Carbon Distribution and Physicochemical Properties of Historical Land-Use Types in Newly Formed Reservoir Buffer Strips. SUSTAINABILITY 2022. [DOI: 10.3390/su14148448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Water impoundment reshapes the ecological environment around the bank-line of newly built reservoirs. Therefore, reservoir buffer strips play a disproportionately large role in the maintenance of ecosystem functions and environmental benefits during the early stage of reservoir formation. However, there are gaps in the research on soil particle-size-associated carbon distribution characteristics within different historical land-use types in newly formed reservoir buffer strips. In this study, we focused on soil particle size fractions, aggregate stability, and particle-size-associated carbon distribution characteristics of different historical land-use types of reservoir buffer strips at distance scale (i.e., different distance from the water) after reservoir impoundment in the Chushandian Reservoir, China, and explored the relationship between them. The results showed that the soil texture of abandoned cropland and grassland are classified as silt loam and woodland are classified as sandy loam; different historical land-use types in newly formed reservoir buffer strips showed significant differences in soil aggregate stability after reservoir impoundment; a distance scale was used to measure these differences, which were mainly due to the dry-wet cycles and water submerged condition caused by the buffers’ different distances from water. The newly formed reservoir buffer strips underwent corresponding changes in the particle-size-associated carbon distribution characteristics after reservoir impoundment, mainly due to the turnover property of different soil particles combined with organic carbon. Reservoir impoundment accelerates the turnover of silt particle and associated nutrients in soils of historical land-use types in newly formed reservoir buffer strips; turnover may be mediated mainly by microbial biomass.
Collapse
|