1
|
Stoppiello GA, De Carolis R, Coleine C, Tretiach M, Muggia L, Selbmann L. Intrathalline Fungal and Bacterial Diversity Is Uncovered in Antarctic Lichen Symbioses. ENVIRONMENTAL MICROBIOLOGY REPORTS 2025; 17:e70080. [PMID: 40325803 PMCID: PMC12052756 DOI: 10.1111/1758-2229.70080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 02/16/2025] [Accepted: 02/18/2025] [Indexed: 05/07/2025]
Abstract
Although the Antarctic continent represents one of the most hostile environments on earth, microbial life has adapted to cope with these extreme conditions. Lichens are one of the most successful groups of organisms in Antarctica, where they serve as unique niches for microbial diversification. We have selected eight epilithic lichen species growing in Victoria Land (three cosmopolitan and five endemic to Antarctica) to describe with amplicon sequencing the diversity of the associated fungal and bacterial communities. The lichen mycobiota is predominantly composed of Ascomycota belonging to the classes Chaetothyriomycetes and Dothideomycetes, while a few key representative taxa were recognised as basidiomycetous yeasts. Bacteria associated with lichens were represented by Pseudomonadota, Cyanobacteria, and Bacteroidota in which psychrophilic genera were identified. The microbiota was diverse among the lichen species, and their variation was driven by the lichen species itself and their endemic or cosmopolitan distribution. There was a strong association of the microbial communities linked to the lichen itself, rather than to the specific characteristics of the collecting site. The lichen thallus, thus, plays an important role in microbial diversification and may potentially act as a selective biodiversity filter in which different fungal and bacterial communities thrive in it.
Collapse
Affiliation(s)
| | - Roberto De Carolis
- Largo Dell' Università, Department of Ecological and Biological SciencesUniversity of TusciaViterboItaly
| | - Claudia Coleine
- Largo Dell' Università, Department of Ecological and Biological SciencesUniversity of TusciaViterboItaly
| | - Mauro Tretiach
- Department of Life SciencesUniversity of TriesteTriesteItaly
| | - Lucia Muggia
- Department of Life SciencesUniversity of TriesteTriesteItaly
| | - Laura Selbmann
- Largo Dell' Università, Department of Ecological and Biological SciencesUniversity of TusciaViterboItaly
- Italian Antarctic National Museum (MNA)Mycological SectionGenoaItaly
| |
Collapse
|
2
|
Medeiros W, Kralova S, Oliveira V, Ziemert N, Sehnal L. Antarctic bacterial natural products: from genomic insights to drug discovery. Nat Prod Rep 2025; 42:774-787. [PMID: 39996333 DOI: 10.1039/d4np00045e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Covering: up to the end of 2024Microbial life dominates the extreme continent Antarctica, playing a pivotal role in ecosystem functioning and serving as a reservoir of specialized metabolites known as natural products (NPs). NPs not only contribute to microbial adaptation to harsh conditions but also modulate microbial community structure. Long-term isolation and environmental pressures have shaped the genomes of Antarctic bacteria, suggesting that they also encode unique NPs. Since NPs are also an important source of drugs, we argue that investigating Antarctic bacterial NPs is essential not only for understanding their ecological role and evolution, but also for discovering new chemical structures, biosynthetic mechanisms, and potential new drugs. Yet, despite advances in omics technologies and increased scientific activities in Antarctica, relatively few new bacterial NPs have been discovered. The lack of systematic research activities focused on the exploration of Antarctic bacteria and their NPs constitutes a big problem considering the climate change issue, to which ecosystems in polar regions are the most sensitive areas on the Earth. Here, we highlight the currently available data on Antarctic bacteria, their biosynthetic potential, and the successful NP discoveries, while addressing the challenges in NP research and advocating for systematic, collaborative efforts aligned with the Antarctic Treaty System and the Antarctic Conservation Biogeographic Regions.
Collapse
Affiliation(s)
- William Medeiros
- Microbial Resources Division, Research Center for Chemistry, Biology, and Agriculture (CPQBA), Universidade Estadual de Campinas (UNICAMP), Paulínia, São Paulo, Brazil
| | - Stanislava Kralova
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Valéria Oliveira
- Microbial Resources Division, Research Center for Chemistry, Biology, and Agriculture (CPQBA), Universidade Estadual de Campinas (UNICAMP), Paulínia, São Paulo, Brazil
| | - Nadine Ziemert
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, Germany.
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Ludek Sehnal
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, Germany.
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 625 00 Brno, Czech Republic.
| |
Collapse
|
3
|
Prado T, Degrave WMS, Duarte GF. Lichens and Health-Trends and Perspectives for the Study of Biodiversity in the Antarctic Ecosystem. J Fungi (Basel) 2025; 11:198. [PMID: 40137236 PMCID: PMC11942898 DOI: 10.3390/jof11030198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 03/27/2025] Open
Abstract
Lichens are an important vegetative component of the Antarctic terrestrial ecosystem and present a wide diversity. Recent advances in omics technologies have allowed for the identification of lichen microbiomes and the complex symbiotic relationships that contribute to their survival mechanisms under extreme conditions. The preservation of biodiversity and genetic resources is fundamental for the balance of ecosystems and for human and animal health. In order to assess the current knowledge on Antarctic lichens, we carried out a systematic review of the international applied research published between January 2019 and February 2024, using the PRISMA model (Preferred Reporting Items for Systematic Reviews and Meta-Analyses). Articles that included the descriptors "lichen" and "Antarctic" were gathered from the web, and a total of 110 and 614 publications were retrieved from PubMed and ScienceDirect, respectively. From those, 109 publications were selected and grouped according to their main research characteristics, namely, (i) biodiversity, ecology and conservation; (ii) biomonitoring and environmental health; (iii) biotechnology and metabolism; (iv) climate change; (v) evolution and taxonomy; (vi) reviews; and (vii) symbiosis. Several topics were related to the discovery of secondary metabolites with potential for treating neurodegenerative, cancer and metabolic diseases, besides compounds with antimicrobial activity. Survival mechanisms under extreme environmental conditions were also addressed in many studies, as well as research that explored the lichen-associated microbiome, its biodiversity, and its use in biomonitoring and climate change, and reviews. The main findings of these studies are discussed, as well as common themes and perspectives.
Collapse
Affiliation(s)
- Tatiana Prado
- Laboratory of Applied Genomics and Bioinnovation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Av. Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil; (W.M.S.D.); (G.F.D.)
| | - Wim Maurits Sylvain Degrave
- Laboratory of Applied Genomics and Bioinnovation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Av. Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil; (W.M.S.D.); (G.F.D.)
| | - Gabriela Frois Duarte
- Laboratory of Applied Genomics and Bioinnovation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Av. Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil; (W.M.S.D.); (G.F.D.)
- Federal University of Rio de Janeiro (UFRJ), Av. Pedro Calmon, 550, Rio de Janeiro 21941-901, RJ, Brazil
| |
Collapse
|
4
|
Sbissi I, Chouikhi F, Ghodhbane-Gtari F, Gtari M. Ecogenomic insights into the resilience of keystone Blastococcus Species in extreme environments: a comprehensive analysis. BMC Genomics 2025; 26:51. [PMID: 39833680 PMCID: PMC11748284 DOI: 10.1186/s12864-025-11228-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND The stone-dwelling genus Blastococcus plays a key role in ecosystems facing extreme conditions such as drought, salinity, alkalinity, and heavy metal contamination. Despite its ecological significance, little is known about the genomic factors underpinning its adaptability and resilience in such harsh environments. This study investigates the genomic basis of Blastococcus's adaptability within its specific microniches, offering insights into its potential for biotechnological applications. RESULTS Comprehensive pangenome analysis revealed that Blastococcus possesses a highly dynamic genetic composition, characterized by a small core genome and a large accessory genome, indicating significant genomic plasticity. Ecogenomic assessments highlighted the genus's capabilities in substrate degradation, nutrient transport, and stress tolerance, particularly on stone surfaces and archaeological sites. The strains also exhibited plant growth-promoting traits, enhanced heavy metal resistance, and the ability to degrade environmental pollutants, positioning Blastococcus as a candidate for sustainable agriculture and bioremediation. Interestingly, no correlation was found between the ecological or plant growth-promoting traits (PGPR) of the strains and their isolation source, suggesting that these traits are not linked to their specific environments. CONCLUSIONS This research highlights the ecological and biotechnological potential of Blastococcus species in ecosystem health, soil fertility improvement, and stress mitigation strategies. It calls for further studies on the adaptation mechanisms of the genus, emphasizing the need to validate these findings through wet lab experiments. This study enhances our understanding of microbial ecology in extreme environments and supports the use of Blastococcus in environmental management, particularly in soil remediation and sustainable agricultural practices.
Collapse
Affiliation(s)
- Imed Sbissi
- Institute of Arid Lands of Medenine, LR Pastoral Ecosystems and Promotion of Spontaneous Plants and Associated Microorganisms, University of Gabes, Gabes, Tunisia
| | - Farah Chouikhi
- Institute of Arid Lands of Medenine, LR Pastoral Ecosystems and Promotion of Spontaneous Plants and Associated Microorganisms, University of Gabes, Gabes, Tunisia
| | - Faten Ghodhbane-Gtari
- Department of Biological and Chemical Engineering, USCR Molecular Bacteriology and Genomics, University of Carthage, National Institute of Applied Sciences and Technology, Tunis, 2080, Tunisia
- Higher Institute of Biotechnology in Sidi Thabet, La Manouba University, Ariana, Tunisia
| | - Maher Gtari
- Department of Biological and Chemical Engineering, USCR Molecular Bacteriology and Genomics, University of Carthage, National Institute of Applied Sciences and Technology, Tunis, 2080, Tunisia.
| |
Collapse
|
5
|
Rachmania MK, Ningsih F, Sari DCAF, Sakai Y, Yokota A, Yabe S, Kim SG, Sjamsuridzal W. Dictyobacter halimunensis sp. nov., a new member of the phylum Chloroflexota, from forest soil in a geothermal area. Int J Syst Evol Microbiol 2024; 74. [PMID: 39630498 DOI: 10.1099/ijsem.0.006600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Three Gram-stain-positive aerobic bacteria, characterized by branched mycelia with putative sporangia, were isolated from forest soil inside a decayed bamboo stem from a geothermal area in West Java, Indonesia. The strain S3.2.2.5T grew at 15-37 °C (optimum 30 °C), at pH 5.0-7.0 (optimum 7.0) and in the presence of 0-1% NaCl (optimum 0%). Strain S3.2.2.5T was able to hydrolyse cellulose, xylan, starch and skim milk. The cell-wall sugars were composed of xylose and mannose, and the peptidoglycan hydrolysates contained d-glutamic acid, glycine, d-alanine, l-alanine, β-alanine and l-ornithine. The major fatty acids (>10%) were anteiso-C17:0, iso-C17:0, C16:1 2-OH and iso-C16:1. The major polar lipids were phosphatidylinositol, phosphatidylglycerol, diphosphatidylglycerol, unidentified glycolipids and unidentified phospholipids. The major menaquinone was MK-9 (H2). The results of the analysis of the phylogenetic tree based on the 16S rRNA gene indicated that these three isolates belong to the genus Dictyobacter and they were most closely related to the type strain of species Dictyobacter aurantiacus S-27T (97.41-98.00%). The strain S3.2.2.5T exhibited a genome size of 9.41 Mbp, which was significantly larger than the known Dictyobacter species. The G+C content was 54.3 mol%. The average nucleotide identity (90.77%) and the digital DNA-DNA hybridization values (42.6%) between strain S3.2.2.5T and D. aurantiacus S-27T were below the threshold value for species delineation. Based on the phenotypic, chemotaxonomic and molecular characteristics of strain S3.2.2.5T, a novel species of the genus Dictyobacter, for which the name Dictyobacter halimunensis sp. nov., is proposed. The type strain is S3.2.2.5T (= UICC B-128T = CGMCC 1.61913T = KCTC 43728T).
Collapse
Affiliation(s)
- Mazytha Kinanti Rachmania
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Kampus UI, Depok 16424, Indonesia
- Center of Excellence for Indigenous Biological Resources-Genome Studies, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Kampus UI, Depok 16424, Indonesia
| | - Fitria Ningsih
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Kampus UI, Depok 16424, Indonesia
- Center of Excellence for Indigenous Biological Resources-Genome Studies, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Kampus UI, Depok 16424, Indonesia
| | - Dhian Chitra Ayu Fitria Sari
- Center of Excellence for Indigenous Biological Resources-Genome Studies, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Kampus UI, Depok 16424, Indonesia
| | - Yasuteru Sakai
- Department of Microbial Resources, Graduate School of Agricultural Science, Faculty of Agriculture, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
- Hazaka Plant Research Center, Kennan Eisei Kogyo Co.Ltd.,, 44 Inariyama, Ashitate, Shibata-gun, Miyagi, 989-1311, Japan
| | - Akira Yokota
- Department of Microbial Resources, Graduate School of Agricultural Science, Faculty of Agriculture, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
- Hazaka Plant Research Center, Kennan Eisei Kogyo Co.Ltd.,, 44 Inariyama, Ashitate, Shibata-gun, Miyagi, 989-1311, Japan
| | - Shuhei Yabe
- Department of Microbial Resources, Graduate School of Agricultural Science, Faculty of Agriculture, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
- Hazaka Plant Research Center, Kennan Eisei Kogyo Co.Ltd.,, 44 Inariyama, Ashitate, Shibata-gun, Miyagi, 989-1311, Japan
- BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Song-Gun Kim
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Jeonbuk 56212, Republic of Korea
| | - Wellyzar Sjamsuridzal
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Kampus UI, Depok 16424, Indonesia
- Center of Excellence for Indigenous Biological Resources-Genome Studies, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Kampus UI, Depok 16424, Indonesia
| |
Collapse
|
6
|
Pittino F, Fink S, Oliveira J, Janssen EML, Scheidegger C. Lithic bacterial communities: ecological aspects focusing on Tintenstrich communities. Front Microbiol 2024; 15:1430059. [PMID: 39678915 PMCID: PMC11639984 DOI: 10.3389/fmicb.2024.1430059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/28/2024] [Indexed: 12/17/2024] Open
Abstract
Tintenstrich communities (TCs) mainly comprise Cyanobacteria developing on rock substrates and forming physical structures that are strictly connected to the rock itself. Endolithic and epilithic bacterial communities are important because they contribute to nutrient release within run-off waters flowing on the rock surface. Despite TCs being ubiquitous, little information about their ecology and main characteristics is available. In this study, we characterized the bacterial communities of rock surfaces of TCs in Switzerland through Illumina sequencing. We investigated their bacterial community composition on two substrate types (siliceous rocks [SRs] and carbonate rocks [CRs]) through multivariate models. Our results show that Cyanobacteria and Proteobacteria are the predominant phyla in this environment. Bacterial α-diversity was higher on CRs than on SRs, and the β-diversity of SRs varied with changes in rock surface structure. In this study, we provide novel insights into the bacterial community composition of TCs, their differences from other lithic communities, and the effects of the rock substrate and structure.
Collapse
Affiliation(s)
- Francesca Pittino
- Biodiversity and Conservation Biology, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Dübendorf, Switzerland
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Sabine Fink
- Biodiversity and Conservation Biology, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Juliana Oliveira
- Biodiversity and Conservation Biology, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Dübendorf, Switzerland
| | - Elisabeth M.-L. Janssen
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Dübendorf, Switzerland
| | - Christoph Scheidegger
- Biodiversity and Conservation Biology, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| |
Collapse
|
7
|
Lai Z, Liu Z, Zhao Y, Qin S, Zhang W, Lang T, Zhu Z, Sun Y. Distinct microbial communities under different rock-associated microhabitats in the Qaidam Desert. ENVIRONMENTAL RESEARCH 2024; 250:118462. [PMID: 38367835 DOI: 10.1016/j.envres.2024.118462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/03/2024] [Accepted: 02/09/2024] [Indexed: 02/19/2024]
Abstract
Hypolithic communities, which occupy highly specialised microhabitats beneath translucent rocks in desert and arid environments, have assembly mechanisms and ecosystem functions are not fully understood. Thus, in this study, we aimed to examine the microbial community structure, assembly, and function of light-accessible (under quartz, calcite, and hypolithic lichen-dominated biocrusts) and light-inaccessible microhabitats (under basalt and adjacent soil) in the Qaidam Desert, China. The results showed that hypolithic communities have different characteristics compared with microbial communities of light-inaccessible microhabitats. Notably, hypolithic bacterial communities were dominated by Cyanobacteria, whereas light-inaccessible microhabitats showed a predominance of Bacteroidetes and Proteobacteria. Although the class Dothideomycetes (phylum: Ascomycota) dominated the fungal communities between the two microhabitat types, Sordariomycetes were more prevalent in light-accessible microhabitats. Network and robustness analyses showed that hypolithic communities were less complex and more resilient than microbial communities in light-inaccessible microhabitats. Our results indicated that deterministic processes, specifically homogeneous selection, govern the establishment of bacterial and fungal communities in light-accessible and light-inaccessible microhabitats. The hypolithic community showed an increased frequency of phylotypes that exhibited increased tolerance to functional stress response pathways. In contrast to light-inaccessible microhabitats, light-accessible microhabitats showed a slight decrease and a notable increase in the prevalence of carbon fixation pathways in prokaryotes and carbon fixation in photosynthetic organisms, respectively. For fungi, light-accessible microhabitats enriched saprotrophic and ectomycorrhizal groups. These results highlight the importance of complex and diverse microhabitats in desert regions, which serve as vital shelters for microbes. Combining future research on interactions between hypolithic communities and environments may enhance our current understanding of their pivotal roles in sustaining desert ecosystems. This knowledge then be applied to design and implement informed conservation efforts to preserve these unique rock-associated microhabitats in desert ecosystems.
Collapse
Affiliation(s)
- Zongrui Lai
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Zhen Liu
- CAS Engineering Laboratory for Yellow River Delta Modern Agriculture, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuanyuan Zhao
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Shugao Qin
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Wenqi Zhang
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Tao Lang
- MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area & Shenzhen Key Laboratory of Marine Bio-resource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, 518060, Shenzhen, China; College of Agricultural and Food Engineering, Baise University, Baise, Guangxi 533000, China.
| | - Zhengjie Zhu
- College of Agricultural and Food Engineering, Baise University, Baise, Guangxi 533000, China
| | - Yanfei Sun
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, 570228, China.
| |
Collapse
|
8
|
He Z, Naganuma T, Nakai R, Uetake J, Hahn MW. Microbiomic Analysis of Bacteria Associated with Rock Tripe Lichens from Alpine Areas in Eastern Alps and Equatorial Africa. Curr Microbiol 2024; 81:115. [PMID: 38483599 PMCID: PMC10940493 DOI: 10.1007/s00284-024-03626-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/27/2024] [Indexed: 03/17/2024]
Abstract
The diversity of bacteria associated with alpine lichens was profiled. Lichen samples belonging to the Umbilicariaceae family, commonly known as rock tripe lichens, were gathered from two distinct alpine fellfields: one situated on Mt. Brennkogel located in the Eastern European Alps (Austria), and the other on Mt. Stanley located in the Rwenzori mountains of equatorial Africa (Uganda). The primary aim of this research was to undertake a comparative investigation into the bacterial compositions, and diversities, identifying potential indicators and exploring their potential metabolisms, of these lichen samples. Bulk genomic DNA was extracted from the lichen samples, which was used to amplify the 18S rRNA gene by Sanger sequencing and the V3-V4 region of the 16S rRNA gene by Illumina Miseq sequencing. Examination of the fungal partner was carried out through the analysis of 18S rRNA gene sequences, belonging to the genus Umbilicaria (Ascomycota), and the algal partner affiliated with the lineage Trebouxia (Chlorophyta), constituted the symbiotic components. Analyzing the MiSeq datasets by using bioinformatics methods, operational taxonomic units (OTUs) were established based on a predetermined similarity threshold for the V3-V4 sequences, which were assigned to a total of 26 bacterial phyla that were found in both areas. Eight of the 26 phyla, i.e. Acidobacteriota, Actinomycota, Armatimonadota, Bacteroidota, Chloroflexota, Deinococcota, Planctomycetota, and Pseudomonadota, were consistently present in all samples, each accounting for more than 1% of the total read count. Distinct differences in bacterial composition emerged between lichen samples from Austria and Uganda, with the OTU frequency-based regional indicator phyla, Pseudomonadota and Armatimonadota, respectively. Despite the considerable geographic separation of approximately 5430 km between the two regions, the prediction of potential metabolic pathways based on OTU analysis revealed similar relative abundances. This similarity is possibly influenced by comparable alpine climatic conditions prevailing in both areas.
Collapse
Affiliation(s)
- Zichen He
- Graduate School of Integrated Science for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - Takeshi Naganuma
- Graduate School of Integrated Science for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan.
| | - Ryosuke Nakai
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Sapporo, 062-8517, Japan
| | - Jun Uetake
- Field Science Center for Northern Biosphere, Hokkaido University, Sapporo, 060-0811, Japan
| | - Martin W Hahn
- Research Department for Limnology, Universität Innsbruck, 5310, Mondsee, Austria
| |
Collapse
|
9
|
Hobart KK, Greensky Z, Hernandez K, Feinberg JM, Bailey JV, Jones DS. Microbial communities from weathered outcrops of a sulfide-rich ultramafic intrusion, and implications for mine waste management. Environ Microbiol 2023; 25:3512-3526. [PMID: 37667903 DOI: 10.1111/1462-2920.16489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 07/20/2023] [Indexed: 09/06/2023]
Abstract
The Duluth Complex (DC) contains sulfide-rich magmatic intrusions that represent one of the largest known economic deposits of copper, nickel, and platinum group elements. Previous work showed that microbial communities associated with experimentally-weathered DC waste rock and tailings were dominated by uncultivated taxa and organisms not typically associated with mine waste. However, those experiments were designed for kinetic testing and do not necessarily represent the conditions expected for long-term environmental weathering. We used 16S rRNA gene methods to characterize the microbial communities present on the surfaces of naturally-weathered and historically disturbed outcrops of DC material. Rock surfaces were dominated by diverse uncultured Ktedonobacteria, Acetobacteria, and Actinobacteria, with abundant algae and other phototrophs. These communities were distinct from microbial assemblages from experimentally-weathered DC rocks, suggesting different energy and nutrient resources in environmental samples. Sulfide mineral incubations performed with and without algae showed that photosynthetic microorganisms could have an inhibitory effect on autotrophic populations, resulting in slightly lower sulfate release and differences in dominant microorganisms. The microbial assemblages from these weathered outcrops show how communities develop during weathering of sulfide-rich DC rocks and represent baseline data that could evaluate the effectiveness of future reclamation of waste produced by large-scale mining operations.
Collapse
Affiliation(s)
- Kathryn K Hobart
- Department of Earth & Environmental Sciences, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Rock Magnetism, University of Minnesota, Minneapolis, Minnesota, USA
| | - ZhaaZhaawaanong Greensky
- Department of Earth & Environmental Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kimberly Hernandez
- Department of Earth & Environmental Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Joshua M Feinberg
- Department of Earth & Environmental Sciences, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Rock Magnetism, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jake V Bailey
- Department of Earth & Environmental Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Daniel S Jones
- Department of Earth & Environmental Sciences, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Earth and Environmental Science, New Mexico Institute of Mining and Technology, Socorro, New Mexico, USA
- National Cave and Karst Research Institute, Carlsbad, New Mexico, USA
| |
Collapse
|
10
|
Collins T, Feller G. Psychrophilic enzymes: strategies for cold-adaptation. Essays Biochem 2023; 67:701-713. [PMID: 37021674 DOI: 10.1042/ebc20220193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023]
Abstract
Psychrophilic organisms thriving at near-zero temperatures synthesize cold-adapted enzymes to sustain cell metabolism. These enzymes have overcome the reduced molecular kinetic energy and increased viscosity inherent to their environment and maintained high catalytic rates by development of a diverse range of structural solutions. Most commonly, they are characterized by a high flexibility coupled with an intrinsic structural instability and reduced substrate affinity. However, this paradigm for cold-adaptation is not universal as some cold-active enzymes with high stability and/or high substrate affinity and/or even an unaltered flexibility have been reported, pointing to alternative adaptation strategies. Indeed, cold-adaptation can involve any of a number of a diverse range of structural modifications, or combinations of modifications, depending on the enzyme involved, its function, structure, stability, and evolutionary history. This paper presents the challenges, properties, and adaptation strategies of these enzymes.
Collapse
Affiliation(s)
- Tony Collins
- Department of Biology, Center of Molecular and Environmental Biology (CBMA), University of Minho, 4710-057 Braga, Portugal
| | - Georges Feller
- Department of Life Sciences, Laboratory of Biochemistry, Center for Protein Engineering-InBioS, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
11
|
Mashamaite L, Lebre PH, Varliero G, Maphosa S, Ortiz M, Hogg ID, Cowan DA. Microbial diversity in Antarctic Dry Valley soils across an altitudinal gradient. Front Microbiol 2023; 14:1203216. [PMID: 37555066 PMCID: PMC10406297 DOI: 10.3389/fmicb.2023.1203216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/23/2023] [Indexed: 08/10/2023] Open
Abstract
INTRODUCTION The Antarctic McMurdo Dry Valleys are geologically diverse, encompassing a wide variety of soil habitats. These environments are largely dominated by microorganisms, which drive the ecosystem services of the region. While altitude is a well-established driver of eukaryotic biodiversity in these Antarctic ice-free areas (and many non-Antarctic environments), little is known of the relationship between altitude and microbial community structure and functionality in continental Antarctica. METHODS We analysed prokaryotic and lower eukaryotic diversity from soil samples across a 684 m altitudinal transect in the lower Taylor Valley, Antarctica and performed a phylogenic characterization of soil microbial communities using short-read sequencing of the 16S rRNA and ITS marker gene amplicons. RESULTS AND DISCUSSION Phylogenetic analysis showed clear altitudinal trends in soil microbial composition and structure. Cyanobacteria were more prevalent in higher altitude samples, while the highly stress resistant Chloroflexota and Deinococcota were more prevalent in lower altitude samples. We also detected a shift from Basidiomycota to Chytridiomycota with increasing altitude. Several genera associated with trace gas chemotrophy, including Rubrobacter and Ornithinicoccus, were widely distributed across the entire transect, suggesting that trace-gas chemotrophy may be an important trophic strategy for microbial survival in oligotrophic environments. The ratio of trace-gas chemotrophs to photoautotrophs was significantly higher in lower altitude samples. Co-occurrence network analysis of prokaryotic communities showed some significant differences in connectivity within the communities from different altitudinal zones, with cyanobacterial and trace-gas chemotrophy-associated taxa being identified as potential keystone taxa for soil communities at higher altitudes. By contrast, the prokaryotic network at low altitudes was dominated by heterotrophic keystone taxa, thus suggesting a clear trophic distinction between soil prokaryotic communities at different altitudes. Based on these results, we conclude that altitude is an important driver of microbial ecology in Antarctic ice-free soil habitats.
Collapse
Affiliation(s)
- Lefentse Mashamaite
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
| | - Pedro H. Lebre
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
| | - Gilda Varliero
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
- Rhizosphere Processes Group, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Silindile Maphosa
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
| | - Max Ortiz
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
- Clemson University Genomics & Bioinformatics Facility, Clemson University, Clemson, SC, United States
| | - Ian D. Hogg
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
- School of Science, University of Waikato, Hamilton, New Zealand
- Canadian High Arctic Research Station, Polar Knowledge Canada, Cambridge Bay, NU, Canada
| | - Don A. Cowan
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
12
|
Sannino C, Borruso L, Mezzasoma A, Turchetti B, Ponti S, Buzzini P, Mimmo T, Guglielmin M. The Unusual Dominance of the Yeast Genus Glaciozyma in the Deeper Layer in an Antarctic Permafrost Core (Adélie Cove, Northern Victoria Land) Is Driven by Elemental Composition. J Fungi (Basel) 2023; 9:jof9040435. [PMID: 37108890 PMCID: PMC10145851 DOI: 10.3390/jof9040435] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
Rock glaciers are relatively common in Antarctic permafrost areas and could be considered postglacial cryogenic landforms. Although the extensive presence of rock glaciers, their chemical–physical and biotic composition remain scarce. Chemical–physical parameters and fungal community (by sequencing the ITS2 rDNA, Illumina MiSeq) parameters of a permafrost core were studied. The permafrost core, reaching a depth of 6.10 m, was divided into five units based on ice content. The five units (U1–U5) of the permafrost core exhibited several significant (p < 0.05) differences in terms of chemical and physical characteristics, and significant (p < 0.05) higher values of Ca, K, Li, Mg, Mn, S, and Sr were found in U5. Yeasts dominated on filamentous fungi in all the units of the permafrost core; additionally, Ascomycota was the prevalent phylum among filamentous forms, while Basidiomycota was the dominant phylum among yeasts. Surprisingly, in U5 the amplicon sequence variants (ASVs) assigned to the yeast genus Glaciozyma represented about two-thirds of the total reads. This result may be considered extremely rare in Antarctic yeast diversity, especially in permafrost habitats. Based on of the chemical–physical composition of the units, the dominance of Glaciozyma in the deepest unit was correlated with the elemental composition of the core.
Collapse
Affiliation(s)
- Ciro Sannino
- Industrial Yeasts Collection DBVPG, Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy
| | - Luigimaria Borruso
- Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100 Bozen-Bolzano, Italy
| | - Ambra Mezzasoma
- Industrial Yeasts Collection DBVPG, Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy
| | - Benedetta Turchetti
- Industrial Yeasts Collection DBVPG, Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy
| | - Stefano Ponti
- Department of Theoretical and Applied Sciences, Insubria University, 21100 Varese, Italy
| | - Pietro Buzzini
- Industrial Yeasts Collection DBVPG, Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy
| | - Tanja Mimmo
- Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100 Bozen-Bolzano, Italy
| | - Mauro Guglielmin
- Department of Theoretical and Applied Sciences, Insubria University, 21100 Varese, Italy
| |
Collapse
|
13
|
Coleine C, Delgado-Baquerizo M, Zerboni A, Turchetti B, Buzzini P, Franceschi P, Selbmann L. Rock Traits Drive Complex Microbial Communities at the Edge of Life. ASTROBIOLOGY 2023; 23:395-406. [PMID: 36812458 DOI: 10.1089/ast.2022.0062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Antarctic deserts are among the driest and coldest ecosystems of the planet; there, some microbes survive under these extreme conditions inside porous rocks, forming the so-called endolithic communities. Yet the contribution of distinct rock traits to support complex microbial assemblies remains poorly determined. Here, we combined an extensive Antarctic rock survey with rock microbiome sequencing and ecological networks and found that contrasting combinations of microclimatic and rock traits such as thermal inertia, porosity, iron concentration, and quartz cement can help explain the multiple complex microbial assemblies found in Antarctic rocks. Our work highlights the pivotal role of rocky substrate heterogeneity in sustaining contrasting groups of microorganisms, which is essential to understand life at the edge on Earth and for the search for life on other rocky planets such as Mars.
Collapse
Affiliation(s)
- Claudia Coleine
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico. Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain
- Unidad Asociada CSIC-UPO (BioFun). Universidad Pablo de Olavide, Sevilla, Spain
| | - Andrea Zerboni
- Dipartimento di Scienze della Terra "A. Desio", Università degli Studi di Milano, Milano, Italy
| | - Benedetta Turchetti
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Pietro Buzzini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Pietro Franceschi
- Research and Innovation Center, Fondazione Edmund Mach, Trento, Italy
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
- Italian Antarctic National Museum (MNA), Mycological Section, Genoa, Italy
| |
Collapse
|
14
|
He Z, Naganuma T, Nakai R, Imura S, Tsujimoto M, Convey P. Microbiomic Analysis of Bacteria Associated with Rock Tripe Lichens in Continental and Maritime Antarctic Regions. J Fungi (Basel) 2022; 8:jof8080817. [PMID: 36012805 PMCID: PMC9409739 DOI: 10.3390/jof8080817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022] Open
Abstract
Increased research attention is being given to bacterial diversity associated with lichens. Rock tripe lichens (Umbilicariaceae) were collected from two distinct Antarctic biological regions, the continental region near the Japanese Antarctic station (Syowa Station) and the maritime Antarctic South Orkney Islands (Signy Island), in order to compare their bacterial floras and potential metabolism. Bulk DNA extracted from the lichen samples was used to amplify the 18S rRNA gene and the V3-V4 region of the 16S rRNA gene, whose amplicons were Sanger- and MiSeq-sequenced, respectively. The fungal and algal partners represented members of the ascomycete genus Umbilicaria and the green algal genus Trebouxia, based on 18S rRNA gene sequences. The V3-V4 sequences were grouped into operational taxonomic units (OTUs), which were assigned to eight bacterial phyla, Acidobacteriota, Actinomyceota, Armatimonadota, Bacteroidota, Cyanobacteria, Deinococcota, Pseudomonadota and the candidate phylum Saccharibacteria (also known as TM7), commonly present in all samples. The OTU floras of the two biological regions were clearly distinct, with regional biomarker genera, such as Mucilaginibacter and Gluconacetobacter, respectively. The OTU-based metabolism analysis predicted higher membrane transport activities in the maritime Antarctic OTUs, probably influenced by the sampling area’s warmer maritime climatic setting.
Collapse
Affiliation(s)
- Zichen He
- Graduate School of Integrated Science for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan;
| | - Takeshi Naganuma
- Graduate School of Integrated Science for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan;
- Correspondence:
| | - Ryosuke Nakai
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, 2-17-2-1 Tsukisamu-Higashi, Sapporo 062-8517, Japan;
| | - Satoshi Imura
- National Institute of Polar Research, 10-3 Midori-Cho, Tachikawa 190-8518, Japan; (S.I.); (M.T.)
- Department of Polar Science, SOKENDAI (The Graduate University for Advanced Studies), 10-3 Midori-cho, Tachikawa 190-8518, Japan
| | - Megumu Tsujimoto
- National Institute of Polar Research, 10-3 Midori-Cho, Tachikawa 190-8518, Japan; (S.I.); (M.T.)
- Faculty of Environment and Information Studies, Keio University, 5322 Endo, Fujisawa 252-0882, Japan
| | - Peter Convey
- British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, UK;
- Department of Zoology, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago 7800003, Chile
- Cape Horn International Center (CHIC), Puerto Williams 6350000, Chile
| |
Collapse
|