1
|
Zeng Q, Hu HW, Ge AH, Xiong C, Zhai CC, Duan GL, Han LL, Huang SY, Zhang LM. Plant-microbiome interactions and their impacts on plant adaptation to climate change. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:826-844. [PMID: 39981843 DOI: 10.1111/jipb.13863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 02/22/2025]
Abstract
Plants have co-evolved with a wide range of microbial communities over hundreds of millions of years, this has drastically influenced their adaptation to biotic and abiotic stress. The rapid development of multi-omics approaches has greatly improved our understanding of the diversity, composition, and functions of plant microbiomes, but how global climate change affects the assembly of plant microbiomes and their roles in regulating host plant adaptation to changing environmental conditions is not fully known. In this review, we summarize recent advancements in the community assembly of plant microbiomes, and their responses to climate change factors such as elevated CO2 levels, warming, and drought. We further delineate the research trends and hotspots in plant-microbiome interactions in the context of climate change, and summarize the key mechanisms by which plant microbiomes influence plant adaptation to the changing climate. We propose that future research is urgently needed to unravel the impact of key plant genes and signal molecules modulated by climate change on microbial communities, to elucidate the evolutionary response of plant-microbe interactions at the community level, and to engineer synthetic microbial communities to mitigate the effects of climate change on plant fitness.
Collapse
Affiliation(s)
- Qing Zeng
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hang-Wei Hu
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - An-Hui Ge
- Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Chao Xiong
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Chang-Chun Zhai
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Gui-Lan Duan
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Li-Li Han
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Si-Yun Huang
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Mei Zhang
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Kaur R, Gupta S, Tripathi V, Bharadwaj A. Unravelling the secrets of soil microbiome and climate change for sustainable agroecosystems. Folia Microbiol (Praha) 2025; 70:19-40. [PMID: 39249146 DOI: 10.1007/s12223-024-01194-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024]
Abstract
The soil microbiota exhibits an important function in the ecosystem, and its response to climate change is of paramount importance for sustainable agroecosystems. The macronutrients, micronutrients, and additional constituents vital for the growth of plants are cycled biogeochemically under the regulation of the soil microbiome. Identifying and forecasting the effect of climate change on soil microbiomes and ecosystem services is the need of the hour to address one of the biggest global challenges of the present time. The impact of climate change on the structure and function of the soil microbiota is a major concern, explained by one or more sustainability factors around resilience, reluctance, and rework. However, the past research has revealed that microbial interventions have the potential to regenerate soils and improve crop resilience to climate change factors. The methods used therein include using soil microbes' innate capacity for carbon sequestration, rhizomediation, bio-fertilization, enzyme-mediated breakdown, phyto-stimulation, biocontrol of plant pathogens, antibiosis, inducing the antioxidative defense pathways, induced systemic resistance response (ISR), and releasing volatile organic compounds (VOCs) in the host plant. Microbial phytohormones have a major role in altering root shape in response to exposure to drought, salt, severe temperatures, and heavy metal toxicity and also have an impact on the metabolism of endogenous growth regulators in plant tissue. However, shelf life due to the short lifespan and storage time of microbial formulations is still a major challenge, and efforts should be made to evaluate their effectiveness in crop growth based on climate change. This review focuses on the influence of climate change on soil physico-chemical status, climate change adaptation by the soil microbiome, and its future implications.
Collapse
Affiliation(s)
- Rasanpreet Kaur
- Department of Biotechnology, IAH, GLA University, Mathura, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Saurabh Gupta
- Department of Biotechnology, IAH, GLA University, Mathura, India.
| | - Vishal Tripathi
- Department of Biotechnology, Graphic Era (Deemed to Be University), Dehradun, 248002, Uttarakhand, India.
| | - Alok Bharadwaj
- Department of Biotechnology, IAH, GLA University, Mathura, India
| |
Collapse
|
3
|
Bredow M, Khwanbua E, Sartor Chicowski A, Qi Y, Breitzman MW, Holan KL, Liu P, Graham MA, Whitham SA. Elevated CO 2 alters soybean physiology and defense responses, and has disparate effects on susceptibility to diverse microbial pathogens. THE NEW PHYTOLOGIST 2025. [PMID: 39788902 DOI: 10.1111/nph.20364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 12/03/2024] [Indexed: 01/12/2025]
Abstract
Increasing atmospheric CO2 levels have a variety of effects that can influence plant responses to microbial pathogens. However, these responses are varied, and it is challenging to predict how elevated CO2 (eCO2) will affect a particular plant-pathogen interaction. We investigated how eCO2 may influence disease development and responses to diverse pathogens in the major oilseed crop, soybean. Soybean plants grown in ambient CO2 (aCO2, 419 parts per million (ppm)) or in eCO2 (550 ppm) were challenged with bacterial, viral, fungal, and oomycete pathogens. Disease severity, pathogen growth, gene expression, and molecular plant defense responses were quantified. In eCO2, plants were less susceptible to Pseudomonas syringae pv. glycinea (Psg) but more susceptible to bean pod mottle virus, soybean mosaic virus, and Fusarium virguliforme. Susceptibility to Pythium sylvaticum was unchanged, although a greater loss in biomass occurred in eCO2. Reduced susceptibility to Psg was associated with enhanced defense responses. Increased susceptibility to the viruses was associated with reduced expression of antiviral defenses. This work provides a foundation for understanding how future eCO2 levels may impact molecular responses to pathogen challenges in soybean and demonstrates that microbes infecting both shoots and roots are of potential concern in future climatic conditions.
Collapse
Affiliation(s)
- Melissa Bredow
- Department of Plant Pathology, Entomology & Microbiology, Iowa State University, Ames, 50011, IA, USA
| | - Ekkachai Khwanbua
- Department of Plant Pathology, Entomology & Microbiology, Iowa State University, Ames, 50011, IA, USA
| | - Aline Sartor Chicowski
- Department of Plant Pathology, Entomology & Microbiology, Iowa State University, Ames, 50011, IA, USA
| | - Yunhui Qi
- Department of Statistics, Iowa State University, Ames, 50011, IA, USA
| | - Matthew W Breitzman
- W. M. Keck Metabolomics Research Laboratory, Iowa State University, Ames, 50011, IA, USA
| | - Katerina L Holan
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Corn Insects and Crop Genetics Research Unit and Department of Agronomy, Iowa State University, Ames, 50011, IA, USA
| | - Peng Liu
- Department of Statistics, Iowa State University, Ames, 50011, IA, USA
| | - Michelle A Graham
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Corn Insects and Crop Genetics Research Unit and Department of Agronomy, Iowa State University, Ames, 50011, IA, USA
| | - Steven A Whitham
- Department of Plant Pathology, Entomology & Microbiology, Iowa State University, Ames, 50011, IA, USA
| |
Collapse
|
4
|
C-Dupont AÖ, Rosado-Porto D, Sundaram IS, Ratering S, Schnell S. Elevated Atmospheric Co 2 Levels Impact Soil Protist Functional Core Community Compositions. Curr Microbiol 2024; 81:411. [PMID: 39414704 PMCID: PMC11485191 DOI: 10.1007/s00284-024-03930-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/30/2024] [Indexed: 10/18/2024]
Abstract
Protists, known as microeukaryotes, are a significant portion of soil microbial communities. They are crucial predators of bacteria and depend on bacterial community dynamics for the growth and evolution of protistan communities. In parallel, increased levels of atmospheric CO2 significantly impact bacterial metabolic activity in rhizosphere soils. In this study, we investigated the effect of elevated atmospheric CO2 levels on the metabolically active protist community composition and function and their co-occurrences with bacteria from bulk and rhizosphere soils from the Giessen Free-Air CO2 enrichment grassland experiment. Metabarcoding sequencing data analyses of partial 18S rRNA from total soil RNA showed that elevated CO2 concentrations stimulated only a few ASVs of phagotrophic predators of bacteria and other microeukaryotes, affecting protist community composition (P = 0.006, PERMANOVA). In parallel, phagotrophic and parasitic lineages appeared slightly favoured under ambient CO2 conditions, results that were corroborated by microbial signature analyses. Cross-comparisons of protist-bacteria co-occurrences showed mostly negative relations between prokaryotes and microeukaryotes, indicating that the ongoing increase in atmospheric CO2 will lead to changes in microbial soil communities and their interactions, potentially cascading to higher trophic levels in soil systems.
Collapse
Affiliation(s)
- Alessandra Ö C-Dupont
- Institute of Applied Microbiology, IFZ, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
| | - David Rosado-Porto
- Institute of Applied Microbiology, IFZ, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Indhu Shanmuga Sundaram
- Institute of Applied Microbiology, IFZ, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
- Ceradis Crop Protection BV, Agrobusiness Park 10, 6708 PW, Wageningen, Netherlands
| | - Stefan Ratering
- Institute of Applied Microbiology, IFZ, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Sylvia Schnell
- Institute of Applied Microbiology, IFZ, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| |
Collapse
|
5
|
AbdElgawad H, Mohammed AE, van Dijk JR, Beemster GTS, Alotaibi MO, Saleh AM. The impact of chromium toxicity on the yield and quality of rice grains produced under ambient and elevated levels of CO 2. FRONTIERS IN PLANT SCIENCE 2023; 14:1019859. [PMID: 36959941 PMCID: PMC10027917 DOI: 10.3389/fpls.2023.1019859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Rice is a highly valuable crop consumed all over the world. Soil pollution, more specifically chromium (Cr), decreases rice yield and quality. Future climate CO2 (eCO2) is known to affect the growth and yield of crops as well as the quality parameters associated with human health. However, the detailed physiological and biochemical responses induced by Cr in rice grains produced under eCO2 have not been deeply studied. Cr (200 and 400 mg Cr6+/Kg soil) inhibited rice yield and photosynthesis in Sakha 106, but to less extend in Giza 181 rice cultivar. Elevated CO2 reduced Cr accumulation and, consequently, recovered the negative impact of the higher Cr dose, mainly in Sakha 106. This could be explained by improved photosynthesis which was consistent with increased carbohydrate level and metabolism (starch synthases and amylase). Moreover, these increases provided a route for the biosynthesis of organic, amino and fatty acids. At grain quality level, eCO2 differentially mitigated Cr stress-induced reductions in minerals (e.g., P, Mg and Ca), proteins (prolamin, globulin, albumin, glutelin), unsaturated fatty acids (e.g., C20:2 and C24:1) and antioxidants (phenolics and total antioxidant capacity) in both cultivars. This study provided insights into the physiological and biochemical bases of eCO2-induced grain yield and quality of Cr-stressed rice.
Collapse
Affiliation(s)
- Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Afrah E. Mohammed
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Jesper R. van Dijk
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
- Ecosystem Management, Department of Biology, University of Antwerp, Antwerp, Wilrijk, Belgium
| | - Gerrit T. S. Beemster
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Modhi O. Alotaibi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ahmed M. Saleh
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
6
|
Rosado-Porto D, Ratering S, Wohlfahrt Y, Schneider B, Glatt A, Schnell S. Elevated atmospheric CO 2 concentrations caused a shift of the metabolically active microbiome in vineyard soil. BMC Microbiol 2023; 23:46. [PMID: 36809988 PMCID: PMC9942357 DOI: 10.1186/s12866-023-02781-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/23/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Elevated carbon dioxide concentrations (eCO2), one of the main causes of climate change, have several consequences for both vine and cover crops in vineyards and potentially also for the soil microbiome. Hence soil samples were taken from a vineyard free-air CO2 enrichment (VineyardFACE) study in Geisenheim and examined for possible changes in the soil active bacterial composition (cDNA of 16S rRNA) using a metabarcoding approach. Soil samples were taken from the areas between the rows of vines with and without cover cropping from plots exposed to either eCO2 or ambient CO2 (aCO2). RESULTS Diversity indices and redundancy analysis (RDA) demonstrated that eCO2 changed the active soil bacterial diversity in grapevine soil with cover crops (p-value 0.007). In contrast, the bacterial composition in bare soil was unaffected. In addition, the microbial soil respiration (p-values 0.04-0.003) and the ammonium concentration (p-value 0.003) were significantly different in the samples where cover crops were present and exposed to eCO2. Moreover, under eCO2 conditions, qPCR results showed a significant decrease in 16S rRNA copy numbers and transcripts for enzymes involved in N2 fixation and NO2- reduction were observed using qPCR. Co-occurrence analysis revealed a shift in the number, strength, and patterns of microbial interactions under eCO2 conditions, mainly represented by a reduction in the number of interacting ASVs and the number of interactions. CONCLUSIONS The results of this study demonstrate that eCO2 concentrations changed the active soil bacterial composition, which could have future influence on both soil properties and wine quality.
Collapse
Affiliation(s)
- David Rosado-Porto
- Institute of Applied Microbiology, Justus Liebig University, 35392, Giessen, Germany
- Faculty of Basic and Biomedical Sciences, Simón Bolívar University, 080002, Barranquilla, Colombia
| | - Stefan Ratering
- Institute of Applied Microbiology, Justus Liebig University, 35392, Giessen, Germany
| | - Yvette Wohlfahrt
- Department of General and Organic Viticulture, Hochschule Geisenheim University, Von-Lade-Strasse 1, 65366, Geisenheim, Germany
| | - Bellinda Schneider
- Institute of Applied Microbiology, Justus Liebig University, 35392, Giessen, Germany
| | - Andrea Glatt
- Institute of Applied Microbiology, Justus Liebig University, 35392, Giessen, Germany
| | - Sylvia Schnell
- Institute of Applied Microbiology, Justus Liebig University, 35392, Giessen, Germany.
| |
Collapse
|
7
|
Rosado-Porto D, Ratering S, Moser G, Deppe M, Müller C, Schnell S. Soil metatranscriptome demonstrates a shift in C, N, and S metabolisms of a grassland ecosystem in response to elevated atmospheric CO 2. Front Microbiol 2022; 13:937021. [PMID: 36081791 PMCID: PMC9445814 DOI: 10.3389/fmicb.2022.937021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Soil organisms play an important role in the equilibrium and cycling of nutrients. Because elevated CO2 (eCO2) affects plant metabolism, including rhizodeposition, it directly impacts the soil microbiome and microbial processes. Therefore, eCO2 directly influences the cycling of different elements in terrestrial ecosystems. Hence, possible changes in the cycles of carbon (C), nitrogen (N), and sulfur (S) were analyzed, alongside the assessment of changes in the composition and structure of the soil microbiome through a functional metatranscriptomics approach (cDNA from mRNA) from soil samples taken at the Giessen free-air CO2 enrichment (Gi-FACE) experiment. Results showed changes in the expression of C cycle genes under eCO2 with an increase in the transcript abundance for carbohydrate and amino acid uptake, and degradation, alongside an increase in the transcript abundance for cellulose, chitin, and lignin degradation and prokaryotic carbon fixation. In addition, N cycle changes included a decrease in the transcript abundance of N2O reductase, involved in the last step of the denitrification process, which explains the increase of N2O emissions in the Gi-FACE. Also, a shift in nitrate (NO 3 - ) metabolism occurred, with an increase in transcript abundance for the dissimilatoryNO 3 - reduction to ammonium (NH 4 + ) (DNRA) pathway. S metabolism showed increased transcripts for sulfate (SO 4 2 - ) assimilation under eCO2 conditions. Furthermore, soil bacteriome, mycobiome, and virome significantly differed between ambient and elevated CO2 conditions. The results exhibited the effects of eCO2 on the transcript abundance of C, N, and S cycles, and the soil microbiome. This finding showed a direct connection between eCO2 and the increased greenhouse gas emission, as well as the importance of soil nutrient availability to maintain the balance of soil ecosystems.
Collapse
Affiliation(s)
- David Rosado-Porto
- Institute of Applied Microbiology, Justus Liebig University, Giessen, Germany
- Faculty of Basic and Biomedical Sciences, Simón Bolívar University, Barranquilla, Colombia
| | - Stefan Ratering
- Institute of Applied Microbiology, Justus Liebig University, Giessen, Germany
| | - Gerald Moser
- Institute of Plant Ecology, Justus Liebig University, Giessen, Germany
| | - Marianna Deppe
- Institute of Plant Ecology, Justus Liebig University, Giessen, Germany
| | - Christoph Müller
- Institute of Plant Ecology, Justus Liebig University, Giessen, Germany
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Dublin, Ireland
| | - Sylvia Schnell
- Institute of Applied Microbiology, Justus Liebig University, Giessen, Germany
| |
Collapse
|